
Computer Science and Engineering 2012, 2(6): 112-117
DOI: 10.5923/j.computer.20120206.05

Fractal Properties of Linux Kernel Maps

Dominik Strzałka

Department of Distributed Systems, Rzeszow University of Technology, Al. Powstańców Warszawy, 2, 35-959, Rzeszów, Poland

Abstract Many different measures were proposed to describe the problem of possible software complexity - the number
of lines of code sometimes referred as a source lines of code (SLOC), Halstead’s volume V, McCabe cyclomatic number V(G),
among others. However, any of them doesn’t take into account the possible fractal properties of software source code
emerging from development process. The main aim of this paper is to show that in the case of successive Linux OS kernels
fractal self-organization of the system can be seen. This is done in the relation to: (i) the analysis of rate of growth for number
of files and source lines of Linux kernels code, (ii) by the presentation of some v isualizations indicating self-similar graphical
structure of OS kernels, (iii) by the calculations of fractal dimensions Db basing on box dimension method. Basing on
obtained results it can be assumed that: (i) calculated rate of growth in the case of lines and files in the simplest approach can
be approximated by the polynomial with degree 2 with R = 0.96 and R = 0.94 respectively, (ii) this system becomes more and
more complex with self-similar structure, (iii) its fractal dimension is still growing. Presented analysis opens new possibilit ies
for description of computer programs in terms of complex systems approach.

Keywords Linux Kernel Maps, Fractal Dimension, Emergence, Complex Systems

1. Introduction
A branch of software metrics that is focused on direct

measurement of software attributes is called the software
complexity[1]. It can be used to provide a continuous
feedback during a software project to help control the
development process and to predict the critical information
about reliability and maintainability of software systems.
There are many different software complexity measures: the
number of lines of code sometimes referred as a source lines
of code (SLOC), Halstead’s volume V, McCabe cyclomat ic
number V(G), etc[2]. The most popular one is the number of
source lines of code (SLOC). Th is measure gives the size of
software program by counting the number of lines in the text
of program’s source code. It helps to predict the amount of
effort that would be required to redevelop the program. Line
count is usually big, it can even reach 107 lines – see the
examples in Tab le 1. However, this measure has many
disadvantages, for example the lack of accountability, the
lack of counting standards, the problems with multip le
languages, etc. Bill Gates said that[3]: “Measuring
programming progress by lines of code is like measuring
aircraft building progress by weight”. Despite all that, this
quantity is quite often given, because it can help imagine
how difficult the development was and how “big” the
software is.

* Corresponding author:
strzalka@prz.edu.pl (Dominik Strzałka)
Published online at http://journal.sapub.org/computer
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

Table 1 shows informat ion based on data taken from
[4,5,6] that presents different operating systems size in
millions of SLOC. As it can be seen the most popular
operating systems consist of roughly 50 or more millions
lines of code. This information gives a clue of how
complicated (or maybe complex) the structure of such a
system can be, by dint of the possible existence of different
dependencies between particular parts of analyzed system1.
However, it doesn’t say anything about the nature of this
dependencies and possible patterns that can emerge. It is
quite hard to imagine how complicated (complex) can be the
structure of operating system due to many reasons. Company
secrets concealing the details of given operating system
functionality is one of them – there is no access to the source
code or detailed documentation that will be helpful in such
investigations. Obviously, because nowadays operating
systems consist of millions lines of source code it is almost
impossible to analyze it without “creative” methods of
analysis.

But in some cases there is a possibility to have the access
to the operating system source code and the most interesting
example here is Linux OS. Th is system was introduced by
Linus Torvalds in 1991. At the beginning, his work was
treated rather as a some kind of “software toy”, but now it is
assumed that is used by about 30 mln of people. This

1
 the difference between complex and complicated systems is quite subtle: the

complicated system is a system that has many interdependent elements, but the
dependencies between them are governed by well-known deterministic laws (i.e.
such systems are rather simple systems), while in the case of complex systems
the dependencies between their components are governed by laws that are not
necessary well-known. See the details in [7]

113 Computer Science and Engineering 2012, 2(6): 112-117

development phenomenon is very interesting itself because
of many reasons. One of them will be presented in this paper,
where we would like to focus on self-organized fractal
properties of Linux kernel maps visualizations.

