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Abstract  A means of flight attitude parameter error estimation preprocessing is presented for the assembly of 
overlapping aerial image mosaics, via image registration using a pattern search method, mapped onto a GIS grid. The 
method presented first predicts which images will not align well from a data set, then it uses a correlation function as an 
optimiser within a modified Hooke and Jeeves algorithm to find a more optimal transformation function input for each 
image to the Mosaic program. Using this improved input, the Mosaic program will generate mosaics whose constituent 
images are better aligned. We demonstrate that creating more area based regions for alignment within the images, filtering 
them for disqualify ing parameters, and using the good ones to optimise the above transformat ion input will improve the 
quality of mosaics produced by improving  the alignment of these error estimate selected, d ifficult  images. The process has 
been shown to  group the misaligned images into the worst roughly 12% of the data. The worst case image is followed  as 
the process takes it from an RMS error o f approximately 12 pixels to within one or two pixels of perfect alignment. 
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1. Introduction 
New uses for aerial imagery  as both reference and medium 

spur an ever-increasing need for tools to quickly and 
cost-effectively  mosaic this imagery for scientific analysis. 
Such data sets are typically structured and complex, often 
including Uniform Transverse Mercator (UTM) coordinates, 
digital elevation data, and several other parameters like roll, 
pitch and heading telemetry along with visual and LIDAR 
(Light Detection And Ranging) or infrared informat ion. The 
near future holds innumerable imagined uses for such 
systems, because new forms of analysis that use these data 
sets are being imagined and realised daily. The need for 
automatic systems to perform, check for errors in and correct 
aerial image reg istration is great, in terms of both reducing 
tedium for and exceeding the capabilities of a human 
operator. 

Collecting aerial imagery is conceptually straightforward. 
The aircraft flies back and forth overhead while the on-board 
sensor platform records a wealth of data about the terrain 
below. A visib le spectrum camera captures images at a 10° 
forward angle, to align with LIDAR, at regu lar intervals, 
creating a sequential set of overlapping images, arranged in 
lines. One group of consecutive lines is captured during the  
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first half of the flight, and another set of lines is overflown 
between the outgoing lines, on the way back to the airfield.  

Associated with each image is a host of data, contained in 
a DAT file. Data associated with each line of this file 
includes path and file  name, northing and easting values, 
elevation in meters, ro ll, pitch and heading values in degrees, 
and UTM grid number. The remainder o f the data contained 
in this line is superfluous for our purposes. The Mosaic 
program uses the noted informat ion to place each image 
center on the UTM grid. 

The Mosaic program aligns several hundred to a few 
thousand images to provide a better means of analysing the 
data they represent. When applied to only two images, this 
is the basic definition o f image registration. The sensed 
image is moved into alignment via some means of assessing 
the match, usually the reference image. In this case, each 
image is placed on the UTM grid based on its projected 
location relat ive to the aircraft's position and attitude. 

To find the UTM coordinates of each image center, 
Mosaic projects the vector normal to the camera lens onto 
the UTM grid using the aircraft ro ll, pitch, heading and 
altitude associated with the image in the DAT file combined 
with  the Digital Elevation Modelling (DEM) file  terrain 
elevation[1]. Because the images overlap, the appropriate 
pixels to include from each file are selected by a Voronoi 
diagram. The diagram associates the optimal pixels, those 
closest to the image center, with the center of their 
originating image and therefore the appropriate image 
number to use for the actual, pixel by pixel mapping of the 
mosaic. 
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2. The Bore Sight Estimator 

The process of calib rating the relative ro ll, p itch and yaw 
of the camera with respect to the airplane is referred to as 
bore sight estimation. This is necessary when the sensor 
platform is removed and replaced or occasionally due to 
vibration and shock. The BSE program analyses a relat ively 
small group of images to augment the Mosaic program's 
accuracy, providing a single, vector adjustment to the 
attitude parameters of every image in the data set[1]. 

To assess alignment between images, the program creates 
chip pairs, rectangular subsets of the image space that are 
extracted from the same UTM coord inate defined regions of 
both the reference image and the sensed image. Chips are 
compared for matching content to determine alignment, and 
may range in size from 8 pixels by 8 pixels to the majority of 
the entire overlap area.  Every  chip  pair is passed to a Hooke 
and Jeeves algorithm for evaluation. The algorithm finds a 
local maximum for Pearson's correlation, given a chip pair, 
as assessed at different attitude parameter values. Once their 
collective alignment is determined to be at an optimum, the 
resultant adjustment in  the attitude vector will improve the 
alignment of the images when  they are p rocessed through the 
Mosaic program. 

