
Computer Science and Engineering 2013, 3(3): 67-75
DOI: 10.5923/j.computer.20130303.03

Novel Assessment of Different Intelligent Tools for
Problem Solving

Seyyed Meisam Taheri1,*, Yamamoto Hidehiko2, Hrudaya Kumar Tripathy3

1Mechanical and Civil Engineering Division, Graduate School, Gifu University, Yanagido, Gifu-shi, 501-1193, Japan
2Department of Mechanical Engineering, Faculty of Engineering, Gifu University, Yanagido, Gifu-shi, 501-1193, Japan
3School of Computing & Technology, Asia Pacific University of Technology & Innovation, Technology Park Malaysia,

Kuala Lumpur, Malaysia

Abstract Teaching programming to novices is a difficult task down to the complex essence of the subject, the negative
views associated with programming, and because initial programming courses are not often successful in encouraging
students to understand the concepts. Foundation programming lessons should concentrate on problem-solving skills and
introduction to the basic manners of algorithmic thinking. This paper's aim illustrates the progress and results obtained by
investigating the different existing programming solving tools in order to achieve a new tool with high-performance
capability. By using the intelligent visual tool, a user can comfortably analyze the problem and enhance the problem solving
skills. This literature study’s aim is to present a brief overview of the programming difficulties faced by novice students and
of existing visualization tools in programming education.

Keywords Program, Intelligent Tool, Algorithm, Programming, Analysis, Coding

1. Introduction
The main reason of programming weakness in some new

programmers is hidden in programming solving skill and
techniques. The lack of understanding the programming
concept comes from difficult ies and complexities related to
the programming environment and language syntax which
are needed to use for novices[29]. According to a survey
done by Lahtinen et al. most difficult ies in programming that
students face are due to the lack o f understanding of how to
design a program, how to solve a certain task and how to find
bugs in their own programs[36]. Programming languages are
usually considered as complicated and regularly have the
most dropout rates[1]. Programming is a complicate work
and lecturer must manage their teaching manner cautiously
[23]. As a result beginners face various problems when they
learn to program[1][37][38]. Some of these difficu lties are:

● Installing and setting class paths for compilers.
● Learning functionalities of programming editors.
● Understanding programming questions and using

programming language syntax knowledge to write code.
● Describ ing the program logic and the difficulty of

translating logic to program.
● Poor quality of assistance offered by teachers.
● Lack of useful informat ion about library functions and

* Corresponding author:
s3812005@edu.gifu-u.ac.jp (Seyyed Meisam Taheri)
Published online at http://journal.sapub.org/computer
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

header files.
● Comprehending compiler error messages.
● Fix the errors, as determined during the debugging

process.
Although several tools have been discussed in the

literature rev iew, comparison will be employed to find out
which one implies to better comprehension for novice
programmers. Indeed, some tools exist which are related to
problem solving, especially in programming fields. This
study is generally distributed entirely the literatures and
comparison exist tools such as Jeliot, B#, Codewitz, Web
Based Programming Assistance Tool for Novices (WPAT),
E-Learning For Novice Programmers (A Dynamic
Visualisation and Problem Solving Tool) and Flowcharts
Interpreter (FI).

1.1. AIM

This study investigates the efficiency of using techniques
and tools to achieve problem solving tools and to find out if
such technologies and tools can aid novices in overcoming
the current difficulties in programming by using problem
solving tools and techniques. This study aims to find the best
solutions and answers for the given problems, and inquiry
will be asked v ia tool by users; Furthermore, it will give a
general idea to author for designing a tool for novices to
allow them to create flowcharts, convert flowcharts to
pseudo-code and target programming languages. It is also
important that Graphic user interface (GUI) should
encourage a user to employ programming to solve the given
problems. The mentioned tool will be integrated with a social

68 Seyyed Meisam Taheri et al.: Novel Assessment of Different Intelligent Tools for Problem Solving

network; it will also uncover some related answers by using
software agents that are in accordance with the user’s
interests. The Google services can help to improve this tool
in searching with appropriate results, translating the
problems, answers and pages’ text, as well as, ranking the
answers – all being functions in this tool.

