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Abstract  Many different measures were proposed to describe the problem of possible software complexity - the number 
of lines of code sometimes referred as a source lines of code (SLOC), Halstead’s volume V, McCabe cyclomatic number V(G), 
among others. However, any of them doesn’t take into account the possible fractal properties of software source code 
emerging from development process. The main aim of this paper is to show that in the case of successive Linux OS kernels 
fractal self-organization of the system can be seen. This is done in the relation to: (i) the analysis of rate of growth for number 
of files and source lines of Linux kernels code, (ii) by the presentation of some v isualizations indicating  self-similar graphical 
structure of OS kernels, (iii) by the calculations of fractal dimensions Db basing on box dimension method. Basing on 
obtained results it can be assumed that: (i) calculated rate of growth in the case of lines and files in the simplest approach can 
be approximated by the polynomial with degree 2 with R = 0.96 and R = 0.94 respectively, (ii) this system becomes more and 
more complex with self-similar structure, (iii) its fractal dimension is still growing. Presented analysis opens new possibilit ies 
for description of computer programs in terms of complex systems approach. 
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1. Introduction 
A branch of software metrics that is focused on direct 

measurement of software attributes is called the software 
complexity[1]. It can be used to provide a continuous 
feedback during a software project to help control the 
development process and to predict the critical information 
about reliability and maintainability of software systems. 
There are many different software complexity measures: the 
number of lines of code sometimes referred as a source lines 
of code (SLOC), Halstead’s volume V, McCabe cyclomat ic 
number V(G), etc[2]. The most popular one is the number of 
source lines of code (SLOC). Th is measure gives the size of 
software program by counting the number of lines in the text 
of program’s source code. It helps to predict the amount of 
effort that would be required to redevelop the program. Line 
count is usually big, it can even reach 107  lines – see the 
examples in Tab le 1. However, this measure has many 
disadvantages, for example the lack of accountability, the 
lack of counting standards, the problems with multip le 
languages, etc. Bill Gates said that[3]: “Measuring 
programming progress by lines of code is like measuring 
aircraft building progress by weight”. Despite all that, this 
quantity is quite often given, because it can help imagine 
how difficult the development was and how “big” the 
software is. 
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Table 1 shows informat ion based on data taken from 
[4,5,6] that presents different operating systems size in 
millions of SLOC. As it can be seen the most popular 
operating systems consist of roughly 50 or more millions 
lines of code. This information gives a clue of how 
complicated (or maybe complex) the structure of such a 
system can be, by dint of the possible existence of different 
dependencies between particular parts of analyzed system1. 
However, it  doesn’t say anything about the nature of this 
dependencies and possible patterns that can emerge. It is 
quite hard to imagine how complicated (complex) can be the 
structure of operating system due to many reasons. Company 
secrets concealing the details of given operating system 
functionality is one of them – there is no access to the source 
code or detailed documentation that will be helpful in such 
investigations. Obviously, because nowadays operating 
systems consist of millions lines of source code it is almost 
impossible to analyze it without “creative” methods of 
analysis. 

But in some cases there is a possibility to have the access 
to the operating system source code and the most interesting 
example here is Linux OS. Th is system was introduced by 
Linus Torvalds in 1991. At the beginning, his work was 
treated rather as a some kind of “software toy”, but now it  is 
assumed that is used by about 30 mln of people. This 

                                                                 
1
 the difference between complex and complicated systems is quite subtle: the 

complicated system is a system that has many interdependent elements, but the 
dependencies between them are governed by well-known deterministic laws (i.e. 
such systems are rather simple systems), while in the case of complex systems 
the dependencies between their components are governed by laws that are not 
necessary well-known. See the details in [7] 
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development phenomenon is very interesting itself because 
of many reasons. One of them will be presented in this paper, 
where we would like to focus on self-organized fractal 
properties of Linux kernel maps visualizations. 

Table  1.  Lines of code in different operating systems 

Operating System SLOC (Milions) 
Windows NT 1.0 (known as 3.1) 4-5 
Windows NT 2.0 (known as 3.5) 7-8 

Windows NT 3.0 (known as 3.51) 9-10 
Windows NT 4.0 (known as 4.0) 11-12 

Windows NT 5.0 (known as Windows 2000) ≥29 
Windows NT 5.1 (known as Windows XP) 40 

Windows NT 5.2 (known as Windows Server 2003) 50 
Windows NT 6.0 (known as Windows Vista) > 50 

Windows NT 6.1 (known as Windows 7 and Win. 
Server 2008) ??? 

