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Abstract  Probabilistic techniques in computer programs are becoming more and more widely used. Therefore, there is a 
big interest in methods for formal specification, verification, and development of probabilistic programs. In this paper, we 
introduce a Z-based formalism that assists us to specify probabilistic programs simply. This formalism is mainly based on a 
new notion of Z operation schemas, called probabilistic schemas, and a new set of schema calculus operations that can be 
applied on probabilistic schemas as well as ordinary operation schemas. To demonstrate the applicability of this formalism, 
we show that any probabilistic system modelled with Markov chains can be formally specified using the new formalism. 
More precisely, we show the resulting formalism can be used to specify any discrete-time and continues-time Markov chain. 
Since our formalism is obtained from enriching Z with probabilistic notions, unlike notations such as Markov chains, it is 
appropriate for modelling both probabilistic and functional requirements simultaneously. In addition, since we provide an 
interpretation of our formalism in the Z notation itself, we can still use Z tools, such as Z-eves to check the type and con-
sistency of the written specifications formally. For the same reason, we can still use various methods and tools which are 
targeted for formal validation, verification and program development based on the Z specification language. 
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1. Introduction 

Probabilistic techniques in computer programs are be-
coming more and more widely used; examples are in random 
algorithms to increase efficiency, in concurrent systems for 
symmetry breaking, and in hybrid systems when the 
low-level hardware might be represented by probabilistic 
programs that model quantitative unreliability[1]. Therefore, 
there has been a renewed interest in methods for formal 
specification, verification, and development of probabilistic 
programs. 

Methods for modelling probabilistic programs go back to 
the early work in[5] introducing probabilistic predicate 
transformers as a framework for reasoning about imperative 
probabilistic programs. From that time on, a wide variety of 
logics have been developed as possible bases for verifying 
probabilistic systems. A survey of this work can be found 
in[2]. 

In[1,3], Morgan et al. introduced probabilistic nondeter-
minism into Dijkstra’s GCL (Guarded Command Language) 
and thus provided a means with which probabilistic pro-
grams can be rigorously developed and verified. Although 
the semantics has been designed to work at the level of pro-
gram code, it has an in-built notion of program refinement  
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which encourages a prover to move between various levels 
of abstraction. In addition Morgan[16] extends Abrial’s GSL 
(Generalised Substitution Language) with a new probabilis-
tic choice operator to create pGSL (probabilistic Generalised 
Substitution Language), a simple extension which can han-
dle probability. 

In[17], Hoang has developed a probabilistic B-Method 
(pB), which is an extension of B based on pGSL and includes 
developing a new syntax and semantics of a probabilistic 
Abstract Machine Notation (pAMN); an extension of AMN 
accommodating probability. Unlike publications of Morgan 
et al. and Hoang handling probabilistic choice in imperative 
settings, there are several studies considering probabilistic 
choice in functional languages; for example, see[10-12]. 

A statistical approach for probabilistic model checking has 
been presented in[19]. In[20], Kwiatkowska et al. give a 
short overview of probabilistic model checking techniques 
and then mention some of the limitations of these techniques. 
Finally they describe some of the advances that are being 
made to overcome these limitations. In[18] the existence of 
efficient approximation methods has been studied to verify 
quantitative specifications of probabilistic systems.  

As far as we know, much of the work in the literature such 
as[18-22] has focused on the verification of probabilistic 
programs while besides a considerable trend in verifying 
probabilistic programs, there is a big interest in the formal 
specification and development of such programs. On the 
other hand, there is not any considerable work in the litera-
ture handling probability in the Z notation as a well known 
model based specification language.  
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In[4], we introduced a constructive framework allowing 
us to write probabilistic specifications formally and then 
drive functional probabilistic programs from correctness 
proofs of these specifications. In the proposed framework, 
we use a Z-based formalism to write specifications of 
probabilistic programs. Then, we translate the resulting 
probabilistic specifications into their counterparts in Z itself. 
Of course, to interpret the obtained specifications in Z, we 
use an existing, constructive set theory, called CZ set the-
ory[8], instead of the classical set theory Z.  

We choose CZ since it has an interpretation[8] in Mar-
tin-Löf ’s theory of types[15]; this enables us to translate our 
Z-style specification of a probabilistic program into its 
counterpart in Martin-Löf’s theory of types and then drive a 
functional probabilistic program from a correctness proof of 
the resulting type theoretical specification. 

The proposed Z-based formalism benefits from a new 
notion of operation schemas, called probabilistic schema, 
intended to specify probabilistic operations. Also, since the 
schema calculus operations of Z do not work on probabilistic 
schemas anymore, it includes a new set of operators for the 
schema calculus operations negation, conjunction, disjunc-
tion, existential quantifier, universal quantifier, and sequen-
tial composition which properly work on probabilistic 
schemas as well as ordinary operation schemas. 

The main contribution of the current paper is to show the 
resulting formalism can be used to specify any discrete-time 
and continues-time Markov chains which themselves are 
widely used to model stochastic processes with the Markov 
property and discrete state space[7]. We can mention the 
following benefits for the current work: 

1. Notations such as Markov chains are suitable for mod-
elling stochastic aspects of probabilistic systems while these 
systems are planned to implement various functional re-
quirements (besides stochastic or probabilistic requirements) 
which can be specified formally using well known model 
based languages like Z. In this way, our formalism that is 
obtained from enriching Z specifications with probabilistic 
notions is appropriate for modelling both probabilistic and 
functional requirements simultaneously. 