2. The Iconic Programming Tool (B#)
In fact, the Iconic Programming Tool (B#) is a tool for

beginner Programmers. The significant aim of design B#
refers to difficu lties faced in preliminary programming
courses by novices, including problem-solving techniques
and strategies, misconception about constructed
programming languages, concepts and the traditional
programming environments. An approach towards aforesaid
complexit ies in programming by student programmers in
preliminary programming lessons is the form of teaching.
There are some strategies used to overcome the difficu lties,
one of which uses visual languages combined with the iconic
flowchart method. In addition, iconic programming usually
tries to make things easier in programming tasks by
decreasing the level o f accuracy and manual typing in
programming languages. Thus, B# has provided an

environment which aids programmers in programming by
using iconic flowcharts. Basic p rogramming concepts such
as assignments, conditions, (inputs & outputs) and loops are
supported in B#. Automatic generating codes, debugging
and program executing are supported by the system as well.
This study investigates B# structure, focusing on the aims
that were B# followed as an iconic programming tool[14].

According to Hilburn points, students start programming
with simple examples and statements, which do not aid
students in increasing problem-solving skills which are vital
for effect ive programming. He exp lains this method as a
bottom-up approach and students should know the logical
processes at first (top-down approach)[15]. The following
table shows steps referred as in the program development
Lifecycle, the tasks of students or novices who are t rying to
overcome the difficulty of processes of programming. This
table shows that the programmer should implement the an
algorithm; a v isual environment instead of a text-based
environment in this case can help the programmer to
understand what to do and overcome the errors and syntaxes.
There is too much focus on syntax, not sufficient emphasis
on problem- solving and absence of support for experiencing
program execution[9].

Figure 1. B# Environment[14]

 Computer Science and Engineering 2013, 3(3): 67-75 69

The developers of B# have researched to help students to
develop better understanding programming concepts by
using iconic programming tools. The research is performed
concerning the efficiency of B# as a teaching tool in an init ial
program[8]. Programmers need to have instant intelligent
feedback about the correctness of the written program. Some
evaluation sections can aid programmers to define the
semantic correctness of the programs; the same module
could provide teachers with the ability of identify defined
features, which are needed to correct the students' programs.

Table 1. Development life cycle[14]

Step procedure

1 Analyze the problem

2 Design a solution plan

3 Construct an algorithm

4 Implement the algorithm

5 Test and debug the algorithm

2.1. B# Justification

The research shows that novices prefer a visual and iconic
environment. For instance, B# Programming environment is
a visual environment instead of a text-based environment. In
this case, that can help the programmer to understand what to
do as well as errors and syntaxes. The tool which is our aim
to achieve in some case is following B# structure. The tool
uses an iconic and visual environment by using the best
metaphor and tips, for better understanding of each part, and
its errors and difficult ies. The B# tool might have been the
perfect idea and tool in its period, but taking a first look at it,
the user will t ire of working with this tool. Nowadays, the
most significant need which each tool in this era of
technology might have is to be interactive and exciting. In
fact, the idea and the design of B# is very simple, but the
outcome could be that much more effective. The same idea
which is used in B# will be used in our tool as well.

3. E-Learning (Visualisation and
Dynamic Tool)

Progranimate is an environment based on the web that
aims to conquer the issues faced by novice programmers.
The concentration of this tool is using flowcharts to find
solutions to fundamental programming problems and
provide visualization for programming to correct generated
code of the given program. New programmers also have
difficulty to understand the problem specificat ion and
converting the problems to code. The difficulties are related
to programming environment, syntaxes and non tracing
abilities that make the programming more difficult for
novices. The results show attention to algorithmic
problem-solving and development is fewer[29].

The best form of visualization for programmers,
especially novices is Flowchart. It has been a long time since

flowcharts have been used to visualize the structure of
programs. The flowcharts are quite easy to understand
without having any background in programming - with using
algorithm beside flowcharts, the level of understanding will
increase. Westphal says that “without the use of diagrams or
flowcharts, it is d ifficu lt fo r beginners, even with pseudo
code to communicate the flow of a program”[33].
Ben-Bassat says assuming that dynamic an imation can
expand the flowchart’s effect iveness as a novice assist in
algorithmic problem solving and program development[5].