The paper consists of 5 sections. After the introduction, in 
Section 2, a wide context of systems self-organizat ion and its 
relation to computer science is presented, as a basic concept 
in the case of complex systems. Section 3 presents analysis 
of Linux kernel development basing on lines of code and the 
number of files in successive versions. Analysis of fractal 
dimension for generated self-similar maps is presented in 
Section 4. Section 5 closes the paper with conclusions.  

2. Systems Self-organization 
A self-organization is one of the most amazing properties 

in the case of many complex systems. It can be considered as 
a process in which the internal organization of a system 
(usually it’s an open system), increases in complexity 
without management by an outside source. Systems that 
self-organize typically display many emergent properties. 
The term self-organization was used for the first time by I. 
Kant in his “Crit ique of Judgment”, however its introduction 
to contemporary science was done in  1947 by the 
psychiatrist and engineer W. R. Ashby[8]. Then it was taken 
up by the cyberneticians (H. von Foerster, G. Pask, S. Beer 
and N. Wiener) in[9], however it  didn’t become common in 
the scientific literature (except in  the field  of complex 
systems theory) before the 1970s and especially after 1977 
when I. Prigogine (a Nobel Prize Laureate) showed the 
thermodynamic concept of self-organization. 

In the case of mathemat ics and computer science this 
phenomenon is usually connected with the ideas of cellular 
automata, graphs (especially  in  complex networks, 
like ”s mall worlds” and scale-free networks), and some 
instances of evolutionary computation and artificial life. In 
the field of mult i-agent systems, the problem of engineering 
such systems that will present self-organized behavior is 
very active research area. This paper shows that there are 
also other fields where the self-organization can  appear. 
Cooperation of many programmers (sometimes totally 
independent) in development of software is a  great example 
here. 

A question arises: how self-organization can  be  

uncovered? And when we can say, with full responsibility: 
“this system has self-organizing properties”? The answers 
are from one hand simple, but from the other not, because the 
self-organized systems display many emergent properties. 
From one hand we can see its prevalence in the surrounding 
environment, while form the other we can’t g ive one pattern 
or example that will exactly fit to all cases. One of the very 
interesting examples of self-organized systems are fractals. It 
is due to the fact that many systems self-organize in 
self-similar structures (see for example[10]). One of the most 
commonly  known examples of such structures are 
cauliflowers or more spectacular one – a romanesco.  

As it is known the fractals are mathemat ical sets that can’t 
be directly seen in Nature in the way that they are built (by 
the recurrence defin ition with the possibility of infin ite 
number of magnifications that can be done and always will 
look exactly the same as the whole fractal), however one of 
the main feature of fractals is the self-similarity property, 
which is one of the most frequent properties of shapes, 
systems, things, etc. either natural or -sometimes - 
human-made. Recalling the famous words of B. Mandelbrot, 
who in his book[11] wrote that: “Clouds are not spheres, 
mountains are not cones, coastlines are not circles, and bark 
is not smooth, nor does lightning travel in a straight line”, 
we can imagine that the self-similarity property is an 
inherent feature of many complex systems.  

But, are the computer systems the complex ones with the 
self-organized patterns? If we consider the computer systems 
only as Turing machines implementations we may assume 
that they are at least complicated systems[12]. However, 
each such an implementation is the system that has a physical 
nature not only in the sense that it needs energy for normal 
work or is built  from physical components, but also it  is 
governed by laws and dependencies that have such physical 
nature. The problem of computer systems complexity was 
noticed many  years ago for example by P. Wegner in  1976 or 
by M. Gell-Mann in 1987. P. Wegner in[13] wrote that: 
“When computers were first developed in the 1940’s (...) 
software costs were less than 5% of hardware costs. (…) In 
the 1950’s and 60’s hardware costs decreased by a factor of 2 
every two or three years and computers were applied to 
increasingly[number o f] systems. (...) to accomplish such 
tasks[it] may require millions of instructions and millions of 
data items, (...)[it] has led to a situation where software costs 
averaged 70% of total system cost in 1973. (...) an important 
reason for skyrocketing  software costs arises from the fact 
that current large software systems are much more complex 
(...) than the systems being developed 25 years ago or even 
ten years ago. It was pointed out by Dijkstra[in 1972] that the 
structural complexity of a large software system is greater 
than that of any other system constructed by Man (...)”. M. 
Gell-Mann argues in[14] that: “(…) chose topics that could 
be helped along by these huge, big, rapid computers that 
people were talking about – not only because we can use the 
mach ines for modeling, but also because these machines 
themselves were examples of complex systems”. Thus even 
if one has a single computer system (as a Turing machine 



 Dominik Strzałka:  Fractal Properties of Linux Kernel Maps 114 
 

 

implementation) that isn’t connected to the network, this 
system can be in many ways considered as a complex one 
and the self-organization patterns can appear. This view will 
be presented in details further in the paper using probably 
most important piece of software – the operating system. 

