
Computer Science and Engineering 2012, 2(3): 24-31
DOI: 10.5923/j.computer.20120203.04

A Z-Based Formalism to Specify Markov Chains

Hassan Haghighi*, Mahsa Afshar

Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, 1983963113, Iran

Abstract Probabilistic techniques in computer programs are becoming more and more widely used. Therefore, there is a
big interest in methods for formal specification, verification, and development of probabilistic programs. In this paper, we
introduce a Z-based formalism that assists us to specify probabilistic programs simply. This formalism is mainly based on a
new notion of Z operation schemas, called probabilistic schemas, and a new set of schema calculus operations that can be
applied on probabilistic schemas as well as ordinary operation schemas. To demonstrate the applicability of this formalism,
we show that any probabilistic system modelled with Markov chains can be formally specified using the new formalism.
More precisely, we show the resulting formalism can be used to specify any discrete-time and continues-time Markov chain.
Since our formalism is obtained from enriching Z with probabilistic notions, unlike notations such as Markov chains, it is
appropriate for modelling both probabilistic and functional requirements simultaneously. In addition, since we provide an
interpretation of our formalism in the Z notation itself, we can still use Z tools, such as Z-eves to check the type and con-
sistency of the written specifications formally. For the same reason, we can still use various methods and tools which are
targeted for formal validation, verification and program development based on the Z specification language.

Keywords Formal Specification, Formal Program Development, Probabilistic Specification, Discrete-time Markov
Chain, Continuous-Time Markov Chain

1. Introduction

Probabilistic techniques in computer programs are be-
coming more and more widely used; examples are in random
algorithms to increase efficiency, in concurrent systems for
symmetry breaking, and in hybrid systems when the
low-level hardware might be represented by probabilistic
programs that model quantitative unreliability[1]. Therefore,
there has been a renewed interest in methods for formal
specification, verification, and development of probabilistic
programs.

Methods for modelling probabilistic programs go back to
the early work in[5] introducing probabilistic predicate
transformers as a framework for reasoning about imperative
probabilistic programs. From that time on, a wide variety of
logics have been developed as possible bases for verifying
probabilistic systems. A survey of this work can be found
in[2].

In[1,3], Morgan et al. introduced probabilistic nondeter-
minism into Dijkstra’s GCL (Guarded Command Language)
and thus provided a means with which probabilistic pro-
grams can be rigorously developed and verified. Although
the semantics has been designed to work at the level of pro-
gram code, it has an in-built notion of program refinement

* Corresponding author:
H_Haghighi@sbu.ac.ir (Hassan Haghighi)
Published online at http://journal.sapub.org/computer
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

which encourages a prover to move between various levels
of abstraction. In addition Morgan[16] extends Abrial’s GSL
(Generalised Substitution Language) with a new probabilis-
tic choice operator to create pGSL (probabilistic Generalised
Substitution Language), a simple extension which can han-
dle probability.

In[17], Hoang has developed a probabilistic B-Method
(pB), which is an extension of B based on pGSL and includes
developing a new syntax and semantics of a probabilistic
Abstract Machine Notation (pAMN); an extension of AMN
accommodating probability. Unlike publications of Morgan
et al. and Hoang handling probabilistic choice in imperative
settings, there are several studies considering probabilistic
choice in functional languages; for example, see[10-12].

A statistical approach for probabilistic model checking has
been presented in[19]. In[20], Kwiatkowska et al. give a
short overview of probabilistic model checking techniques
and then mention some of the limitations of these techniques.
Finally they describe some of the advances that are being
made to overcome these limitations. In[18] the existence of
efficient approximation methods has been studied to verify
quantitative specifications of probabilistic systems.

As far as we know, much of the work in the literature such
as[18-22] has focused on the verification of probabilistic
programs while besides a considerable trend in verifying
probabilistic programs, there is a big interest in the formal
specification and development of such programs. On the
other hand, there is not any considerable work in the litera-
ture handling probability in the Z notation as a well known
model based specification language.