Table 1. Lines of code in different operating systems

Operating System SLOC (Milions)
Windows NT 1.0 (known as 3.1) 4-5
Windows NT 2.0 (known as 3.5) 7-8

Windows NT 3.0 (known as 3.51) 9-10
Windows NT 4.0 (known as 4.0) 11-12

Windows NT 5.0 (known as Windows 2000) ≥29
Windows NT 5.1 (known as Windows XP) 40

Windows NT 5.2 (known as Windows Server 2003) 50
Windows NT 6.0 (known as Windows Vista) > 50

Windows NT 6.1 (known as Windows 7 and Win.
Server 2008) ???

The paper consists of 5 sections. After the introduction, in
Section 2, a wide context of systems self-organizat ion and its
relation to computer science is presented, as a basic concept
in the case of complex systems. Section 3 presents analysis
of Linux kernel development basing on lines of code and the
number of files in successive versions. Analysis of fractal
dimension for generated self-similar maps is presented in
Section 4. Section 5 closes the paper with conclusions.

2. Systems Self-organization
A self-organization is one of the most amazing properties

in the case of many complex systems. It can be considered as
a process in which the internal organization of a system
(usually it’s an open system), increases in complexity
without management by an outside source. Systems that
self-organize typically display many emergent properties.
The term self-organization was used for the first time by I.
Kant in his “Crit ique of Judgment”, however its introduction
to contemporary science was done in 1947 by the
psychiatrist and engineer W. R. Ashby[8]. Then it was taken
up by the cyberneticians (H. von Foerster, G. Pask, S. Beer
and N. Wiener) in[9], however it didn’t become common in
the scientific literature (except in the field of complex
systems theory) before the 1970s and especially after 1977
when I. Prigogine (a Nobel Prize Laureate) showed the
thermodynamic concept of self-organization.

In the case of mathemat ics and computer science this
phenomenon is usually connected with the ideas of cellular
automata, graphs (especially in complex networks,
like ”s mall worlds” and scale-free networks), and some
instances of evolutionary computation and artificial life. In
the field of mult i-agent systems, the problem of engineering
such systems that will present self-organized behavior is
very active research area. This paper shows that there are
also other fields where the self-organization can appear.
Cooperation of many programmers (sometimes totally
independent) in development of software is a great example
here.

A question arises: how self-organization can be

uncovered? And when we can say, with full responsibility:
“this system has self-organizing properties”? The answers
are from one hand simple, but from the other not, because the
self-organized systems display many emergent properties.
From one hand we can see its prevalence in the surrounding
environment, while form the other we can’t g ive one pattern
or example that will exactly fit to all cases. One of the very
interesting examples of self-organized systems are fractals. It
is due to the fact that many systems self-organize in
self-similar structures (see for example[10]). One of the most
commonly known examples of such structures are
cauliflowers or more spectacular one – a romanesco.

As it is known the fractals are mathemat ical sets that can’t
be directly seen in Nature in the way that they are built (by
the recurrence defin ition with the possibility of infin ite
number of magnifications that can be done and always will
look exactly the same as the whole fractal), however one of
the main feature of fractals is the self-similarity property,
which is one of the most frequent properties of shapes,
systems, things, etc. either natural or -sometimes -
human-made. Recalling the famous words of B. Mandelbrot,
who in his book[11] wrote that: “Clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark
is not smooth, nor does lightning travel in a straight line”,
we can imagine that the self-similarity property is an
inherent feature of many complex systems.