3. Linux Kernel 
Let’s start with the short story of Linux. Despite that it can 

be found very quickly in Internet, we would like to quote 
what can be read from linux.org[15]:  

“Linux is an operating system that was init ially created as 
a hobby by a young student, Linus Torvalds, at the 
University of Helsinki in Fin land. Linus had an interest in 
Minix, a  small UNIX system, and decided to develop a 
system that exceeded the Minix standards. He began his 
work in 1991 when he released version 0.02 and worked 
steadily until 1994 when version 1.0 of the Linux Kernel was 
released. The kernel, at the heart of all Linux systems, is 
developed and released under the GNU General Public 
License and its source code is freely availab le to everyone. It 
is this kernel that forms the base around which a Linux 
operating system is developed. There are now literally 
hundreds of companies and organizations and an equal 
number of indiv iduals that have released their own versions 
of operating systems based on the Linux kernel.”  

 
Figure 1.  Number of files and source lines of code for different stable 
and unstable Linux kernels 

Table 2.  Number of files and source lines of code for different (stable 
and unstable) Linux kernels 

Version  Files Lines 
1.0.0 561 176250 
1.1.0 559 176177 
1.2.0 936 320359 
1.3.0 1021 354718 

1.99.1 1980 764386 
2.0.0 2048 787743 
2.1.0 2396 1040695 
2.2.0 4910 2015857 
2.3.0 6242 2908275 
2.4.0 8330 3783473 
2.5.0 12727 5879352 
2.6.0 17784 7583159 

The most important information about Linux is that its 
code is freely available to everyone thus anyone can develop 
it. From the beginning it was assumed that Linux source code 
will be freely availab le and now this access is based on GNU 
General Pub lic License. This is the reason why Linux 
development can be done by many enthusiasts from all over 
the World. The whole situation (process) can be compared to 
the river basin behavior: the work that is done by many 
enthusiast is similar to the rainfalls in river basin while the 
developed Linux kernel, which emerges as a cumulated work, 
to the river as a final product of rainfalls in a wide basin. 
Somet imes the Linux improvements can be very significant 
(high rainfall) – sometimes they can be very petty (small 
rainfall); some of the implemented ideas become a 
significant part  of th is system, but some aren’t further 
developed, etc. As it can be seen, the quite short history of 
Linux isn’t any obstacle in developing of this operating 
system in a very quick way. The first version of Linux had 
just a couple of hundreds of lines of code, whereas the latest 
versions have millions. Details can be found in Table 2. As it 
can be seen (Fig. 1) Linux growth is very rapid (ordinate 
represents log values).  

The quick and unexpected development o f Linux OS and 
the whole Linux community is not only surprising for people 
who are not well aware of Linux h istory and its present state 
but also for scientific community, who started publish many 
different papers about this phenomenon. As the examples 
Tuomi or Godfrey papers can be given[20,16]. The last one 
shows the state of Linux development at the end of 2000. 
Author assumes that the Linux quick growth can be 
expressed by the equation 

20 21 252 90 055y x x= . ⋅ + ⋅ + .          (1) 
with  R2=0.997 where y denotes the size in  millions of lines of 
codes without comments, x denotes days since Linux kernel 
version 1.0 was released.  

To show the actual state of Linux kernel development the 
detailed analysis of numbers of files and lines of code that 
were added, changed or deleted for each kernel release were 
prepared, basing on informat ion that can be found in 
LinuxHQ[21]. It should be noted that Linux kernels are 
numbered in very interesting way: it is x.y.z. The first 
number denotes a major release (now it  is 2), second it’s 
minor release and if th is number is even it  means that this is 
stable kernel, while the odd number denotes unstable 
(developed) kernels. The last number is a rev ision number. 
Each first stable kernel (i.e. revision 0) is based on latest 
version of unstable one, i.e., it is released when the whole 
previous development work has been done, while the 
unstable kernels can be released when the development of 
stable kernels hasn’t been finished. For example: the 
unstable kernel ver. 2.1.0 was released on 30 September 
1996, while the latest stable version of stable kernel 2.0.40 
was released on 8 February 2001. This exp lains the structure 
of two  graphs (Fig. 2 and Fig. 3) where the number of files 
and lines of code for each release of successive Linux kernels 
(starting from 1.0) is presented.  