 Computer Science and Engineering 2012, 2(3): 24-31 25

In[4], we introduced a constructive framework allowing
us to write probabilistic specifications formally and then
drive functional probabilistic programs from correctness
proofs of these specifications. In the proposed framework,
we use a Z-based formalism to write specifications of
probabilistic programs. Then, we translate the resulting
probabilistic specifications into their counterparts in Z itself.
Of course, to interpret the obtained specifications in Z, we
use an existing, constructive set theory, called CZ set the-
ory[8], instead of the classical set theory Z.

We choose CZ since it has an interpretation[8] in Mar-
tin-Löf ’s theory of types[15]; this enables us to translate our
Z-style specification of a probabilistic program into its
counterpart in Martin-Löf’s theory of types and then drive a
functional probabilistic program from a correctness proof of
the resulting type theoretical specification.

The proposed Z-based formalism benefits from a new
notion of operation schemas, called probabilistic schema,
intended to specify probabilistic operations. Also, since the
schema calculus operations of Z do not work on probabilistic
schemas anymore, it includes a new set of operators for the
schema calculus operations negation, conjunction, disjunc-
tion, existential quantifier, universal quantifier, and sequen-
tial composition which properly work on probabilistic
schemas as well as ordinary operation schemas.

The main contribution of the current paper is to show the
resulting formalism can be used to specify any discrete-time
and continues-time Markov chains which themselves are
widely used to model stochastic processes with the Markov
property and discrete state space[7]. We can mention the
following benefits for the current work:

1. Notations such as Markov chains are suitable for mod-
elling stochastic aspects of probabilistic systems while these
systems are planned to implement various functional re-
quirements (besides stochastic or probabilistic requirements)
which can be specified formally using well known model
based languages like Z. In this way, our formalism that is
obtained from enriching Z specifications with probabilistic
notions is appropriate for modelling both probabilistic and
functional requirements simultaneously.

2. Our formalism inherits the benefits of Z as well:
√ It is based on the two well known underlying theories,

i.e., the first order predicate logic and set theory. These two
altogether makes learning and applying our formalism too
easy.

√ Probabilistic schemas and the new set of schema
calculus operations can be used to organize large specifica-
tions and increase the reusability of specifications.

√ Appropriate level of abstraction can be chosen when
specifying various probabilistic specifications.

3. Since we provide an interpretation of our formalism in
the Z notation itself, we can still use Z tools, such as Z-eves
to check the type and consistency of the written specifica-
tions formally.

4. For the same reason as what was stated in the above
case, we can still use various methods and tools which are
targeted for formal validation, verification and program

development based on the Z specification language.
The paper is organized in the following way. In section 2,

we review our formalism by defining the notion of prob-
abilistic schemas and showing how they can be used to
model probabilistic operations. In section 3, we introduce a
new set of schema calculus operations into the resulting
Z-based formalism. In section 4, we show how one can apply
the resulting formalism to specify Markov chains. The last
section concludes the paper.

2. Specifying Probabilistic Operations
In this section, we review our Z-based formalism to

specify probabilistic programs formally. To achieve this goal,
we first define the notion of probabilistic schema by which
one can simply model probabilistic operations.

Definition 2.1. The general form of probabilistic schemas
is as follows:

𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈ 𝐵𝐵1; … ; 𝑦𝑦𝑛𝑛
∈ 𝐵𝐵n|𝜙𝜙 ∧ (𝑝𝑝1: 𝜙𝜙1; … ; 𝑝𝑝𝑙𝑙 : 𝜙𝜙𝑙𝑙)]

where xi (i: 1..m) are input or before state variables, and yj (j:
1..n) are output or after state variables. Some part of the
schema predicate, shown as 𝜙𝜙, specifies those functions of
the operation that are non-probabilistic; it specially includes
the preconditions of the operation being specified. The re-
mainder of the predicate is separated into l predicates
𝜙𝜙1. . 𝜙𝜙𝑙𝑙; 𝑝𝑝𝑘𝑘 ∈ ℝ (𝑘𝑘: 1. . 𝑙𝑙) are (constant) probabilities and by
the notation 𝑝𝑝𝑘𝑘 : 𝜙𝜙𝑘𝑘 , we want to say that predicate 𝜙𝜙𝑘𝑘 holds
with probability pk. In other words, the relationship between
the variables of P_Schema is stated by 𝜙𝜙𝑘𝑘 with probability
pk. For a given probabilistic schema, we assume that
p1+...+pl = 1 and for each k: 1..l, pk ≥ 0. Notice that in the
predicate part of P_Schema, l may be equal to 0, i.e., ordi-
nary operation schemas are considered as special cases of
probabilistic schemas.