2. Our formalism inherits the benefits of Z as well:  
√ It is based on the two well known underlying theories, 

i.e., the first order predicate logic and set theory. These two 
altogether makes learning and applying our formalism too 
easy.  

√ Probabilistic schemas and the new set of schema 
calculus operations can be used to organize large specifica-
tions and increase the reusability of specifications.  

√ Appropriate level of abstraction can be chosen when 
specifying various probabilistic specifications.  

3. Since we provide an interpretation of our formalism in 
the Z notation itself, we can still use Z tools, such as Z-eves 
to check the type and consistency of the written specifica-
tions formally. 

4. For the same reason as what was stated in the above 
case, we can still use various methods and tools which are 
targeted for formal validation, verification and program 

development based on the Z specification language. 
The paper is organized in the following way. In section 2, 

we review our formalism by defining the notion of prob-
abilistic schemas and showing how they can be used to 
model probabilistic operations. In section 3, we introduce a 
new set of schema calculus operations into the resulting 
Z-based formalism. In section 4, we show how one can apply 
the resulting formalism to specify Markov chains. The last 
section concludes the paper. 

2. Specifying Probabilistic Operations 
In this section, we review our Z-based formalism to 

specify probabilistic programs formally. To achieve this goal, 
we first define the notion of probabilistic schema by which 
one can simply model probabilistic operations. 

Definition 2.1. The general form of probabilistic schemas 
is as follows: 

𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ≅  [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈ 𝐵𝐵1; … ; 𝑦𝑦𝑛𝑛
∈ 𝐵𝐵n|𝜙𝜙 ∧ (𝑝𝑝1: 𝜙𝜙1; … ; 𝑝𝑝𝑙𝑙 : 𝜙𝜙𝑙𝑙)] 

where xi (i: 1..m) are input or before state variables, and yj (j: 
1..n) are output or after state variables. Some part of the 
schema predicate, shown as 𝜙𝜙, specifies those functions of 
the operation that are non-probabilistic; it specially includes 
the preconditions of the operation being specified. The re-
mainder of the predicate is separated into l predicates 
𝜙𝜙1. . 𝜙𝜙𝑙𝑙; 𝑝𝑝𝑘𝑘 ∈ ℝ (𝑘𝑘: 1. . 𝑙𝑙) are (constant) probabilities and by 
the notation 𝑝𝑝𝑘𝑘 : 𝜙𝜙𝑘𝑘 , we want to say that predicate 𝜙𝜙𝑘𝑘  holds 
with probability pk. In other words, the relationship between 
the variables of P_Schema is stated by 𝜙𝜙𝑘𝑘  with probability 
pk. For a given probabilistic schema, we assume that 
p1+...+pl = 1 and for each k: 1..l, pk ≥ 0. Notice that in the 
predicate part of P_Schema, l may be equal to 0, i.e., ordi-
nary operation schemas are considered as special cases of 
probabilistic schemas. 

In the next example, we use the notion of probabilistic 
schema to specify a simple probabilistic operation. 

Example 2.2. Suppose that the state of the weather to-
morrow only depends on the weather status today and not on 
past weather conditions. For example, suppose that if today 
is rainy in a specific area, tomorrow is rainy too with prob-
ability 0.5, dry with probability 0.4, and finally snowy with 
probability 0.1. By the following probabilistic schema, we 
specify the weather forecast for tomorrow provided that 
today is rainy. In this schema, x? and y! are the weather 
statuses for today and tomorrow, respectively. Also, suppose 
that we use values 1, 2 and 3 to specify dry, rainy and snowy 
statuses, respectively. 
𝑃𝑃_𝑊𝑊𝑊𝑊 ≅  [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁 |𝑥𝑥? =  2⋀ (0.4 ∶  𝑦𝑦!  =  1;  0.5 ∶  𝑦𝑦!  

=  2;  0.1 ∶  𝑦𝑦!  =  3)] 
The next definition introduces a function[]P that maps 

probabilistic schemas into ordinary operation schemas of Z.  
Definition 2.3. Recall P_Schema, given in definition 2.1 

as the general form of probabilistic schemas. If for all real 
numbers p1, ..., pl, the maximum number of digits to the right 
of the decimal point is d, then we have: 
if P_Schema is an ordinary operation schema (i.e., when l = 
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0), then[P_Schema]P = P_Schema; 
otherwise, [𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]𝑃𝑃  ≅ [𝑥𝑥1 ∈  𝐴𝐴1; . . . ;  𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈
𝐵𝐵1; . . . ;  𝑦𝑦𝑛𝑛 ∈ 𝐵𝐵𝑛𝑛  |𝜙𝜙 ∧ (∃𝑝𝑝 ∈ 𝑁𝑁 · ((0 ≤  𝑝𝑝 < 𝑝𝑝1  × 10𝑑𝑑 ∧
𝜙𝜙1) ∨ (𝑝𝑝1 × 10𝑑𝑑  ≤  𝑝𝑝 < (𝑝𝑝1 + 𝑝𝑝2) × 10𝑑𝑑 ∧ 𝜙𝜙2) ∨. . .∨
((𝑝𝑝1 +. . . +𝑝𝑝𝑙𝑙−1)  × 10𝑑𝑑 ≤  𝑝𝑝 < (𝑝𝑝1 +. . . +𝑝𝑝𝑙𝑙 ) ×  10𝑑𝑑 ∧
𝜙𝜙𝑙𝑙)))] 
[]P behaves as an identity function when applied to an ordi-
nary operation schema, i.e., when l = 0; otherwise, an aux-
iliary variable p ∈ N is introduced into the predicate part 
helping us to implement the probabilistic choice between l 
predicates 𝜙𝜙1,..., 𝜙𝜙𝑙𝑙 . The variable p ranges nondeterminis-
tically from 0 to 10d−1, and the length of each allowable 
interval of its values determines how many times (of 10d 
times) a predicate 𝜙𝜙𝑘𝑘(k : 1..l) holds (or in fact describes the 
relationship between the schema variables). More precisely, 
in pk*10d cases per 10d times, the predicate 𝜙𝜙𝑘𝑘(k : 1..l) de-
termines the behaviour of the final program. In the next 
example, we apply the above defined interpretation to the 
probabilistic schema P_WF, given in example 2.2 