But, are the computer systems the complex ones with the
self-organized patterns? If we consider the computer systems
only as Turing machines implementations we may assume
that they are at least complicated systems[12]. However,
each such an implementation is the system that has a physical
nature not only in the sense that it needs energy for normal
work or is built from physical components, but also it is
governed by laws and dependencies that have such physical
nature. The problem of computer systems complexity was
noticed many years ago for example by P. Wegner in 1976 or
by M. Gell-Mann in 1987. P. Wegner in[13] wrote that:
“When computers were first developed in the 1940’s (...)
software costs were less than 5% of hardware costs. (…) In
the 1950’s and 60’s hardware costs decreased by a factor of 2
every two or three years and computers were applied to
increasingly[number o f] systems. (...) to accomplish such
tasks[it] may require millions of instructions and millions of
data items, (...)[it] has led to a situation where software costs
averaged 70% of total system cost in 1973. (...) an important
reason for skyrocketing software costs arises from the fact
that current large software systems are much more complex
(...) than the systems being developed 25 years ago or even
ten years ago. It was pointed out by Dijkstra[in 1972] that the
structural complexity of a large software system is greater
than that of any other system constructed by Man (...)”. M.
Gell-Mann argues in[14] that: “(…) chose topics that could
be helped along by these huge, big, rapid computers that
people were talking about – not only because we can use the
mach ines for modeling, but also because these machines
themselves were examples of complex systems”. Thus even
if one has a single computer system (as a Turing machine

 Dominik Strzałka: Fractal Properties of Linux Kernel Maps 114

implementation) that isn’t connected to the network, this
system can be in many ways considered as a complex one
and the self-organization patterns can appear. This view will
be presented in details further in the paper using probably
most important piece of software – the operating system.

3. Linux Kernel
Let’s start with the short story of Linux. Despite that it can

be found very quickly in Internet, we would like to quote
what can be read from linux.org[15]:

“Linux is an operating system that was init ially created as
a hobby by a young student, Linus Torvalds, at the
University of Helsinki in Fin land. Linus had an interest in
Minix, a small UNIX system, and decided to develop a
system that exceeded the Minix standards. He began his
work in 1991 when he released version 0.02 and worked
steadily until 1994 when version 1.0 of the Linux Kernel was
released. The kernel, at the heart of all Linux systems, is
developed and released under the GNU General Public
License and its source code is freely availab le to everyone. It
is this kernel that forms the base around which a Linux
operating system is developed. There are now literally
hundreds of companies and organizations and an equal
number of indiv iduals that have released their own versions
of operating systems based on the Linux kernel.”

Figure 1. Number of files and source lines of code for different stable
and unstable Linux kernels

Table 2. Number of files and source lines of code for different (stable
and unstable) Linux kernels

Version Files Lines
1.0.0 561 176250
1.1.0 559 176177
1.2.0 936 320359
1.3.0 1021 354718

1.99.1 1980 764386
2.0.0 2048 787743
2.1.0 2396 1040695
2.2.0 4910 2015857
2.3.0 6242 2908275
2.4.0 8330 3783473
2.5.0 12727 5879352
2.6.0 17784 7583159

The most important information about Linux is that its
code is freely available to everyone thus anyone can develop
it. From the beginning it was assumed that Linux source code
will be freely availab le and now this access is based on GNU
General Pub lic License. This is the reason why Linux
development can be done by many enthusiasts from all over
the World. The whole situation (process) can be compared to
the river basin behavior: the work that is done by many
enthusiast is similar to the rainfalls in river basin while the
developed Linux kernel, which emerges as a cumulated work,
to the river as a final product of rainfalls in a wide basin.
Somet imes the Linux improvements can be very significant
(high rainfall) – sometimes they can be very petty (small
rainfall); some of the implemented ideas become a
significant part of th is system, but some aren’t further
developed, etc. As it can be seen, the quite short history of
Linux isn’t any obstacle in developing of this operating
system in a very quick way. The first version of Linux had
just a couple of hundreds of lines of code, whereas the latest
versions have millions. Details can be found in Table 2. As it
can be seen (Fig. 1) Linux growth is very rapid (ordinate
represents log values).

The quick and unexpected development o f Linux OS and
the whole Linux community is not only surprising for people
who are not well aware of Linux h istory and its present state
but also for scientific community, who started publish many
different papers about this phenomenon. As the examples
Tuomi or Godfrey papers can be given[20,16]. The last one
shows the state of Linux development at the end of 2000.
Author assumes that the Linux quick growth can be
expressed by the equation

20 21 252 90 055y x x= . ⋅ + ⋅ + . (1)
with R2=0.997 where y denotes the size in millions of lines of
codes without comments, x denotes days since Linux kernel
version 1.0 was released.