Chip pairs are generated along the Voronoi boundary, 
nearly equidistant to the image centers, at regular intervals 
on this border line. BSE sends all of these chip pairs to the 
Hooke and Jeeves algorithm, which will compute their 
adjustments separately as detailed below and average the 
result. The process is detailed here:  

1. Start with the in itial attitude vector, in itial step size, step 
size reduction factor, minimum step size and maximum 
iterations. 

2. For each chip pair, the chip from the neighbouring 
registered image is left static while the roll, pitch or heading 
of the chip from the sensed image is adjusted, one at a time 
according to the current parameters given by Hooke. 
Correlation is assessed. 

3. Correlat ion return for every chip pair is averaged and, 
based on achieved improvement in this overall average, a 
search direction is determined and pursued on the next 
iteration. If no adjustment yields an improvement of 
correlative value, then the step size is reduced and the 
process is repeated.  

4. At each step the values are retained for each parameter. 
The best search vector is thus retained. 

5. Steps 2, 3, and 4 are repeated until either the step size is 
reduced below the minimum allowed or the maximum 
number of iterations is reached. In the first case, a local 
maximum correlative value is reached. In the second case, 
the program exceeds the maximum number of steps allowed, 
holds the best correlative value available within  a fin ite 
number of steps, and has returned the best suggestion for 
image movement it could reach[1].  

Once all chip pairs in the test data set have been put 
through this algorithm, the attitude parameters that locally 
optimise average correlat ion for all chip pairs is returned. 

This suggested adjustment is the purpose of the BSE 
program, and relates to the orientation of the camera. Once 
these values are adjusted by the offsets suggested by BSE, 
the Mosaic program can  be run  again, providing a better 
mosaic. 

3. Finding Problem Images 
The Mosaic program turns a t ime-wise flow of images into 

a position sequence of images via a p rojected vector as a 
transformation function that is capable of mapping the 
overlapping pixels of one image into an  almost exact  match 
of the overlapped region of each its neighbours When an 
image and its neighbours are properly registered to the UTM 
grid, each will align well with the others. The system 
accounts for flight attitude parameters and image perspective 
by adjusting the coordinates of the image center away from 
the aircraft location coordinates as recorded in flight 
telemetry. Th is system does not address inaccuracy of flight 
attitude parameters as reported in aircraft telemetry. Since 
these parameters are used in computing the placement of the 
images, if they are reported inaccurately the transformation 
will be inaccurate.  

Several sources mention the inherent instability of s mall 
aircraft as a platform for aerial sensors as inducing error in 
registering images or in accurately locating a particular 
image on a GIS or other location-based grid[3-5],[7],[11]. 
During normal flight, the aircraft maintains a sufficiently 
stable attitude for the projection scheme described above to 
place the image center within no  more than one to two p ixels, 
and often within one half pixel, of precise alignment. When 
the aircraft incurs excessive crosswind, thermal currents, 
wind shear, or other turbulence, the sensors may not record 
accurate values for one or more o f the flight attitude 
parameters. Whether under or over reported, the result is the 
same. A ircraft position closely follows the center of mass of 
the aircraft, which describes a roughly straight line. The 
vector projected, based on the improperly reported 
parameters, references the wrong location on the UTM grid. 
The result is that the image center will be placed improperly 
by the Mosaic program. 

Since the pixels of an image file are mapped directly  
through the transformation function to the UTM grid 
according to the vector projection plus an offset from image 
center, every p ixel of the constituent image will be 
improperly placed. Visually, this is only detectable along the 
Voronoi diagram boundaries, where the pixels of the 
improperly placed image meet the p ixels of its presumably 
well placed neighbours, creating a misalignment. These 
discontinuities are observable as sidewalks, streets, roof lines, 
or other normally continuous features that do not match up 
across boundary lines. 