Example 2.4. We use function[]P to transform P_WF into 
an ordinary operation schema of Z as follows: 
[𝑃𝑃_𝑊𝑊𝑊𝑊]𝑝𝑝 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁|𝑥𝑥? = 2 ∧ (∃𝑝𝑝 ∈ 𝑁𝑁. ((0 ≤ 𝑝𝑝

< 4 ∧ 𝑦𝑦! = 1) ∨ (4 ≤ 𝑝𝑝 < 9 ∧ 𝑦𝑦!
= 2) ∨ (9 ≤ 𝑝𝑝 < 10 ∧ 𝑦𝑦! = 3)))] 

By the above schema, p nondeterministically takes one of 
10 values 0, 1, ..., 9. For four (i.e., in 4 cases per 10) possible 
values of p (i.e., 0, 1, 2, and 3), it has been specified that the 
weather is dry tomorrow. For other five (i.e., in 5 cases per 
10) possible values of p (i.e., 4, 5, 6, 7, and 8), it has been 
described that the weather is rainy tomorrow. Finally, for the 
remaining (i.e., in 1 case per 10) possible value of p (i.e., 9), 
it has been indicated that the weather is snowy tomorrow. 
Thus, it seems that if one makes a uniform choice to select 
one of the values 0, 1, ..., 9 for p, s/he will be provided with a 
correct implementation of P_WF. 

In[4], we showed the given interpretation of probabilistic 
schemas via Definition 2.3 is not enough for the purpose of 
constructive program development. Thus, we change the 
current interpretation such that it explicitly models all pos-
sible values of variable p and also all possible values of the 
after state and output variables of P_Schema, allowed ac-
cording to the predicate part of this schema. 

In this way, a sound, formal program development method 
is forced to construct a program that involves all possible 
values of p and also all possible values of the after state and 
output variables; such a program will be able to implement 
the probabilistic behaviour, initially specified by the prob-
abilistic choice between l predicates ϕ1,..., ϕl. The next 
definition introduces a new function[]NP that interprets 
probabilistic schemas according to the new idea. 

Definition 2.5. Recall P_Schema, given in definition 2.1 
as the general form of probabilistic schemas. If for all real 
numbers p1, ..., pl, the maximum number of digits to the right 
of the decimal point is d, we have: 
if P_Schema is an ordinary operation schema,[P_Schema]NP 
= P_ Schema; otherwise, 
 [𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]𝑁𝑁𝑁𝑁 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈

𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵1 × … × 𝐵𝐵𝑛𝑛 × 𝑁𝑁)|∀(𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 , 𝑝𝑝) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⇔ 𝜓𝜓]  
where 𝜓𝜓 ≡ 𝜙𝜙 ∧ ((0 ≤ 𝑝𝑝 < 𝑝𝑝1 × 10𝑑𝑑 ∧ 𝜙𝜙1) ∨ (𝑝𝑝1 × 10𝑑𝑑 ≤
𝑝𝑝 < (𝑝𝑝1 + 𝑝𝑝2) × 10𝑑𝑑 ∧ 𝜙𝜙2) ∨ … ∨ ((𝑝𝑝1 + ⋯ + 𝑝𝑝𝑙𝑙−1) ×
10𝑑𝑑 ≤ 𝑝𝑝 < (𝑝𝑝1 + ⋯ + 𝑝𝑝𝑙𝑙 ) × 10𝑑𝑑 ∧ 𝜙𝜙𝑙𝑙)) 

Like[]P, function[]NP behaves as an identity function when 
applied to an ordinary operation schema; otherwise, it pro-
motes the combination of the after state and output variables 
and an auxiliary variable p ∈ N to a sequence pvar of all 
possible combinations of these variables that satisfy the 
predicates of the schema. We have combined all of the above 
mentioned variables using the Cartesian Product of their 
types in order to preserve the relationship between them after 
the interpretation. The next theorem shows the recent inter-
pretation of probabilistic schemas constructively leads to 
programs which can implement the probabilistic behaviour 
initially specified by probabilistic schemas. 

Theorem 2.6. Assume that for every predicate 𝜙𝜙𝑘𝑘(k : 1..l) 
existing in the predicate part of P_Schema, each combination 
of values of before state and input variables with one and 
only one combination of values of after state and output 
variables satisfies 𝜙𝜙𝑘𝑘 . A program extracted from the cor-
rectness proof of the type theoretical counterpart 
of[P_Schema]NP can implement the probabilistic behaviour 
specified by P_Schema. 