3.1. The Progranimate Environment

The tool aims to provide an environment with visual form
and the program that runs for encouraging the novices, aims
to be a tool as long as they need an assistant in programming.
The code generation part is provided with two different
languages presently; Java and two types of visual basic. The
tool uses colors to separate different parts such as types,
components, flowcharts, codes and etc. The program uses
trace panel, which shows the variable values, and variable
changes, which help to understand the process. The results of
feedback which have gained by observation, interview and
questionnaire:

Table 2. Likert Questionnaire Responces[29]

● Usability
U questions review ease of use, and how much the tool
is usable and enjoyable for programmers.

● Efficacy
The E questions are about tool efficacy as a teaching
and helping tool. The results illustrated that
Progranimate is generally helpfu l in age between 13-15.
Additionally, the results show that inspection features
and animat ions were mainly help ful.

● problem solving exercises
The section shows the enjoyment of using the tools
during the solve problems. The results illustrated that
13-15 age groups have seen the tool as enjoyable.

70 Seyyed Meisam Taheri et al.: Novel Assessment of Different Intelligent Tools for Problem Solving

Figure 2. The Progranimate Environment[29]

3.2. E-Learning Justification
The visualizat ion of programming milestones is the

environment of the tool which is provided by the flowcharts,
coding, tracing or allocating the variables. The Progran imate
tool is efficient and usable according to the questionnaire
which is provided in the last researches pertaining to this tool
for accomplishing, analysis and testing the tool. In some
cases, the environment is very user friendly; however it is
very simple in the first glance. Th is kind of tool can be very
helpful to students, because the novice students can
understand what is going on in the program without leaving
the current page, and all the environment features are located
in one place, which makes the tool more understandable. In
fact, novices’ difficulty in programming related to points that
they do not understand-especially where and how the
variable in itialized. If they able to see the process of the
programming and tracing the code, that can be much easier
to understand the concept[29].

4. Software Visualization Tool: Jeliot #
The Jeliot tool is intended to assist novice programmers in

learning object oriented and procedural programming. The
best part of Jeliot is semi-automatic v isualization and control
flows. Generally, when students want to learn programming,
this type of tools can be a brilliant learning source. The idea
behind Jeliot is to encourage students to construct their own
programs and give them permission the ability to see the

visual illustration of the program execution. These processes
help them to develop their mental model about calculation
that assists them in understand the concept of programming.
Therefore, the programmers are engaged with the tool and
since they are working with the tool they are also learning.
The object-oriented models in visual mode are very
significant - for that reason these concepts are not easily
comprehend by novices in programming[3].

The first developed tool to teach introduction object-orie
nted programming is BlueJ[10]. The highlight in the system
is the static visualization of the class structure, same as a
UML diagram. Javavis is a system developed from the
similar thought of using the Java Debugging Interface (JDI)
to gain information about the runtime performance of the
program[25]. In fact, this kind of tools could be very helpful
for experts in programming as well.

4.1. Jeliot Goals

The aims o f Jeliot 3 were described in studies of the earlier
versions of the jeliot. The major aims o f the systems are
following below:

● Usability.
● The visualizations should be dependable in all cases.
● The v isualizations should be comprehensive and

incessant.
● The system should support the visualizat ion of as large a

subset of programs written in the Java language as possible.
● The system should be extendable internally and

externally.

 Computer Science and Engineering 2013, 3(3): 67-75 71

Figure 3. User interface of Jeliot 2000[3]

The first three goals come from the fact that Jeliot 3 is
intended for novice users, and in research on Jeliot[24][19]
and visual displays[20] these features have been found
significant for them.

Figure 4. The structure of Jeliot 3[3]

Jeliot 3 can assist novices in first stages of programming
by providing understandable semantics and by encouraging
novices through the learning process. Teachers and students
can use graphical and oral vocabulary that simplify the
conversation of programming concepts.

4.2. Jeliot Justification

The jeliot environment is very simple and easy to use. The
jeliot developers have tried to make it as simple as they can.
The highlight of this tool is the visual environment and
tracing which make it more user-friendly and understandable.