The Alpena, Michigan data set evaluated for this 
investigation contains 1,249 images. The majority of these 
images have an associated parameter set that projects the 
image center to within one or two  pixels of precise placement. 
Roughly 12% of the images from this set, though, exhib it a 



 Glenn Bond et al.:  Improving Image Alignment in Aerial Image Mosaics via Error Estimation of 88 
Flight Attitude Parameters 

 

characteristic that places them outside of this envelope and 
approximately 5% of the set will benefit from mit igation. 
The proposed process automatically detects these images. 
Once found, their parameters can be adjusted similarly to the 
process described for the BSE program above, provid ing a 
new, more accurate t ransformat ion function vector, but for 
the individual image instead of the whole. 

When graphing the image centers in an attempt to find 
deviations from the linear nature of flight lines it  was 
observed that the aircraft center coordinates for each image 
form nearly straight lines when graphed as easting values (x 
axis) versus northing values (y axis). The image centers, as 
adjusted by the Mosaic program, were comparatively erratic. 
The latter should have been fairly linear, g iven negligib le 
environmental condit ions. The next step was to graph the 
image centers as reported by Mosaic, then compare each 
flight line to a linear regression of itself as shown in figure 1, 
which features a specific area of the flight line containing 
image 446. 

 
Figure 1.  Some image coordinates show greater deviation from the flight 
lines than others, like image 446 

Note the thick, red line in figure 1. It represents an 
indicator of the error this image will exh ibit. Since its center 
is so far from the linear approximat ion, one or more flight 
attitude parameters must be causing the projection to 
produce this deviation, as these are the parameters Mosaic 
uses to place the image. This indicator will be calculated as a 
Pythagorean product and can be treated as an RMS error 
because we have found that some combinations of roll, pitch 
and heading, that do not deviate significantly on their own, 
combine to produce visually identifiable mosaic errors that 
are identifiab le by this process. To find the coordinate 
deviation associated with each image, northing and easting 
coordinate data from each flight line were imported into 
XMGrace and a linear regression was performed on each set. 
The linear data sets were then exported back into the original 
ASCII file alongside the corresponding Mosaic northing and 
easting data. An Awk script then took the differences and 
computed the Pythagorean distance from the linear 
approximation  to the actual value. Once the file  was sorted in 
descending order, based on the error column, the top of the 

file became a list of problem images like image 446 shown 
above. 

While this process was a good beginning, it did not 
accurately predict every misaligned image found during 
visual inspection. Images like 446 made the list, due to the 
extremity of their misalignment, but more subtle 
discontinuities were still found ranked beneath seemingly 
well placed images. Additionally, cases of excess yaw, 
rotating the image but not seriously displacing its center, 
were not detected by this process. 

 
Figure 2.  Roll values for the flight line containing image 446 

To address the source of the coordinate based error, each 
flight attitude parameter was analysed just as easting and 
northing were, but no Pythagorean step was necessary as 
these parameters are one dimensional. Each was imported 
into XMGrace, where a linear regression of each flight line 
was performed. The linear data was exported back to the 
original file where the difference between actual and 
estimated values were calculated and the absolute values 
taken. The result was three files, one each for ro ll, pitch, and 
heading, that were sorted in descending order on the 
magnitude of the observed error. These three files were 
excellent predictors of the images found via visual inspection, 
and led to the discovery of several, more subtle errors not 
detected during visual inspection. An example of this error is 
shown in figure 2. Note that our case image, number 446, 
deviates significantly from the linear estimate. While ro ll 
was the most obvious indicator, graphically speaking, pitch 
and heading values exh ibited similar characteristics.  

As a further refinement, a composite error was computed 
as the square root of the sum of the squares of the roll, p itch, 
heading, and location based errors. This was also done via 
Awk script, and the sorted results highlighted a few more 
images whose subtle errors had combined to make the 
overall misalignment of each g reater than that of the images 
considered to be normal. The final step in detecting the 
problem images was to select a cutoff point, below which 
errors would not be considered significant. Visual inspection 
revealed that a cutoff of roughly one standard deviation 
above the mean error was found to be fairly inclusive without 
encompassing too many well p laced images. This turned out 
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to be approximately  40 images from the top of each file, 
amounting to roughly 200 images. After the redundant 
images were removed, 148 unique images were suggested by 
the process as likely to generate mosaic errors. These images 
were processed using the Hooke and Jeeves algorithm 
described below. Their attitude parameters were adjusted 
and the mosaic was remade using the new values for these 
images. 