Proof. Based on the predicate part of[P_Schema]NP, a 
program satisfies[P_Schema]NP iff when applied to a com-
bination of input values, it produces a sequence consisting of 
all allowable values of y1, ..., yn, p and not anything else. 
Therefore, any formal program development method that is 
sound (such as the constructive method of extracting pro-
grams from correctness proofs of type theoretical counter-
parts of Z specifications; see the soundness proof in[8]) 
absolutely extracts a program from[P_Schema]NP that for 
each combination of input values, produces a sequence con-
sisting of all possible values of y1, ..., yn, p and not anything 
else. On the other hand, by the assumption of the theorem, 
the resulting sequence includes 10d elements from which 
𝑝𝑝𝑘𝑘 × 10𝑑𝑑  (k : 1..l) elements implement the behaviour speci-
fied by ϕk. Thus, if we make a uniform choice over the 
elements of this sequence, we will be provided with a correct 
implementation of the probabilistic behaviour, initially 
specified by P_Schema. 

In the next example, we apply the function]]NP to the 
probabilistic schema P_WF, given in example 2.2. 

Example 2.7. We use the function]]NP to translate the 
probabilistic schema P_WF, given in example 2.2, into an 
ordinary operation schema of Z: 

[𝑃𝑃_𝑊𝑊𝑊𝑊]𝑁𝑁𝑁𝑁 ≅ [𝑥𝑥? ∈ 𝑁𝑁; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁 × 𝑁𝑁)|∀(𝑦𝑦!, 𝑝𝑝) ∈
(𝑁𝑁 × 𝑁𝑁). (𝑦𝑦!, 𝑝𝑝) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⇔ (𝑥𝑥? = 2 ∧ ((0 ≤ 𝑝𝑝 < 4 ∧ 𝑦𝑦! =
1) ∨ (4 ≤ 𝑝𝑝 < 9 ∧ 𝑦𝑦! = 2) ∨ (9 ≤ 𝑦𝑦 < 10 ∧ 𝑦𝑦! = 3)))]  

We have so far proposed to use probabilistic schemas in 
order to specify probabilistic operations in our Z-based no-
tation. A distinctive feature of Z is its schema calculus op-
erations. In the next section, we show these operations do not 
work in the presence of probabilistic schemas anymore. We 
thus introduce a new set of schema calculus operations into 
the new formalism that can be applied to probabilistic 
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schemas as well as ordinary operation schemas. 

3. A Calculus for Probabilistic Schemas 
We first investigate whether we can use the operations of 

the Z schema calculus to manipulate probabilistic schemas. 
It seems that a simple way to do this is to transform prob-
abilistic schemas into ordinary ones (using the function]]NP) 
before applying the schema calculus operations of Z; in this 
way, we will have ordinary operation schemas that can be 
manipulated by the Z schema calculus operations in the 
conventional way. However, we show that this approach 
may result in unwanted specifications; it even may make the 
applications of operations to schemas undefined. For in-
stance, consider the probabilistic schema P_WF, given in 
example 2.2. This schema specifies a partial operation[6] 
since the effect of the operation is undefined for some input 
values, i.e., when x? <> 2. 

To describe a total operation, we give a new specification: 
𝑅𝑅𝑅𝑅𝑅𝑅 ∶: =  𝑂𝑂𝑂𝑂 | 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁; 𝑟𝑟! ∈ 𝑅𝑅𝑅𝑅𝑅𝑅|𝑥𝑥? = 2 ∧ 𝑟𝑟! 
= 𝑂𝑂𝑂𝑂 ∧ (0.4: 𝑦𝑦! = 1; 0.5: 𝑦𝑦! = 2; 0.1: 𝑦𝑦! = 3)] 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁; 𝑟𝑟! ∈ 𝑅𝑅𝑅𝑅𝑅𝑅|𝑥𝑥? <> 2 ∧ 𝑟𝑟!
= 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∧ 𝑦𝑦! = 0] 

y! = 0 indicates an unknown weather state for tomorrow. 
Now, we can describe a total operation by applying a dis-
junction between two schemas P_P_WF and Exception 
above. Before doing this, however, we first translate 
P_P_WF into an ordinary operation schema as follows: 

[𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊]𝑁𝑁𝑁𝑁 ≅ [𝑥𝑥? ∈ 𝑁𝑁; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁) 
|∀(𝑦𝑦!, 𝑟𝑟!, 𝑝𝑝) ∈ (𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁). (𝑦𝑦!, 𝑟𝑟!, 𝑝𝑝) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⇔ (𝑥𝑥? 
= 2 ∧ 𝑟𝑟! = 𝑂𝑂𝑂𝑂 ∧((0≤ 𝑝𝑝 < 4 ∧ 𝑦𝑦! = 1) ∨ ( 4≤ 𝑝𝑝 < 9 ∧

𝑦𝑦! = 2) ∨ (9 ≤ 𝑝𝑝 < 10 ∧ 𝑦𝑦! = 3)))] 
Since two schemas[P_P_WF]NP and Exception are type 

compatible[6], we can apply the operator ∨ to these schemas. 
However, in the resulting schema, there is no relationship 
between the variables y! and r! coming from Exception and 
the sequence pvar coming from[P_P_WF]NP whereas all the 
elements of pvar involve instances of y! and r!. In this way, 
the resulting specification is unwanted, or in other words, 
does not correspond to what is intended by the initial speci-
fication. The problem originates from the fact that using[]NP 
forces the output variables y! and r! existing in P_P_WF to 
be combined into a new variable, and the resulting variable 
to be promoted to a sequence. 

Interpreting probabilistic schemas before applying the 
schema calculus operations may even yield undefined op-
erations. For instance, suppose that we use ∃y! ∈ 
N · P_P_WF to hide y! in the resulting schema. If we use the 
function[]NP to interpret P_P_WF before applying the exis-
tential quantifier, we miss y! since it is combined with some 
other schema variables and then promoted to a sequence; in 
this way, the quantification over y! becomes undefined. 