115  Computer Science and Engineering 2012, 2(6): 112-117  
 

 

 
Figure 2.  Number of files in successive stable and unstable Linux 
kernels according to date of kernel release 

 
Figure 3.  Number of source lines of code for successive stable and 
unstable Linux kernels according to date of kernel release 

Basing on this information, similarly to the equation (1), 
the models that express the quick growth  of Linux kernels 
size in the case of lines of code and the number of files were 
calculated. The calculations were based on all available data 
points since kernel version 1.0 and for parameters estimation 
all points were used. In the case of equation (1) the authors 
didn’t exp lain how they achieved their results, i.e., did they 
use all available points data in December 2000 or only those 
which “fit” to their model –Fig. 2 shows that stable kernels 
(especially v. 2.0.x, v. 2.2.x or v. 2.4.x) didn't grew as fast as 
unstable ones starting in similar development points.  

In the case of files we obtain fo llowing model and the 
variance:  

4 2 94 235 10 2073 25 2 5368 10y x x−= . ⋅ − . + . ⋅      (2) 
with R2=0.94 while in the case of lines of code it is  

2 110 1458 713489 8 72 10y x x= . − + . ⋅        (3) 
with R2=0.96. As it can be seen the comparison of equations 
(1) and (3) indicates that the obtained results has changed a 
lot. 

 
Figure 4.  Polynomial fit  (degree 2) of growth of files number for all 
kernels (stable and unstable) since v. 1.0 

 
Figure 5.  Polynomial fit  (degree 2) of growth of source lines of code for 
all kernels (stable and unstable) since v. 1.0 

Figs. 4 and Fig. 5 show that kernel v. 2.6.x follows 
different trend than other stable kernels from 2.x.y family. In 
this case the growth is very rapid  similarly  to the unstable 
kernels. Obvious question appears: why this family of 
kernels acts this way? Maybe this is connected with the 
raising functionality of new kernel versions or because of a 
big number of new hardware solutions that are rather novel 
and require appropriate drivers. Another reason can be the 
increasing popularity of Linux itself because it's easy 
accessible via Internet – nowadays many people have a PC 
computer with the access to the Internet. This increase can be 
also caused by the growing number of people who don’t like 
operating systems from Microsoft or simply by the so far 
unknown trends. Probably the exp lanation of this fact isn’t as 
simple as it  seems to be, but this observation is very 
interesting. This also seems to be in contradiction to the 
common opinion that maintain ing such a big system is 
extraordinarily difficult and complicated[16]. The whole 
process obviously needs a lot of time: in  the case of latest 
kernel versions 2.6.x there are 3-4 releases per year, but in 
the case of previous kernels releases, i.e., 2.4.x and 2.2.x the 
situation was similar or even “worse” (2-3 releases per year – 
see[21]).  
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4. Fractal Properties of Linux Kernel 
Maps 

Information given in Section 3 from one hand can help 
imagine how the structure of Linux kernel can be 
complicated (complex), but from the other hand it doesn’t 
say anything about the real complexity of Linux kernel 
structure. Graphical v isualization can be used to solve this 
problem. It was done for the first time by Rusty Russell, who 
introduced The Free Code Graphing Pro ject[19]. Basing on 
his proposal six visualizat ions for Linux stable kernels were 
made i.e. Kernel v. 1.0, v. 1.2, v. 2.0.1, v. 2.2.0, v. 2.4.0, v. 
2.6.0 (this paper shows only two of them: Fig. 6 for v. 1.0 
and Fig. 7 for v. 2.6.0).  