The tracing part shows the process step by step, and this is a
useful part of this tool. The tool also uses the java
programming language as a default; also the code is
compiled inside the tool and it will show any error in the
program before run the program - it might be helpful in other
aspects as well. The relation between our tool and jeliot can
be the visualization, tracing and using the illustration all
processors in one screen. Jeliot and other tools share
something in common in that which they are try ing to be
more v isual and easy to use; this is because the programming
in simple and text-base tools can be boring.

5. The Codewitz Project
Robins et al. recommend that lecturers should concentrate

on the combination and use of these features, especially on
issues of basic program design[26]. For instance, structure
visualizat ion shows examples of the fundamental
constructions and their combinations in different situations
could encourage students towards better understanding of
different approaches and construct a mental library of
various answer diagrams for program design. The object
oriented approach, pointers and memory are most difficu lt
contents in visualizations, where Codewitz could be
especially useful in overcoming these difficulties. The
research on algorithm model and visualizat ion in educational
locations can offer important information fo r developing
Codewitz simulations[21].

72 Seyyed Meisam Taheri et al.: Novel Assessment of Different Intelligent Tools for Problem Solving

Figure 5. Codewitz environment

The main goals of the Codewitz-project are:
1. Developing and producing interactive learn ing objects

for fundamental programming courses.
2. Providing a growing repository for string and sharing

the resource with the project partners.
3. Creating a network of teaching experts who deal with

this problem every day.”
The Codewitz objects are individually mutual exercises,

or assignments, for the students to utilize during study.
Teachers also can use the tool to help them to teach. The tool
gives students the ability to use at home or at school, and
teachers as well. The tool’s objects can have up to five areas
or windows, Input/output, program execution, memory,
condition and explanations parts as Figure 5 shows.

5.1. Codewitz Justification

The codewitz tool is used for students and teachers both
for a better understanding about the programs and what their
processes and variable memory allocations are. The
environment is divided into different sections which make
the tool more understandable; each part is responsible for
specific operations. This tool in some case is same as jeliot 3
but with this difference that the variables allocation in the
memory is in visual mode. This tool is very helpful which
owe to the differences between commands, modules and
operations and clarify when the tool shows step by step what
is in the memory and how the variables, addresses and
memory content are changed. The tool’s manner and the
result of using this tool are really impressive. Using the same
techniques in a new tool will help novice programmers to

have a deeper understanding of programming.

6. Raptor: Flowchart based
Programming Environment

Research shows that “most students are visual learners and
instructors tend to present informat ion verbally; Studies
estimate that between 75% and 83% of students are visual
learners”[30][12]. RAPTOR the programming flowchart -ba
sed environment is designed purposely to assist students in
facing syntactic bugs and visualize the algorithms for them.
The RAPTOR program aids the student in executing
programs visually and tracing the execution with following
flowcharts. Most students prefer to use flowchart to declare
their algorithms, and results show that RAPTOR helps them
more than traditional language or writ ing flowcharts without
RAPTOR. The Raptor environment also allows users to
design an algorithm by using flowchart signs and combine
them together. Users can run the algorithm and see the
process step by step or in continuous mode.
Some reasons to use RAPTOR:

● The RAPTOR reduced the quantity of syntax that must
be learned to write proper program.

● The RAPTOR is visual. Programs are d iagrams that can
be executed one symbol at a t ime. This helps to follow the
flow of step execution into RAPTOR programs.

● RAPTOR is designed for ease of use.
● RAPTOR error messages are designed to be more

readable and understandable for novice programmers.

 Computer Science and Engineering 2013, 3(3): 67-75 73

Figure 6. A RAPTOR flowchart in action[30]

6.1. Raptor Justification

Raptor is a kind of problem solving tools which is
concentrate on flowcharting. To learn basic programming,
learning flowchart and Algorithm is a must. Using the basic
problem solving techniques in a new tool by fo llowing the
architecture of RAPTOR will make the tool much more
effective. We believe that the all kinds of users might have
dealt with tool, novices, experts and those just familiar with
laymen terms. Furthermore, the tool must consider different
users with different ability and needs, for instance some
users prefer to learn p rogramming with flowcharts while
others might think he o r she does not need to focus on
flowcharts or algorithms.