In the next example, we use the notion of probabilistic
schema to specify a simple probabilistic operation.

Example 2.2. Suppose that the state of the weather to-
morrow only depends on the weather status today and not on
past weather conditions. For example, suppose that if today
is rainy in a specific area, tomorrow is rainy too with prob-
ability 0.5, dry with probability 0.4, and finally snowy with
probability 0.1. By the following probabilistic schema, we
specify the weather forecast for tomorrow provided that
today is rainy. In this schema, x? and y! are the weather
statuses for today and tomorrow, respectively. Also, suppose
that we use values 1, 2 and 3 to specify dry, rainy and snowy
statuses, respectively.
𝑃𝑃_𝑊𝑊𝑊𝑊 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁 |𝑥𝑥? = 2⋀ (0.4 ∶ 𝑦𝑦! = 1; 0.5 ∶ 𝑦𝑦!

= 2; 0.1 ∶ 𝑦𝑦! = 3)]
The next definition introduces a function[]P that maps

probabilistic schemas into ordinary operation schemas of Z.
Definition 2.3. Recall P_Schema, given in definition 2.1

as the general form of probabilistic schemas. If for all real
numbers p1, ..., pl, the maximum number of digits to the right
of the decimal point is d, then we have:
if P_Schema is an ordinary operation schema (i.e., when l =

26 Hassan Haghighi et al.: A Z-Based Formalism to Specify Markov Chains

0), then[P_Schema]P = P_Schema;
otherwise, [𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]𝑃𝑃 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; . . . ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈
𝐵𝐵1; . . . ; 𝑦𝑦𝑛𝑛 ∈ 𝐵𝐵𝑛𝑛 |𝜙𝜙 ∧ (∃𝑝𝑝 ∈ 𝑁𝑁 · ((0 ≤ 𝑝𝑝 < 𝑝𝑝1 × 10𝑑𝑑 ∧
𝜙𝜙1) ∨ (𝑝𝑝1 × 10𝑑𝑑 ≤ 𝑝𝑝 < (𝑝𝑝1 + 𝑝𝑝2) × 10𝑑𝑑 ∧ 𝜙𝜙2) ∨. . .∨
((𝑝𝑝1 +. . . +𝑝𝑝𝑙𝑙−1) × 10𝑑𝑑 ≤ 𝑝𝑝 < (𝑝𝑝1 +. . . +𝑝𝑝𝑙𝑙) × 10𝑑𝑑 ∧
𝜙𝜙𝑙𝑙)))]
[]P behaves as an identity function when applied to an ordi-
nary operation schema, i.e., when l = 0; otherwise, an aux-
iliary variable p ∈ N is introduced into the predicate part
helping us to implement the probabilistic choice between l
predicates 𝜙𝜙1,..., 𝜙𝜙𝑙𝑙 . The variable p ranges nondeterminis-
tically from 0 to 10d−1, and the length of each allowable
interval of its values determines how many times (of 10d
times) a predicate 𝜙𝜙𝑘𝑘(k : 1..l) holds (or in fact describes the
relationship between the schema variables). More precisely,
in pk*10d cases per 10d times, the predicate 𝜙𝜙𝑘𝑘(k : 1..l) de-
termines the behaviour of the final program. In the next
example, we apply the above defined interpretation to the
probabilistic schema P_WF, given in example 2.2