4. Correcting Parameters via Hooke and 
Jeeves 

Each image from the data set will have several neighbours 
Assuming that these are registered properly on the UTM grid, 
bringing the wayward image into alignment with its 
neighbours will also register it accurately against the UTM 
grid.  This process will also mitigate any discontinuities 
observed at the borders. The process is much like that 
detailed above for the Bore Sight Estimator, except that the 
known features used as reference are the chip pairs of 
neighbouring images not identified by the process. Provided 
that the chips from the neighbouring images are well placed 
on the grid, they can serve as reference points. 

Unlike BSE, only one sensed image at a time was 
processed. Every neighbour was used, generating chip pairs 
in the overlapping area common to the image pair, until it  has 
created on the order of 30 to 150 chip  pairs, depending on the 
chip size selected.  

Chip pairs were generated along the Voronoi border, then 
that line was rotated 45°, 90°, and 135°, generating  a new 
group along each of these lines, flooding the overlap area 
with chip pairs. It was observed that, when the chip census 
was low or the Voronoi boundary exists in a low pixel 
intensity variance area, the average of the chips' suggested 
adjustments was skewed due to a greater standard deviation 
of these values. Besides a greater number of chips with more 
varied locations, a variance filter was applied. No chip pair 
was reported as viable unless the pixel intensity variance of 
both of its constituents was above a floor value; 0.2 was the 
value that returned the best results. 

Armed with more ch ip pairs, covering more of the overlap 
area, and with the variance filter, the poorly reg istered 
images were processed, one at a time, through the Hooke and 
Jeeves algorithm as it is exp lained above for BSE. The 
algorithm used every chip pair created and validated, 
averaging the return from a correlation function coded 
specifically for the purpose and discussed below, to guide the 
algorithm to returning an adjustment specifically tailo red to 
the image in question. The output roll, p itch and heading 
values were then written direct ly to the appropriate line in the 
DAT file. Once each image had been processed and its new 
vector recorded, the Mosaic program was rerun on the data 
set and the resultant mosaic was visually compared  in QGIS 
to the uncorrected mosaic. 

Pearson's Correlation, or the covariance of the two 
samples div ided by the product of their standard deviations, 

was used to assess the correlation, or alignment status, of a 
pair of chips created from two overlapping images. Pearson's 
correlation function provides a number between 0 and 1.0, 
inclusive, with 1.0 being a perfect  match. When expressed 
slightly differently from the usual, computing means is 
unnecessary and the statistic can be coded to be computed in 
one pass. Since it was coded specifically for th is application, 
its code remained local, provid ing an added advantage in 
efficiency. Th is was important as the Hooke and Jeeves 
algorithm calls it  for every iterat ive evaluation of every 
parameter. As called, the function receives the image number 
and associated roll, pitch, and heading values suggested by 
the current iterat ion of Hooke. Each image has a list of chip 
pairs associated with it and its neighbours The function sums 
pixel intensity values, squares, and products for the entire 
area of both chips as read in from their respective arrays. The 
correlation is then computed and checked for a nonzero 
denominator, and the correlation value is reported back to 
Hooke so the algorithm can make its determination as to how 
to adjust the single parameter currently under consideration.  

5. Image 446, a Case Study 
Image 446 has served as our worst case. From the 

beginning, it was identified first visually due to the obvious 
nature and the magnitude of its misalignment, then by the 
suggested movement  of its chip  pairs, and finally  by our 
process, due to its roll, pitch, yaw, UTM and combined 
scores. Every border of this image, d isplayed as figure 3, has 
fairly clear edges that exhib it obvious discontinuities. It was 
not only the most obvious, but the best test case as well 
because any improvement due to any mit igating method 
could be judged summarily, with the naked eye. 

Considering the post-adjustment example, figure 4, makes 
this point clear. The edges in question line up almost exactly. 
Alignment of this image has improved dramat ically within 
the mosaic. All three flight attitude parameters were adjusted 
quite severely when compared to the rest of the images from 
the data set. Although it took an entire afternoon of manual 
adjustment to this particular line in the DAT file, the test 
program accomplished this adjustment of parameters in less 
than five minutes.  