7. Software Agent
Software agents are independent parts of software that are

responsible for several tasks dedicated to them. In the era of
technology, the benefit is authorizing given types of tasks to
run automatically by autonomous software programs.
Software agents are continuously running, modified and
semi-autonomous; also it constructs them in order to be

helpful with a large variety of in formation and procedure
management tasks. Software agent is software that functions
endlessly and separately in an exacting environment, which
may include one more agents and processes[2].

Intelligent agents continuously perform three functions
as:[2]

● Observation of dynamic circumstances in the situations
● Act to influence circumstances in the environment
● Analysis to understand comprehensions, solves

problems, draw deductive and resolve actions

7.1. Software Agent: Decision Making

The most important part of agents is to have the capability
to make a decision. The agent also must make a decision on
how to react as well as the most suitable time to answer
instantly, or if time is needed to examine the situation.
Furthermore, an active agent is able to take act ion without
being purposely requested if it senses an appropriate
situation. Obviously, this ability needs an agent to be capable
to make a decision when to do an action as well as what
action to do. In addition, apart from simply making a
decision, all decisions are not excellent decisions. Thus
protocols of decision making are regularly analyzed and

74 Seyyed Meisam Taheri et al.: Novel Assessment of Different Intelligent Tools for Problem Solving

evaluated by factors such as: time, ease, constancy, social
interests, Pareto efficiency, indiv idual reasonableness,
computational efficiency, distribution and communication
efficiency. At negotiation time, it is obviously not helpful for
an agent to take very long periods of t ime to make a decision;
as such the decision making device cannot be used in
sensible situations[2].

7.2. Agent Properties

A software agent is a computer system situated in an
environment that performs on behalf of its user and is
characterised by a number of properties[7]. Most researchers
agree that autonomy is a crucial property of an agent.
Furthermore, cooperation among different software agents
may be very useful in achieving the objectives an agent
has[7]. According to the weak notion of agency given by
Wooldridge the most general way in which the term agent is
used to denote hardware or (more usually) software-based
computer system that enjoys the following properties:
autonomy, social ability, reactivity and pro-activeness[34].
Identify three key concepts in their definit ion that they adapt
from): situated, autonomy, and flexib ility (by the term
flexib le they mean that the system is responsive, pro-active
and social). An agent is a system that enjoys autonomy,
social ability, reactiv ity and pro-activeness. He also said the
fact that other researchers discuss that different properties,
such as mobility, actuality, kindness, wisdom and learn ing,
should receive greater importance.

7.3. Agents Justification

As mentioned above, agents are playing an important role
in the new era of technology. In this part icular tool which is
employing to solve problems, and for each problem might
have different solutions; therefore, the tool needs to be
intelligent to find out which one is more suitable. In fact, the
tool should be able to complete its knowledge base due to the
informat ion which experts and the high ranking users are
imported to the system or update the previous data. The
agent’s task is solving problems, also the tool needs software
that to make decisions in some situations.

8. Future Work and Conclusions
This research illustrates, how the problem solving tool can

be useful and effective when used in an init ial programming
course by using Artificial Intelligent (AI), Software Agents,
Search Algorithms, Google’s services and Social networks
but the potential will remain to investigate more methods for
future works. We want to develop our tool to be more
user-friendly, effective and useful by using the tool as a
social network where the guidance in this tool would be the
most expert users. The users’ skills and position will be
chosen by their ranking, and the first registration form which
they need to fill in during the registration, and their
qualification will be approved by the system administration.
As well as, the ranking system will follow the Google

ranking system. The tool can be used as a virtual c lassroom,
the experts and lecturers can be the admin istrator of the class.
In addition, the tool’s focus point is on the initial phases of
programming, and for future phases of programming novices
do not allow to access. Also access to high levels needs the
lecturers or agents’ permission. Our review shows that
visualizat ion interfaces are more effective than the text-base
learning system. In conclusion, we are try ing to encourage
novices and attract them with the visual tool to learn and do
programming.

ACKNOWLEDGMENTS
This research would not be possible without the help of

my professors. Thanks to all other members & friends
directly or indirectly supported in this research and also for
the future.

REFERENCES
[1] A. Robins, J. Rountree, and N. Rountree. Learning and

teaching programming: A review and discussion. Computer
Science Education 13(2): 137--172, 2003.