Example 2.4. We use function[]P to transform P_WF into
an ordinary operation schema of Z as follows:
[𝑃𝑃_𝑊𝑊𝑊𝑊]𝑝𝑝 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁|𝑥𝑥? = 2 ∧ (∃𝑝𝑝 ∈ 𝑁𝑁. ((0 ≤ 𝑝𝑝

< 4 ∧ 𝑦𝑦! = 1) ∨ (4 ≤ 𝑝𝑝 < 9 ∧ 𝑦𝑦!
= 2) ∨ (9 ≤ 𝑝𝑝 < 10 ∧ 𝑦𝑦! = 3)))]

By the above schema, p nondeterministically takes one of
10 values 0, 1, ..., 9. For four (i.e., in 4 cases per 10) possible
values of p (i.e., 0, 1, 2, and 3), it has been specified that the
weather is dry tomorrow. For other five (i.e., in 5 cases per
10) possible values of p (i.e., 4, 5, 6, 7, and 8), it has been
described that the weather is rainy tomorrow. Finally, for the
remaining (i.e., in 1 case per 10) possible value of p (i.e., 9),
it has been indicated that the weather is snowy tomorrow.
Thus, it seems that if one makes a uniform choice to select
one of the values 0, 1, ..., 9 for p, s/he will be provided with a
correct implementation of P_WF.

In[4], we showed the given interpretation of probabilistic
schemas via Definition 2.3 is not enough for the purpose of
constructive program development. Thus, we change the
current interpretation such that it explicitly models all pos-
sible values of variable p and also all possible values of the
after state and output variables of P_Schema, allowed ac-
cording to the predicate part of this schema.

In this way, a sound, formal program development method
is forced to construct a program that involves all possible
values of p and also all possible values of the after state and
output variables; such a program will be able to implement
the probabilistic behaviour, initially specified by the prob-
abilistic choice between l predicates ϕ1,..., ϕl. The next
definition introduces a new function[]NP that interprets
probabilistic schemas according to the new idea.

Definition 2.5. Recall P_Schema, given in definition 2.1
as the general form of probabilistic schemas. If for all real
numbers p1, ..., pl, the maximum number of digits to the right
of the decimal point is d, we have:
if P_Schema is an ordinary operation schema,[P_Schema]NP
= P_ Schema; otherwise,
 [𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]𝑁𝑁𝑁𝑁 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈

𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵1 × … × 𝐵𝐵𝑛𝑛 × 𝑁𝑁)|∀(𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 , 𝑝𝑝) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⇔ 𝜓𝜓]
where 𝜓𝜓 ≡ 𝜙𝜙 ∧ ((0 ≤ 𝑝𝑝 < 𝑝𝑝1 × 10𝑑𝑑 ∧ 𝜙𝜙1) ∨ (𝑝𝑝1 × 10𝑑𝑑 ≤
𝑝𝑝 < (𝑝𝑝1 + 𝑝𝑝2) × 10𝑑𝑑 ∧ 𝜙𝜙2) ∨ … ∨ ((𝑝𝑝1 + ⋯ + 𝑝𝑝𝑙𝑙−1) ×
10𝑑𝑑 ≤ 𝑝𝑝 < (𝑝𝑝1 + ⋯ + 𝑝𝑝𝑙𝑙) × 10𝑑𝑑 ∧ 𝜙𝜙𝑙𝑙))

Like[]P, function[]NP behaves as an identity function when
applied to an ordinary operation schema; otherwise, it pro-
motes the combination of the after state and output variables
and an auxiliary variable p ∈ N to a sequence pvar of all
possible combinations of these variables that satisfy the
predicates of the schema. We have combined all of the above
mentioned variables using the Cartesian Product of their
types in order to preserve the relationship between them after
the interpretation. The next theorem shows the recent inter-
pretation of probabilistic schemas constructively leads to
programs which can implement the probabilistic behaviour
initially specified by probabilistic schemas.

Theorem 2.6. Assume that for every predicate 𝜙𝜙𝑘𝑘(k : 1..l)
existing in the predicate part of P_Schema, each combination
of values of before state and input variables with one and
only one combination of values of after state and output
variables satisfies 𝜙𝜙𝑘𝑘 . A program extracted from the cor-
rectness proof of the type theoretical counterpart
of[P_Schema]NP can implement the probabilistic behaviour
specified by P_Schema.