Similar problems occur when we transform probabilistic 
schemas into ordinary ones before applying the other schema 
calculus operations, such as conjunction, universal quantifier, 

and sequential composition: by using[]NP to interpret prob-
abilistic schemas, the relationship between instances of a 
variable that exist in the declaration part of various schemas 
(or exist in the list of quantified variables and the declaration 
part of the quantified schema when using quantifiers) may be 
lost; hence, applying schema calculus operations to the re-
sulting schemas may be undefined or result in unwanted 
specifications. 

Unfortunately, another problem will occur if we try the 
reverse path, i.e., applying the schema calculus operations to 
probabilistic schemas before interpreting them by[]NP. For 
instance, suppose that we apply the operator ∨ to the sche-
mas P_P_WF and Exception before interpreting P_P_WF: 

𝑃𝑃_𝑇𝑇_𝑊𝑊𝑊𝑊 ≅ 𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊 ∨ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁; 𝑟𝑟!  
∈ 𝑅𝑅𝑅𝑅𝑅𝑅|(𝑥𝑥? = 2 ∧ 𝑟𝑟! = 𝑂𝑂𝑂𝑂 ∧ (0.4: 𝑦𝑦! = 1; 0.5: 𝑦𝑦!  
= 2; 0.1: 𝑦𝑦! = 3)) ∨ (𝑥𝑥? <> 2 ∧ 𝑟𝑟! = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∧ 𝑦𝑦! = 0)]  
P_T_WF does not correspond to the general form of 

probabilistic schemas (see definition 2.1). Therefore, we are 
not allowed to apply function[]NP to interpret P_T_WF. It 
seems that we can solve this problem by manually trans-
forming the resulting schema into the general form of 
probabilistic schemas or even changing the definition of[]NP 
to cover schemas such as P_T_WF; however, having such a 
method in mind, in various situations we encounter various 
cases for each of which we must provide a special, manual 
way. 

We have so far shown any of the mentioned paths (inter-
preting probabilistic schemas before applying the schema 
calculus operations or the reverse path) to employ the op-
erations of the Z schema calculus in our formalism do not 
work when we want to manipulate probabilistic schemas. 
Now, we present another approach in which the application 
of operations and the interpretation of probabilistic schemas 
occur in an interleaved manner. Suppose that[]NP operates in 
a two-step process, or in other words,[]NP is equivalent to the 
composition of two functions[]NP1 and[]NP2; the former ap-
proximately behaves like the function[]P introduced by 
definition 2.3, but unlike[]P,[]NP1 introduces variable p into 
the declaration part of the schema. Here is the formal defi-
nition of[]NP1: 

Definition 3.1. Recall P Schema, given in definition 2.1 as 
the general form of probabilistic schemas. Also assume that 
for all real numbers p1, ..., pl, the maximum number of digits 
to the right of the decimal point is d. Thus we have: 
if P_Schema is an ordinary operation schema, 
[𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]𝑁𝑁𝑁𝑁1  =  𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒; 
otherwise, [𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]𝑁𝑁𝑁𝑁1 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈
𝐵𝐵1; … ; 𝑦𝑦𝑛𝑛 ∈ 𝐵𝐵𝑛𝑛 ; 𝑝𝑝! ∈ &𝑁𝑁|𝜙𝜙 ∧ ((0 ≤ 𝑝𝑝! < 𝑝𝑝1 × 10𝑑𝑑 ∧ 𝜙𝜙1) ∨
(𝑝𝑝1 × 10𝑑𝑑 ≤ 𝑝𝑝! < (𝑝𝑝1 + 𝑝𝑝2) × 10𝑑𝑑 ∧ 𝜙𝜙2) ∨ … ∨ ((𝑝𝑝1 +
⋯ + 𝑝𝑝𝑙𝑙−1) × 10𝑑𝑑 ≤ 𝑝𝑝! < (𝑝𝑝1 + ⋯ + 𝑝𝑝𝑙𝑙) × 10𝑑𝑑 ∧ 𝜙𝜙𝑙𝑙))] 

In definition 3.1, we have used symbol & when declaring 
p! in order to be able to distinguish between probabilistic 
schemas and ordinary operation schemas when we want to 
apply]]NP2 later. Based on the next definition,]]NP2 takes a 
schema and promotes the combination of its output and after 
state variables to a sequence, provided that it includes an 
output variable declared by &. 
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Definition 3.2. Suppose that]]NP2 applies to the following 
operation schema: 

𝑂𝑂𝑂𝑂_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈ 𝐵𝐵1; … ; 𝑦𝑦𝑛𝑛 ∈
𝐵𝐵𝑛𝑛 |𝜙𝜙]  

where xi (i : 1..m) are input or before state variables, and yj (j : 
1..n) are output or after state variables. Now, we have: 
if OP_Schema has no output variable declared by &, then 

[𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]NP 2 = 𝑂𝑂𝑂𝑂_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒; 
otherwise, [𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]NP 2 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈
𝐴𝐴𝑚𝑚 ; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵1 × … × 𝐵𝐵𝑛𝑛 )|∀(𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 ) ∈
(𝐵𝐵1 × … × 𝐵𝐵𝑛𝑛 ). (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 ) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⇔ 𝜙𝜙]  

It can be easily justified that[]NP =[[]NP1]NP2. Now, to ma-
nipulate probabilistic schemas by the operations of the Z 
schema calculus, we propose to apply these operations be-
tween the applications of[]NP1 and[]NP2. An informal illus-
tration of the correctness of this approach is as follows:[]NP1 
transforms a probabilistic schema into an ordinary one ac-
cording to the probabilities involved in its predicate part; 
however,[]NP1 does not promote the combination of the 
output and after state variables to a sequence. Therefore, we 
can apply the operations of the Z schema calculus to the 
resulting schema as usual; this does not yield unwanted 
specifications or undefined operations. At the final stage, we 
apply[]NP2 to the resulting schema in order to enable the final 
program to implement the initially specified probabilistic 
behaviour. 