 
Figure 6.  Visualization of Linux kernel v. 1.0 

 
Figure 7.  Visualization of Linux kernel v. 2.6.0 

Each visualization represents the inner structure of Linux 
kernel. It is built from rings that represent the folders used to 
organize the source code files. The inner ring has all files 
from the ipc, kernel, lib, mm and  in it d irectories (all piled 
together). The second ring incorporates two segments: the fs/ 
segment and the net/ segment. The third ring has got one 
segment per architecture, and the final ring has all drivers 
piled together. In each ring there are boxes (solid border) that 
represent the *.c files from the kernel tree. Each box contains 

smaller boxes (dotted outlines) with  colored lines that show 
three types of functions: static (dark green color), ind irect 
(light green color) and non-static (blue co lor). The layout of 
drawing is given as follows: from inner to outer, from 
smallest to largest, with an iterative spacing increase if there 
is too much gap in the outer ring.  

As it can be expected the structures of obtained 
visualizat ions from version to version are more and more 
complicated. However, all the v isualizations indicate the 
existence of self-similarity property, which  can be observed 
in different regions of figures for zoomed parts. It is a very 
interesting fact that the work that has been done by many 
programmers during many years as a result can be visualized 
this way, indicating the existence of some kind of “order” in 
the whole structure.  

Because the generated maps indicate possible existence of 
self-similarity, fractal dimension was calculated using box 
dimension approach. The box dimension is defined as the 
exponent Db in the relation  

1( )
bDN d

d
≈ ,               (4) 

where N(d) is the smallest number of boxes of linear size d 
necessary to cover a data set of points distributed in a 
two-dimensional p lane. Simple fact  acts as basis of this 
method: for Euclidean objects, the number of boxes 
necessary to cover a set of points lying on a smooth line is 
proportional to 1/d, proportional to 1/d2 to cover a set of 
points evenly distributed on a plane, proportional to 1/d3 to 
cover a set of points evenly distributed in a space, and so 
on …, thus the equation (4) defines their d imension by the 
value of Db exponent (for Euclidean objects this is an integer 
value).  

A box dimension can be defined basing on the number of 
occupied boxes that are placed at any position and 
orientation, however the number of boxes needed to cover 
the set should be minimized as much as it is possible. 
Finding the configuration that min imizes N(d) among all the 
possible ways to cover the set with boxes of size d proves to 
be quite difficult computational problem. If the 
overestimation of N(d)  in a box dimension is not a function 
of scale, which is a plausible conjecture if the set is 
self-similar, then using boxes in a grid or minimizing N(d) by 
letting the boxes take any position is bound to give the same 
result. This is because of power law (such as (4)) behavior - 
the exponent does not vary if one multip lies N(d) or d by any 
constant. However, because the assumption not always can 
be fulfilled in pract ice, to ensure that the obtained results will 
be reliable, one can rotate the grid for each box size by some 
value of degrees and take the minimal value of N(d). In 
presented analysis the angular increments of rotation were 
set to 15    

Because the equation (4) represents a power law, to 
calculate the value of Db  plots of log(N(d)) on the vertical 
axis versus log(d) on the horizontal axis were made. The 
successive points usually follow a straight line with a 
negative slope that equals Db. There is another problem in 
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this approach - the range of values of d. Triv ial results could 
be expected for very small and very large values of d thus the 
calculations of the slope were done for two sets of data: all 
obtained points and for points that lie  between 10%-90% of 
available d values (the extremes were d iscarded). The 
obtained results are in Tab le 3. As it  can be seen the latest 
kernel versions have higher Db dimension than the first ones.  

Table 3.  Db dimension for visualizations of stable Linux kernels 

Kernel Db Db (for 80% of points) 
1.0.0 1.407 1.386 
1.2.0 1.436 1.423 
2.0.0 1.455 1.461 
2.2.0 1.536 1.553 
2.4.0 1.587 1.612 
2.6.0 1.629 1.661 

5. Conclusions 
Some interesting properties of open software structure and 

its development were shown in this paper. Among them one 
can indicate: quick growth of Linux kernel measured by 
number o f source lines of code and number of used files (in 
the simplest approach this growth can be approximated by 
polynomial with degree 2), self-similar visualizat ions of 
different stable Linux kernels, calcu lated box dimension for 
these visualizations. Because Linux OS is, in  many people 
opinion, independently developed by many enthusiasts all 
over the world one can imagine that its structure won’t 
reflect any interesting properties. However, as it turned out 
this structure shows the existence of system self-organization 
(Figs. 6 and 7) with self-similar visual patterns. Used box 
counting method gives calculations for box dimension 
giving a possibility fo r description o f the complex nature of 
software systems in terms of fractals. Hav ing this, problems 
of software evolution can be considered with new metrics 
and laws, but the proposed approach needs to be developed 
in future work. 
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