Proof. Based on the predicate part of[P_Schema]NP, a
program satisfies[P_Schema]NP iff when applied to a com-
bination of input values, it produces a sequence consisting of
all allowable values of y1, ..., yn, p and not anything else.
Therefore, any formal program development method that is
sound (such as the constructive method of extracting pro-
grams from correctness proofs of type theoretical counter-
parts of Z specifications; see the soundness proof in[8])
absolutely extracts a program from[P_Schema]NP that for
each combination of input values, produces a sequence con-
sisting of all possible values of y1, ..., yn, p and not anything
else. On the other hand, by the assumption of the theorem,
the resulting sequence includes 10d elements from which
𝑝𝑝𝑘𝑘 × 10𝑑𝑑 (k : 1..l) elements implement the behaviour speci-
fied by ϕk. Thus, if we make a uniform choice over the
elements of this sequence, we will be provided with a correct
implementation of the probabilistic behaviour, initially
specified by P_Schema.

In the next example, we apply the function]]NP to the
probabilistic schema P_WF, given in example 2.2.

Example 2.7. We use the function]]NP to translate the
probabilistic schema P_WF, given in example 2.2, into an
ordinary operation schema of Z:

[𝑃𝑃_𝑊𝑊𝑊𝑊]𝑁𝑁𝑁𝑁 ≅ [𝑥𝑥? ∈ 𝑁𝑁; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁 × 𝑁𝑁)|∀(𝑦𝑦!, 𝑝𝑝) ∈
(𝑁𝑁 × 𝑁𝑁). (𝑦𝑦!, 𝑝𝑝) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⇔ (𝑥𝑥? = 2 ∧ ((0 ≤ 𝑝𝑝 < 4 ∧ 𝑦𝑦! =
1) ∨ (4 ≤ 𝑝𝑝 < 9 ∧ 𝑦𝑦! = 2) ∨ (9 ≤ 𝑦𝑦 < 10 ∧ 𝑦𝑦! = 3)))]

We have so far proposed to use probabilistic schemas in
order to specify probabilistic operations in our Z-based no-
tation. A distinctive feature of Z is its schema calculus op-
erations. In the next section, we show these operations do not
work in the presence of probabilistic schemas anymore. We
thus introduce a new set of schema calculus operations into
the new formalism that can be applied to probabilistic

 Computer Science and Engineering 2012, 2(3): 24-31 27

schemas as well as ordinary operation schemas.

3. A Calculus for Probabilistic Schemas
We first investigate whether we can use the operations of

the Z schema calculus to manipulate probabilistic schemas.
It seems that a simple way to do this is to transform prob-
abilistic schemas into ordinary ones (using the function]]NP)
before applying the schema calculus operations of Z; in this
way, we will have ordinary operation schemas that can be
manipulated by the Z schema calculus operations in the
conventional way. However, we show that this approach
may result in unwanted specifications; it even may make the
applications of operations to schemas undefined. For in-
stance, consider the probabilistic schema P_WF, given in
example 2.2. This schema specifies a partial operation[6]
since the effect of the operation is undefined for some input
values, i.e., when x? <> 2.

To describe a total operation, we give a new specification:
𝑅𝑅𝑅𝑅𝑅𝑅 ∶: = 𝑂𝑂𝑂𝑂 | 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁; 𝑟𝑟! ∈ 𝑅𝑅𝑅𝑅𝑅𝑅|𝑥𝑥? = 2 ∧ 𝑟𝑟!
= 𝑂𝑂𝑂𝑂 ∧ (0.4: 𝑦𝑦! = 1; 0.5: 𝑦𝑦! = 2; 0.1: 𝑦𝑦! = 3)]