To show the actual state of Linux kernel development the
detailed analysis of numbers of files and lines of code that
were added, changed or deleted for each kernel release were
prepared, basing on informat ion that can be found in
LinuxHQ[21]. It should be noted that Linux kernels are
numbered in very interesting way: it is x.y.z. The first
number denotes a major release (now it is 2), second it’s
minor release and if th is number is even it means that this is
stable kernel, while the odd number denotes unstable
(developed) kernels. The last number is a rev ision number.
Each first stable kernel (i.e. revision 0) is based on latest
version of unstable one, i.e., it is released when the whole
previous development work has been done, while the
unstable kernels can be released when the development of
stable kernels hasn’t been finished. For example: the
unstable kernel ver. 2.1.0 was released on 30 September
1996, while the latest stable version of stable kernel 2.0.40
was released on 8 February 2001. This exp lains the structure
of two graphs (Fig. 2 and Fig. 3) where the number of files
and lines of code for each release of successive Linux kernels
(starting from 1.0) is presented.

115 Computer Science and Engineering 2012, 2(6): 112-117

Figure 2. Number of files in successive stable and unstable Linux
kernels according to date of kernel release

Figure 3. Number of source lines of code for successive stable and
unstable Linux kernels according to date of kernel release

Basing on this information, similarly to the equation (1),
the models that express the quick growth of Linux kernels
size in the case of lines of code and the number of files were
calculated. The calculations were based on all available data
points since kernel version 1.0 and for parameters estimation
all points were used. In the case of equation (1) the authors
didn’t exp lain how they achieved their results, i.e., did they
use all available points data in December 2000 or only those
which “fit” to their model –Fig. 2 shows that stable kernels
(especially v. 2.0.x, v. 2.2.x or v. 2.4.x) didn't grew as fast as
unstable ones starting in similar development points.

In the case of files we obtain fo llowing model and the
variance:

4 2 94 235 10 2073 25 2 5368 10y x x−= . ⋅ − . + . ⋅ (2)
with R2=0.94 while in the case of lines of code it is

2 110 1458 713489 8 72 10y x x= . − + . ⋅ (3)
with R2=0.96. As it can be seen the comparison of equations
(1) and (3) indicates that the obtained results has changed a
lot.

Figure 4. Polynomial fit (degree 2) of growth of files number for all
kernels (stable and unstable) since v. 1.0

Figure 5. Polynomial fit (degree 2) of growth of source lines of code for
all kernels (stable and unstable) since v. 1.0

Figs. 4 and Fig. 5 show that kernel v. 2.6.x follows
different trend than other stable kernels from 2.x.y family. In
this case the growth is very rapid similarly to the unstable
kernels. Obvious question appears: why this family of
kernels acts this way? Maybe this is connected with the
raising functionality of new kernel versions or because of a
big number of new hardware solutions that are rather novel
and require appropriate drivers. Another reason can be the
increasing popularity of Linux itself because it's easy
accessible via Internet – nowadays many people have a PC
computer with the access to the Internet. This increase can be
also caused by the growing number of people who don’t like
operating systems from Microsoft or simply by the so far
unknown trends. Probably the exp lanation of this fact isn’t as
simple as it seems to be, but this observation is very
interesting. This also seems to be in contradiction to the
common opinion that maintain ing such a big system is
extraordinarily difficult and complicated[16]. The whole
process obviously needs a lot of time: in the case of latest
kernel versions 2.6.x there are 3-4 releases per year, but in
the case of previous kernels releases, i.e., 2.4.x and 2.2.x the
situation was similar or even “worse” (2-3 releases per year –
see[21]).

 Dominik Strzałka: Fractal Properties of Linux Kernel Maps 116

4. Fractal Properties of Linux Kernel
Maps

Information given in Section 3 from one hand can help
imagine how the structure of Linux kernel can be
complicated (complex), but from the other hand it doesn’t
say anything about the real complexity of Linux kernel
structure. Graphical v isualization can be used to solve this
problem. It was done for the first time by Rusty Russell, who
introduced The Free Code Graphing Pro ject[19]. Basing on
his proposal six visualizat ions for Linux stable kernels were
made i.e. Kernel v. 1.0, v. 1.2, v. 2.0.1, v. 2.2.0, v. 2.4.0, v.
2.6.0 (this paper shows only two of them: Fig. 6 for v. 1.0
and Fig. 7 for v. 2.6.0).