To implement the above idea, we introduce a new set of 
schema calculus operations into our Z-based formalism that 
can be applied to probabilistic schemas appropriately. In the 
Z notation[6], there exist operators ¬, ∧, ∨, ∃, ∀, and ;  
for the schema calculus operations negation, conjunction, 
disjunction, existential quantifier, universal quantifier, and 
sequential composition, respectively. Here, we define a new 
set of operators consisting of ¬𝑝𝑝 , ∧𝑝𝑝 , ∨𝑝𝑝 , ∃𝑝𝑝 , ∀𝑝𝑝 , and ;𝑝𝑝 : 

Definition 3.3. Let PS1 and PS2 be two probabilistic 
schemas. Now, we have: 
¬𝑃𝑃𝑆𝑆1 ≅ [¬[𝑃𝑃𝑆𝑆1]𝑁𝑁𝑁𝑁1]𝑁𝑁𝑁𝑁2 

𝑃𝑃𝑆𝑆1℘𝑝𝑝 𝑃𝑃𝑃𝑃2 ≅ [([𝑃𝑃𝑃𝑃1]𝑁𝑁𝑁𝑁1℘[𝑃𝑃𝑃𝑃2]𝑁𝑁𝑁𝑁1)]𝑁𝑁𝑁𝑁2 ℘ ∈ {∧,∨, ; }  
𝜚𝜚𝑝𝑝 𝑑𝑑ℎ . 𝑃𝑃𝑆𝑆1 ≅ [𝜚𝜚𝑝𝑝 𝑑𝑑ℎ . [𝑃𝑃𝑆𝑆1]𝑁𝑁𝑁𝑁1]𝑁𝑁𝑁𝑁2 𝜚𝜚 ∈ {∃, ∀} 

where dh is the declaration of quantified variables. 
To show the usability of the new operations, we apply ∨𝑝𝑝  

to P_P_WF and Exception. By this example, we also show 
that in the case of disjunction between a probabilistic schema 
and an ordinary one, we must apply a slight change to the 
ordinary schema after using[]NP1 and before using ∨: 

𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊 ∨𝑝𝑝 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
≅ [([𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊]𝑁𝑁𝑃𝑃1 ∨ [𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸]𝑁𝑁𝑃𝑃1)]𝑁𝑁𝑁𝑁2 ≅ [𝑥𝑥? , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

∈ (𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁)|∀(𝑦𝑦!, 𝑟𝑟!, 𝑝𝑝!) ∈ (𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁). (𝑦𝑦!, 𝑟𝑟!, 𝑝𝑝!) 
∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟺ (( 𝑥𝑥? = 2 ∧ 𝑟𝑟! = 𝑜𝑜𝑜𝑜 ∧ (((0 ≤ 𝑝𝑝! < 4 ∧ 𝑦𝑦! =

1∨4≤𝑝𝑝!<9∧𝑦𝑦!=2∨(9≤𝑝𝑝!<10∧𝑦𝑦!=3))) 
∨ (𝑥𝑥? <> 2 ∧ 𝑟𝑟! = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∧ 𝑦𝑦! = 0))] 

The above resulting schema specifies a total operation. 
When x? = 2, this operation produces a sequence consisting 
of all allowable values of y! and p! and also reports OK. 
When x? <> 2, the operation assigns 0 to y! and reports 
ERROR; however, the possible values of p! has not been 

determined for this case, and p! can take any natural number; 
it violates producing a finite sequence for pvar. 

To solve this problem, it is enough to introduce p! into the 
declaration part of Exception and add a conjunct such as p! = 
0, limiting the possible values of p!, into the predicate part of 
Exception before using ∨ between P_P_WF and Exception. 
Notice that this modification is not required when we use 
conjunction or sequential composition operators between a 
probabilistic schema and an ordinary one since in these cases, 
we apply a conjunction between the predicate parts of two 
schemas; this scenario automatically limits the possible 
values of p!. 

4. Specification of Markov-Chains 
In this section, we show the resulting formalism can be 

used to specify any Markov chain. Markov chains are widely 
used to model stochastic processes with the Markov property 
(the next state of the system depends only on the current state) 
and discrete (finite or countable) state space]7]. Since usu-
ally a Markov chain would be defined for a discrete set of 
times, we first concentrate on discrete-time Markov chains. 

Suppose that we are going to specify an arbitrary dis-
crete-time Markov chain with n states S1, ..., Sn (n ≥ 1). Also, 
suppose that for each Si and Sj (1≤ i, j ≤ n), pij denotes the 
fixed probability that the system process will next be in state 
Sj, provided that it is in state Si now. The state schema of the 
system and its initialization schema are as follows: 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≅ [𝑠𝑠 ∈ 𝑁𝑁|1 ≤ 𝑠𝑠 ≤ 𝑛𝑛] 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≅ [𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶 ′|𝑠𝑠′ = 𝑚𝑚] 
where s and m indicate the current and initial states of the 
system, respectively. 