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁; 𝑟𝑟! ∈ 𝑅𝑅𝑅𝑅𝑅𝑅|𝑥𝑥? <> 2 ∧ 𝑟𝑟!
= 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∧ 𝑦𝑦! = 0]

y! = 0 indicates an unknown weather state for tomorrow.
Now, we can describe a total operation by applying a dis-
junction between two schemas P_P_WF and Exception
above. Before doing this, however, we first translate
P_P_WF into an ordinary operation schema as follows:

[𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊]𝑁𝑁𝑁𝑁 ≅ [𝑥𝑥? ∈ 𝑁𝑁; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁)
|∀(𝑦𝑦!, 𝑟𝑟!, 𝑝𝑝) ∈ (𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁). (𝑦𝑦!, 𝑟𝑟!, 𝑝𝑝) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⇔ (𝑥𝑥?
= 2 ∧ 𝑟𝑟! = 𝑂𝑂𝑂𝑂 ∧((0≤ 𝑝𝑝 < 4 ∧ 𝑦𝑦! = 1) ∨ (4≤ 𝑝𝑝 < 9 ∧

𝑦𝑦! = 2) ∨ (9 ≤ 𝑝𝑝 < 10 ∧ 𝑦𝑦! = 3)))]
Since two schemas[P_P_WF]NP and Exception are type

compatible[6], we can apply the operator ∨ to these schemas.
However, in the resulting schema, there is no relationship
between the variables y! and r! coming from Exception and
the sequence pvar coming from[P_P_WF]NP whereas all the
elements of pvar involve instances of y! and r!. In this way,
the resulting specification is unwanted, or in other words,
does not correspond to what is intended by the initial speci-
fication. The problem originates from the fact that using[]NP
forces the output variables y! and r! existing in P_P_WF to
be combined into a new variable, and the resulting variable
to be promoted to a sequence.

Interpreting probabilistic schemas before applying the
schema calculus operations may even yield undefined op-
erations. For instance, suppose that we use ∃y! ∈
N · P_P_WF to hide y! in the resulting schema. If we use the
function[]NP to interpret P_P_WF before applying the exis-
tential quantifier, we miss y! since it is combined with some
other schema variables and then promoted to a sequence; in
this way, the quantification over y! becomes undefined.

Similar problems occur when we transform probabilistic
schemas into ordinary ones before applying the other schema
calculus operations, such as conjunction, universal quantifier,

and sequential composition: by using[]NP to interpret prob-
abilistic schemas, the relationship between instances of a
variable that exist in the declaration part of various schemas
(or exist in the list of quantified variables and the declaration
part of the quantified schema when using quantifiers) may be
lost; hence, applying schema calculus operations to the re-
sulting schemas may be undefined or result in unwanted
specifications.

Unfortunately, another problem will occur if we try the
reverse path, i.e., applying the schema calculus operations to
probabilistic schemas before interpreting them by[]NP. For
instance, suppose that we apply the operator ∨ to the sche-
mas P_P_WF and Exception before interpreting P_P_WF:

𝑃𝑃_𝑇𝑇_𝑊𝑊𝑊𝑊 ≅ 𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊 ∨ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≅ [𝑥𝑥? , 𝑦𝑦! ∈ 𝑁𝑁; 𝑟𝑟!
∈ 𝑅𝑅𝑅𝑅𝑅𝑅|(𝑥𝑥? = 2 ∧ 𝑟𝑟! = 𝑂𝑂𝑂𝑂 ∧ (0.4: 𝑦𝑦! = 1; 0.5: 𝑦𝑦!
= 2; 0.1: 𝑦𝑦! = 3)) ∨ (𝑥𝑥? <> 2 ∧ 𝑟𝑟! = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∧ 𝑦𝑦! = 0)]
P_T_WF does not correspond to the general form of

probabilistic schemas (see definition 2.1). Therefore, we are
not allowed to apply function[]NP to interpret P_T_WF. It
seems that we can solve this problem by manually trans-
forming the resulting schema into the general form of
probabilistic schemas or even changing the definition of[]NP
to cover schemas such as P_T_WF; however, having such a
method in mind, in various situations we encounter various
cases for each of which we must provide a special, manual
way.