Figure 6. Visualization of Linux kernel v. 1.0

Figure 7. Visualization of Linux kernel v. 2.6.0

Each visualization represents the inner structure of Linux
kernel. It is built from rings that represent the folders used to
organize the source code files. The inner ring has all files
from the ipc, kernel, lib, mm and in it d irectories (all piled
together). The second ring incorporates two segments: the fs/
segment and the net/ segment. The third ring has got one
segment per architecture, and the final ring has all drivers
piled together. In each ring there are boxes (solid border) that
represent the *.c files from the kernel tree. Each box contains

smaller boxes (dotted outlines) with colored lines that show
three types of functions: static (dark green color), ind irect
(light green color) and non-static (blue co lor). The layout of
drawing is given as follows: from inner to outer, from
smallest to largest, with an iterative spacing increase if there
is too much gap in the outer ring.

As it can be expected the structures of obtained
visualizat ions from version to version are more and more
complicated. However, all the v isualizations indicate the
existence of self-similarity property, which can be observed
in different regions of figures for zoomed parts. It is a very
interesting fact that the work that has been done by many
programmers during many years as a result can be visualized
this way, indicating the existence of some kind of “order” in
the whole structure.

Because the generated maps indicate possible existence of
self-similarity, fractal dimension was calculated using box
dimension approach. The box dimension is defined as the
exponent Db in the relation

1()
bDN d

d
≈ , (4)

where N(d) is the smallest number of boxes of linear size d
necessary to cover a data set of points distributed in a
two-dimensional p lane. Simple fact acts as basis of this
method: for Euclidean objects, the number of boxes
necessary to cover a set of points lying on a smooth line is
proportional to 1/d, proportional to 1/d2 to cover a set of
points evenly distributed on a plane, proportional to 1/d3 to
cover a set of points evenly distributed in a space, and so
on …, thus the equation (4) defines their d imension by the
value of Db exponent (for Euclidean objects this is an integer
value).

A box dimension can be defined basing on the number of
occupied boxes that are placed at any position and
orientation, however the number of boxes needed to cover
the set should be minimized as much as it is possible.
Finding the configuration that min imizes N(d) among all the
possible ways to cover the set with boxes of size d proves to
be quite difficult computational problem. If the
overestimation of N(d) in a box dimension is not a function
of scale, which is a plausible conjecture if the set is
self-similar, then using boxes in a grid or minimizing N(d) by
letting the boxes take any position is bound to give the same
result. This is because of power law (such as (4)) behavior -
the exponent does not vary if one multip lies N(d) or d by any
constant. However, because the assumption not always can
be fulfilled in pract ice, to ensure that the obtained results will
be reliable, one can rotate the grid for each box size by some
value of degrees and take the minimal value of N(d). In
presented analysis the angular increments of rotation were
set to 15 

Because the equation (4) represents a power law, to
calculate the value of Db plots of log(N(d)) on the vertical
axis versus log(d) on the horizontal axis were made. The
successive points usually follow a straight line with a
negative slope that equals Db. There is another problem in

117 Computer Science and Engineering 2012, 2(6): 112-117

this approach - the range of values of d. Triv ial results could
be expected for very small and very large values of d thus the
calculations of the slope were done for two sets of data: all
obtained points and for points that lie between 10%-90% of
available d values (the extremes were d iscarded). The
obtained results are in Tab le 3. As it can be seen the latest
kernel versions have higher Db dimension than the first ones.

Table 3. Db dimension for visualizations of stable Linux kernels

Kernel Db Db (for 80% of points)
1.0.0 1.407 1.386
1.2.0 1.436 1.423
2.0.0 1.455 1.461
2.2.0 1.536 1.553
2.4.0 1.587 1.612
2.6.0 1.629 1.661

5. Conclusions
Some interesting properties of open software structure and

its development were shown in this paper. Among them one
can indicate: quick growth of Linux kernel measured by
number o f source lines of code and number of used files (in
the simplest approach this growth can be approximated by
polynomial with degree 2), self-similar visualizat ions of
different stable Linux kernels, calcu lated box dimension for
these visualizations. Because Linux OS is, in many people
opinion, independently developed by many enthusiasts all
over the world one can imagine that its structure won’t
reflect any interesting properties. However, as it turned out
this structure shows the existence of system self-organization
(Figs. 6 and 7) with self-similar visual patterns. Used box
counting method gives calculations for box dimension
giving a possibility fo r description o f the complex nature of
software systems in terms of fractals. Hav ing this, problems
of software evolution can be considered with new metrics
and laws, but the proposed approach needs to be developed
in future work.