Now, for each system state Si (1 ≤ i ≤ n), we consider a 
probabilistic schema to model transitions from Si to all sys-
tem states (including Si itself) as follows: 
𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ≅ [△ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑠𝑠 = 𝑖𝑖 ∧ (𝑃𝑃𝑖𝑖1: 𝑠𝑠′ = 1; … ; 𝑝𝑝𝑖𝑖𝑖𝑖 : 𝑠𝑠′

= 𝑛𝑛)] 
Finally, having the above defined probabilistic schemas, 

the following specification describes the stochastic process 
formally: 

𝑃𝑃_𝐷𝐷𝐷𝐷𝐷𝐷 ≅  𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚1 ∨𝑝𝑝 𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 ∨𝑝𝑝 ... 
∨𝑝𝑝 𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛  

Now, we are going to specify an arbitrary CTMC (Con-
tinuous Time Markov Chain) with n states, i.e., a stochastic 
process that moves from a state to another state similar to 
what we see in a Discrete Time Markov chain (DTMC); 
however, the amount of time which this process spends in 
each state, before proceeding to the next state, is exponen-
tially distributed]9]. 

In practice, the transition probability function from state i 
to state j, shown as Pij(t), is often not easy to be determined 
explicitly, so a CTMC is usually described by transition 
rates]9]. 

Whenever a CTMC enters a state i, it spends an amount of 
time, called the dwell time (or holding time) in that state. The 
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holding time in state i is exponentially distributed with mean 
1/qi, where qi represents the rate at which the process leaves 
state i. At the expiration of the holding time, the process 
makes a transition to another state j with probability pij, 
where:  

∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1𝑗𝑗   
We have a more notion: qij represents the transition rate 

from state i to state j. In other words, this is the mean number 
of transitions from i to j per unit time. In this way, we have qij 
= qi*pij, and the following properties hold: 

(1) qij determines the distribution of a CTMC completely 
as qi =∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗  and 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖

𝑞𝑞𝑖𝑖
� . 

(2) By definition, a CTMC always goes to another state 
during a transition, thus, qij and pij are only defined for 𝑖𝑖 ≠ 𝑗𝑗. 
We may set qii = pii = 0. 

(3) In working with a CTMC, it is useful to think that from 
each state i, transitions to other states occur at independent 
exponential rates qij, that is, the transition times to other 
states are independent exponential random variables of 
means 1

qij
 (qij = 0 means no transition from i to j is possible). 

Now having transition rates in place, the resulting for-
malism in sections 2 and 3 can be used again to specify any 
CTMC. The state schema of the system and its initialization 
schema are as follows: 
[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≅ [𝑠𝑠: 𝑁𝑁, 𝑛𝑛: 𝑁𝑁, 𝑞𝑞: 𝑁𝑁 × 𝑁𝑁 → 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠: 𝑁𝑁 →
𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒 1≤𝑠𝑠≤𝑛𝑛∧𝑑𝑑𝑜𝑜𝑚𝑚 𝑞𝑞=𝑖𝑖:𝑁𝑁, 𝑗𝑗:𝑁𝑁 1≤𝑖𝑖≤𝑛𝑛, 1≤𝑗𝑗≤𝑛𝑛}∧1≤𝑑𝑑𝑜𝑜𝑚𝑚 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠 ≤ 𝑛𝑛]  
where s shows the current state of the CTMC, n is the 
number of states, q is a function that shows transition rates 
for any two different states, and rate_s is a function that 
shows 𝑞𝑞𝑖𝑖  for each state i. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≅ [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′ , 𝑛𝑛? : 𝑁𝑁, 𝑚𝑚? : 𝑁𝑁𝑁𝑁? : 𝑁𝑁 × 𝑁𝑁 → 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑛𝑛′  

= 𝑛𝑛?∧ 𝑠𝑠′ = 𝑚𝑚?∧ 𝑞𝑞′ = 𝑞𝑞?∧ ∀ 𝑖𝑖: 1. . 𝑛𝑛 . 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠′(𝑖𝑖) =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑞𝑞′ , 𝑖𝑖)]  

Where n? is the initial state of the CTMC, q? Corresponds 
to transition rates, and GetRate is defined by an axiomatic 
definition (see Figure 1) to compute the rate for a given state. 

 

Figure 1.  Axiomatic definition of GetRate 

Now, for each system state si (1 ≤ 𝑠𝑠𝑖𝑖 ≤ 𝑛𝑛), we consider a 
probabilistic schema to model transitions from 𝑠𝑠𝑖𝑖  to all sys-
tem states as follows: 

𝑃𝑃_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 = [∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠 = 𝑖𝑖 ∧ ( 𝑞𝑞 (𝑖𝑖,1)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 _𝑠𝑠(𝑖𝑖)

: 𝑠𝑠′ = 1  

, … , 𝑞𝑞(𝑖𝑖,𝑖𝑖−1)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 _𝑠𝑠(𝑖𝑖−1)

: 𝑠𝑠′ =i-1, 𝑞𝑞(𝑖𝑖,𝑖𝑖+1)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 _𝑠𝑠(𝑖𝑖+1)

: 𝑠𝑠′ =i+1,.., 

𝑞𝑞(𝑖𝑖,𝑛𝑛)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 _𝑠𝑠(𝑛𝑛)

: 𝑠𝑠′ = 𝑛𝑛]  

Since there is no transition from a state to itself, 𝑞𝑞𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖

 is not 
considered in the constraint part of 𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑖𝑖 . Now, 
the total specification of the system is as follows: 

𝑃𝑃_𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 ∨𝑝𝑝 𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 ∨𝑝𝑝 … ∨𝑝𝑝   
𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛   

Example 4.1. A computer system has three states: Idle, 
working, and failed; when it is idle, jobs arrive according to 
an exponential distribution with rate 𝛼𝛼 and are completed 
according to an exponential distribution with rate 𝛽𝛽. When 
the computer is working, it is failed according to an expo-
nential distribution with rate 𝑤𝑤, and when it is idle, it is 
failed according to an exponential distribution with rate 𝜏𝜏. 
Finally, when the computer is in a failed state, it goes to the 
working state according to an exponential distribution with 
rate 𝜇𝜇. 