[2] Akshatha.P.S, Pooja Rani (2011). SOFTWARE AGENT’S
DECISION MAKING APPROACH BASED ON GAME
THEORY. International Journal of Advances in Engineering.
1, pp.10.

[3] Andrés Moreno, Niko Myller. Producing an Educationally
Effective and Usable Tool for Learning, the Case of the Jeliot
Family. To appear in the Proceedings of International
Conference on Networked e-learning for European
Universities, Granada, Spain, 2003.

[4] Ask.com Takes the Lead on Log Retention; Microsoft and
Yahoo! Follow https://www.eff.org/deeplinks/2007/07/ask-
com-takes-lead-log-retention-microsoft-and-yahoo-follow),
eff.org, Retrieved on 2008-01-03.

[5] Ben-Bassat Levy R, Ben Ari M and Uronen P, “An
Extended Experiment with Jeliot 2000”, In Proceedings of the
First International Program Visualization Workshop,
University of Joensuu Press, Porvoo Finland, 2001, pp:
131-140.

[6] Cardellini, L. An Interview with Richard M. Felder. Journal
of Science Education 3(2), (2002), 62-65.

[7] Chira, C. (2003). Software Agents, IDIMS Report, 2/21/03.

[8] Cilliers, C. "The Implementation of Alternative Delivery
Modes in a South African Introductory Programming Course".
PhD Thesis, Department of Computer Science and
Information Systems, NMMU, Port Elizabeth, 2005.

[9] Crews, T and Ziegler, U. "The flowchart interpreter for
introductory programming courses", Proceeding of the
Frontiers in Education 1998 Conference. Tempe, Arizona,
USA, 1996.

[10] D. J. Barnes and M. Kölling. Objects First with Java – A
Practical Introduction using BlueJ. Prentice Hall/Pearson

 Computer Science and Engineering 2013, 3(3): 67-75 75

Education, Reading, Massachusetts, USA, 2003.

[11] Does AskEraser Really Erase?" Electronic Privacy
Information Center.. Retrieved 2008-03-10. (http://epic.org/
privacy/ask/default.html).

[12] Fowler, L., Allen, M., Armarego, J., and Mackenzie, J.
Learning styles and CASE tools in Software Engineering. In
A. Herrmann and M.M. Kulski (eds), Flexible Futures in
Tertiary Teaching. Proceedings of the 9th Annual Teaching
Learning Forum, February 2000. http://ccea.curtin.edu.au/tlf
/tlf2000/fowler.html.

[13] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals
of Lipschitz-Hankel type involving products of Bessel
functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp.
529–551, April 1955. (references).

[14] Greyling, J.H.; Cilliers, C.B.; Calitz, A.P.; , "B#: The
Development and Assessment of an Iconic Programming
Tool for Novice Programmers," Information Technology
Based Higher Education and Training, 2006. ITHET '06. 7th
International Conference on, vol., no., pp.367-375, 10-13 July
2006.

[15] Hilburn, T.B. (1993). A top-down approach to teaching an
introductory computer science course. 24th SIGSCE
Technical Symposium of Computer Science Education.
Indianapolis, USA, 1993.

[16] Kolbrún Fanngeirsdóttir (2003). Konur og tölvunarfræði. On
the internet 23.04.04 at http://www.vhr.is/kennarar/asrun/Ef
ni/Skyrslakonur.pdf.

[17] Letter to U.S. Federal Trade Commission" (https://www.cdt.
org/privacy/20080123_FTC_Ask.pdf) (PDF). Center for
Democracy and Technology. January 23, 2008. . Retrieved
2008-03-10.

[18] M. Ben-Ari, N. Myller, E. Sutinen, and J. Tarhio.
Perspectives on Program Animation with Jeliot. In S. Diehl,
editor, Software Visualization, vol. 2269 of Lecture Notes in
Computer Science, pages 31–45. Springer-Verlag, 2002.

[19] M. Lattu, V. Meisalo, and J. Tarhio. A visualization tool as a
demonstration aid. Computers & Education, 41(2):133–148,
2003.