REFERENCES
[1] T.J. McCabe, A.H. Watson, Software Complexity, Crosstalk,

12 (1994) 5-–9.

[2] J.K. Nurminen, Using software complexity measures to
analyze algorithm – an experiment with the shortest-paths
algorithms, Comp. & Op. Res. 30 (2003) 1121–1134.

[3] The Aircraft Working Group: Aircraft’s Role in NextGen,
JPDONewsletter,http://www.jpdo.gov/library/newsletter/20
0806_JPDO_newsletter.pdf, (Access: 10 October 2009).

[4] L. O’Brien, How Many Lines of Code in Windows?,
http://www.xhovemont.be/archive/2005/12/07/1072.aspx,
Knowing.NET, (Access: 18 January 2008)

[5] J.M. González-Barahona, M.A. Ortuńo Pérez, P. de las
Heras Quirós, J.C. González, V.M. Olivera, Counting
potatoes: the size of Debian 2.2,http://people.debian.org/jgb/
debian-counting/counting-potatoes/, debian.org, (Access: 18
January 2010).

[6] G. Robles, Debian Counting,http://libresoft.dat.escet.urjc.es/
debian-counting/, (Access: 25 March 2010).

[7] F. Grabowski, D. Strzałka, Simple, Complicated and
Complex Systems – The Brief Introduction, 2008
Conference On HSI, 1-2 (2008) 576–579.

[8] W.R. Ashby, Principles of the Self-Organizing Dynamic
System, J. of Gen. Psych. 37 (1947) 125–128.

[9] H. von Foerster, G. Pask, S. Beer, H. Wiener, Cybernetics:
or Control and Communication in the Animal and the
Machine, MIT Press, 1961.

[10] V.N. Smirnov, A.E. Chmel, Self-Similarity andSelf-Organiz
ation of Drifting Ice Cover in the Arctic Basin, Dokl. Earth
Sci. 411 (2006) 1249–1252.

[11] B.B. Mandelbrot, Fractal geometry of Nature, Freeman,
1983.

[12] D. Strzałka, Paradigms evolution in computer science,
Egitania Sciencia, 6 (2010) 203–220.

[13] P. Wegner, Research paradigms in computer science, Proc.
of the 2nd Int. Conf. on Soft. Eng., San Francisco, California,
(1976) 322–330.

[14] M. Waldrop, Complexity. The emerging science at the edge
of order and chaos, New York, London, Toronto, Sydney,
Simon & Schuster Paperbacks, 2008.

[15] http://www.linux.org/info/index.html (Access: 19 March
2009).

[16] M. Godfrey, Q. Tu, Growth, Evolution, and Structural
Change in Open Source Software, Proc. of the 4th Int. Work.
on Prin. of Soft. Evol., Vienna, Austria (2001) 103–106.

[17] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, W.M.
Turski, Metrics and laws of software evolution – the nineties
view, Proc. of the 4th Int. Soft. Metr. Symp. (Metrics’97),
Albuquerque, NM, 1997.

[18] http://www.oss-watch.ac.uk/resources/gpl.xml#body.1_div.2
(Access: 22 May 2010).

[19] R. Rusel, Free Code Graphic Project,http://fcgp.sourceforge.
net/, (Access: 20 January 2010).

[20] I.Tuomi, Internet, Innovation, and Open Source: Actors in
the Network, Peer-rewieved J. of the Internet: First Monday,
6, URL: http://firstmonday.org/issues/issue6_1/tuomi/index.
html (2001)

[21] http://www.linuxhq.com/kernel/ (Access: 5 September 2009).

	4. Fractal Properties of Linux Kernel Maps