We use values 1, 2 and 3 to specify idle, working and 
failed states, respectively, as shown in Figure 2: 
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3

1

α

β

w

μ

τ

 
Figure 2.  Continues time Markov chain for a computer system  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≅ [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′ , 𝑛𝑛? : 𝑁𝑁, 𝑞𝑞? : 𝑁𝑁 × 𝑁𝑁 → 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑛𝑛′  
= 𝑛𝑛?∧ 𝑠𝑠′ = 𝑚𝑚 ∧ 𝑞𝑞′ = 𝑞𝑞?∧ ∀ 𝑖𝑖: 1. .3. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠′(𝑖𝑖) 
= 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑞𝑞′ , 𝑖𝑖)] 

where 𝑛𝑛? = 3 and 𝑞𝑞? = {(1,2) → 𝛼𝛼, (1,3) → 𝜏𝜏, (2,1) →
𝛽𝛽, 2,3→𝑤𝑤, 3,2→ 𝜇𝜇 here. 

𝑃𝑃_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 = [∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠 = 1 ∧ ( 𝛼𝛼
𝛼𝛼+𝜏𝜏

: 𝑠𝑠′ =2, 
𝜏𝜏

𝛼𝛼+𝜏𝜏
: 𝑠𝑠′ = 3]  

𝑃𝑃_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = [∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠 = 2 ∧ ( 𝛽𝛽
𝛽𝛽 +𝑤𝑤

: 𝑠𝑠′ =

1, 𝑤𝑤
𝛽𝛽 +𝑤𝑤

: 𝑠𝑠′ = 3]  
𝑃𝑃_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3 = [∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠 = 3 ∧ (1: 𝑠𝑠′ = 2,0: 𝑠𝑠′ = 1]  

𝑃𝑃_𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 ∨𝑝𝑝 𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 ∨𝑝𝑝 𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3  

5. Conclusions and Future Work 
In this paper, we have presented a Z-based formalism by 
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which one can specify probabilistic programs formally. To 
demonstrate the applicability of this formalism, we have 
shown that any probabilistic system that can be modelled 
with Markov chains can be formally specified using this 
formalism. However, the resulting formalism can only 
specify Markov chains in the origin time. In other words, this 
formalism specifies stationary Markov chains and cannot be 
used for dynamic specification of Markov chains. So, future 
work would offer a formalism based on Z that has the capa-
bility of specifying dynamic Markov chains and probabilistic 
systems that change during time. 

In addition, the current formalism suffers from a main 
drawback: as was stated in[4], the interpretation function[]NP 
can be only applied to those probabilistic schemas 

𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ≅  [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈ 𝐵𝐵1; … ; 𝑦𝑦𝑛𝑛 ∈
𝐵𝐵𝑛𝑛𝜙𝜙∧(𝑝𝑝1:𝜙𝜙1;…;𝑝𝑝𝑙𝑙:𝜙𝜙𝑙𝑙)]  
that obey the following law: for every predicate ϕk (k: 1..l), 
each combination of values of before state and input vari-
ables with one and only one combination of values of after 
state and output variables satisfies ϕk. 

To compare our work with other approaches in the litera-
ture which apply formal methods to probabilistic systems, it 
is worth mentioning that, as we have stated in section 1, 
most of the contributions in the literature have focused on 
the verification of probabilistic programs. As one related 
work, we can point to[13] in which a rewrite based specifi-
cation language, called PMAUDE, has been proposed for 
specifying probabilistic concurrent and real-time systems. 
Specifications in PMAUDE are based on a probabilistic 
rewrite theory which has both a rigorous formal basis and 
the characteristics of a high-level programming language. In 
other words, this theory allows us to express both specifica-
tions and programs within the same formalism. 

Although our specification language in this paper is based 
on a different theory in comparison to that of[13] (i.e., set 
theory in comparison to rewrite theory), we are going to 
utilize one advantage of[13] in our future work; this advan-
tage is that PMAUDE allows specifications to be easily 
written in a way that they have no un-quantified nondeter-
minism. More precisely, all occurrences of nondeterminism 
are replaced by quantified nondeterminism such as prob-
abilistic choices and stochastic real-time; hence, this work 
does not have the problem of ours when both nondetermin-
ism and probability exist in the specification simultaneously. 

As another related work, we can point to[14] in which a 
formalism that is based on the notion of state-transition is 
proposed to specify probabilistic processes. In this work, 
Jonsson and Larsen define a refinement relation between 
probabilistic specifications as inclusion between the sets of 
processes that satisfy the respective specifications. One of 
the most advantages of[14] is the ability to consider variable 
probabilities for each transition. More precisely, each tran-
sition is labelled by an appropriate interval of probabilities. 
Although we use a different theory (set theory instead of 
state-transition) as the basis of our specification language, 
we are going to employ the idea of[14] to enrich our 
framework to support variable probabilities. 
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