[20] M. Petre. Why Looking Isn't Always Seeing: Readership
Skills and Graphical Programming. Communication of the
ACM, 38(6):55–70, 1995.

[21] Milne, I., Rowe, G. (2002). Difficulties in Learning and
teaching Programming - Views of Students and Tutors,
Education and Information Technologies, 7(1), pp. 55-66.

[22] Myller, N.; Bednarik, R.; Moreno, A.; , "Integrating Dynamic
Program Visualization into BlueJ: the Jeliot 3 Extension,"
Advanced Learning Technologies, 2007. ICALT 2007.
Seventh IEEE International Conference on, vol., no.,
pp.505-506, 18-20 July 2007.

[23] Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer,
R., Hundhausen, C.,Korhonen, A., Malmi, L., McNally, M.,
Rodger, S. & Velázquez-Iturbide, J.Á. (2003), Exploring the
role of visualization and engagement in computer science
education, SIGCSE Bulletin, 35(2),pp. 131-152.

[24] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen. The
Jeliot 2000 program animation system. Computers &
Education, 40(1):15–21, 2003.

[25] R. Oechsle and T. Schmitt. JAVAVIS: Automatic Program
Visualization with Object and Sequence Diagrams Using the
Java Debug Interface (JDI). In S. Diehl, editor, Software
Visualization, volume 2269 of Lecture Notes in Computer
Science, pages 176–190. Springer-Verlag, 2002.

[26] Rist, R. (1996). Teaching Eiffel as a first language. Journal of
Object-Oriented Programming, 9, pp. 30-41.

[27] Shackelford, R., and LeBlanc, R. Introducing Computer
Science Fundamentals Before Programming. Proceedings of
FIE ’97, 285-289.

[28] Scott A, Eyres D and Watkins M, “A Step Back From
Coding- An Online Environment and Pedagogy for Novice
Programmers”, Proceedings of the 11h Java in the Internet
Curriculum Conference, The Higher Education Academy,
London Metropolitan University - UK, 2007, pp: 35-41.

[29] Scott, A.; Watkins, M.; McPhee, D.; , "E-Learning For
Novice Programmers; A Dynamic Visualisation and Problem
Solving Tool," Information and Communication
Technologies: From Theory to Applications, 2008. ICTTA
2008. 3rd International Conference on, vol., no., pp.1-6, 7-11
April 2008.

[30] Thomas, L., Ratcliffe, M., Woodbury, J. and Jarman, E.
Learning Styles and Performance in the Introductory
Programming Sequence. Proceedings of the 33rd SIGCSE
Symposium (March 2002), 33-42.

[31] Ulle Endriss. Multiagent systems: Rational decision making
and negotiation. http://www.doc.ic.ac.uk/ue/mas, 2005.

[32] United States Patent Database (http://patft1.uspto.gov/netacg
i/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1
&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=
50&s1=7,047,502.PN.&OS=PN/7,047,502&RS=PN/7,047,5
02), US Patents, 2006-06-16.Retrieved on May 16, 2006.

[33] Westphal B, Harris F and Fadali M, “Graphical Programming:
A Vehicle for Teaching Computer Problem Solving”, 33rd
ASEE/IEEE Frontiers in Education Conference, IEEE,
Boulder Colorado, 2003, pp: 19-23.

[34] Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents:
theory and practice. The Knowledge Engineering Review
10(2), 115-152.

[35] Zogheib Ali: Automatic Language Translation - Statistic-bas
ed System. REPORTNO. 2007:4. Chalmers University of
Technology, Sweden.

[36] E. Lahtinen, K. Ala-Mutka, and H. M Jrvinen, "A study of the
difficulties of novice programmers“, in Proc. 10th annual
SIGCSE conference on Innovation and Technology in
Computer Science Education (ITiCSEOS), New York,USA,
pp.14-18.

[37] N. Truong, “A web-based programming environment for
Novice Programmers,” Ph.D. dissertation, Faculty of Inform.
Technology, Queensland University of Technology,
Queensland, 2007.

[38] V. G. Renumol, S. Jayaprakash and D. Janakiram,
“Classification of cognitive difficulties of students to learn
computer programming,” Indian Instit. of Technology,
Depart. of Comput. Sci., Chennai, 2009.