Figure 4 demonstrates visually how precisely the 
alignment of the image was adjusted. Note how close the 
lines in the parking lot are to perfect alignment. While it is 
possible to look at the misaligned features in figure 3 and 
judge some of them to be as much as 5 m apart, it  would be 
difficult to detect misalignment of the same lines in figure 4. 
Both versions of the mosaic were opened in QGIS for 
comparison. A distinct feature was visually selected at UTM 
coordinates 307102.0 easting, 49910040.7 northing. This 
feature was translated to 307097.7 easting, 4991034.3 
northing by the roll, pitch and heading adjustments via 
Mosaic, for a difference of 4.3 m easting and 6.4 m northing. 
The corresponding Pythagorean distance translated for 
image 446 is approximately  7.7 m. Since this image was the 
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test case and the worst in terms of visual and real 
misalignment with the surrounding mosaic, it represents the 
largest movement made by the process. Corrections to most 
other images ranged from one to two meters, but were 
nonetheless obvious improvements. 

Table 1.  Adjustments Made to Image 446 

Parameter Initial value Final Value Adjustment 

Roll -12.40532 -12.55344 0.14812 

Pitch 8.28528 8.37484 0.08596 

Heading 123.50002 123.81445 0.31443 

 
Figure 3.  Image 446 exhibits discontinuities as mosaiced before 
detection and attitude parameter correction 

 
Figure 4.  Image 446 as mosaiced after flight attitude parameter 
adjustment 

6. Conclusions 
The combined list was compiled for the Alpena, Michigan 

data set. The process selected 148 images, almost 12% of the 
total of 1,249 images, for preprocessing. Of these, several 
were over water and several more were not in need of 
mitigation. The remain ing approximately 5% of the image 
set represented good candidates for individual preprocessing. 

The most extreme errors displayed misalignments of as 
much as 4 to 5 m, o r approximately 10 to 12 p ixels. Most 
errors, though, were significantly lower in magnitude. 
Figures 3 and 4, and the QGIS analysis above, both 
demonstrate the effectiveness of this process in correcting 
alignment errors. The mitigation of these images validates 
the entire detection to correction cycle. While some images, 
such as our case image, showed up in more than one list, 
others were only reported by one parameter. Each parameter 
list was analysed and found to lack redundancy in reporting 
error. That is, each list contributed some unique image 
numbers to the master list and the master list would not have 
been comprehensive without the inclusion of all att itude 
parameters and UTM error, as well as the composite list. 

Finally, as the correction of image 446 demonstrates, the 
Hooke and Jeeves algorithm combined with Pearson's 
correlation is effective at correcting flight attitude parameter 
errors. Other images from the list, while not such dramat ic 
examples, also showed significant improvement across the 
board, exhibit ing corrections of smaller degrees per 
parameter that translated to fewer meters of correction. Of 
further note, running the Hooke and Jeeves correction on 
correctly registered images had little or no effect, so 
exceeding the master list would do no harm to the mosaic.  

7. Future Work 
The correlation function used by Hooke is one area 

where improvement might be sought. Changing its 
composition might improve the necessary chip size, 
increasing the efficiency of the algorithm. Such changes 
might also make the correlat ion coefficient better for 
comparing the alignment of one image to that of another. 
Currently, achiev ing the best value attainable for one image 
and its neighbours works for aligning the image, but 
consistency of results across the spectrum of image 
composition, if attainable, will result in a uniform means of 
comparing the alignment of an image with its neighbours to 
that of another problem image and its neighbours, possibly 
even replacing the identification portion of the process. 

Automation seems an obvious next step. The steps 
performed using Awk and XMGrace, outlined above, detail  
a provable, repeatable method for identifying problem 
images. Now that this process has been mapped, 
programming it in C++ or a similar language would speed 
up the process greatly. The level of error chosen as 
breakpoint, level o f variance for the chip filter, and Hooke 
and Jeeves entry and exit values could be added to the 
parameters file or input through the startup script. The 
preprocessor could analyse the DAT file attitude data while 
the images are being read, and the problem images could be 
processed in parallel, one image per node as nodes become 
available. Libraries are available for the linear regression of 
the flight line data as well as the Awk and sort 
manipulations. Such a scheme would add, perhaps, as little 
as five minutes to the front end of the Mosaic program's 
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processing time. While this time is significant compared to 
the 20 seconds Mosaic takes on the 16 core machine it 
currently runs on, it  is significantly  less than the time to 
perform these tasks manually, the result is a much improved 
mosaic with little human intervention, and the preprocessor 
could be set up to be bypassed by the user. 
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