We have so far shown any of the mentioned paths (inter-
preting probabilistic schemas before applying the schema
calculus operations or the reverse path) to employ the op-
erations of the Z schema calculus in our formalism do not
work when we want to manipulate probabilistic schemas.
Now, we present another approach in which the application
of operations and the interpretation of probabilistic schemas
occur in an interleaved manner. Suppose that[]NP operates in
a two-step process, or in other words,[]NP is equivalent to the
composition of two functions[]NP1 and[]NP2; the former ap-
proximately behaves like the function[]P introduced by
definition 2.3, but unlike[]P,[]NP1 introduces variable p into
the declaration part of the schema. Here is the formal defi-
nition of[]NP1:

Definition 3.1. Recall P Schema, given in definition 2.1 as
the general form of probabilistic schemas. Also assume that
for all real numbers p1, ..., pl, the maximum number of digits
to the right of the decimal point is d. Thus we have:
if P_Schema is an ordinary operation schema,
[𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]𝑁𝑁𝑁𝑁1 = 𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒;
otherwise, [𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]𝑁𝑁𝑁𝑁1 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈
𝐵𝐵1; … ; 𝑦𝑦𝑛𝑛 ∈ 𝐵𝐵𝑛𝑛 ; 𝑝𝑝! ∈ &𝑁𝑁|𝜙𝜙 ∧ ((0 ≤ 𝑝𝑝! < 𝑝𝑝1 × 10𝑑𝑑 ∧ 𝜙𝜙1) ∨
(𝑝𝑝1 × 10𝑑𝑑 ≤ 𝑝𝑝! < (𝑝𝑝1 + 𝑝𝑝2) × 10𝑑𝑑 ∧ 𝜙𝜙2) ∨ … ∨ ((𝑝𝑝1 +
⋯ + 𝑝𝑝𝑙𝑙−1) × 10𝑑𝑑 ≤ 𝑝𝑝! < (𝑝𝑝1 + ⋯ + 𝑝𝑝𝑙𝑙) × 10𝑑𝑑 ∧ 𝜙𝜙𝑙𝑙))]

In definition 3.1, we have used symbol & when declaring
p! in order to be able to distinguish between probabilistic
schemas and ordinary operation schemas when we want to
apply]]NP2 later. Based on the next definition,]]NP2 takes a
schema and promotes the combination of its output and after
state variables to a sequence, provided that it includes an
output variable declared by &.

28 Hassan Haghighi et al.: A Z-Based Formalism to Specify Markov Chains

Definition 3.2. Suppose that]]NP2 applies to the following
operation schema:

𝑂𝑂𝑂𝑂_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈ 𝐵𝐵1; … ; 𝑦𝑦𝑛𝑛 ∈
𝐵𝐵𝑛𝑛 |𝜙𝜙]

where xi (i : 1..m) are input or before state variables, and yj (j :
1..n) are output or after state variables. Now, we have:
if OP_Schema has no output variable declared by &, then

[𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]NP 2 = 𝑂𝑂𝑂𝑂_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒;
otherwise, [𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒]NP 2 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈
𝐴𝐴𝑚𝑚 ; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵1 × … × 𝐵𝐵𝑛𝑛)|∀(𝑦𝑦1, … , 𝑦𝑦𝑛𝑛) ∈
(𝐵𝐵1 × … × 𝐵𝐵𝑛𝑛). (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛) ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⇔ 𝜙𝜙]

It can be easily justified that[]NP =[[]NP1]NP2. Now, to ma-
nipulate probabilistic schemas by the operations of the Z
schema calculus, we propose to apply these operations be-
tween the applications of[]NP1 and[]NP2. An informal illus-
tration of the correctness of this approach is as follows:[]NP1
transforms a probabilistic schema into an ordinary one ac-
cording to the probabilities involved in its predicate part;
however,[]NP1 does not promote the combination of the
output and after state variables to a sequence. Therefore, we
can apply the operations of the Z schema calculus to the
resulting schema as usual; this does not yield unwanted
specifications or undefined operations. At the final stage, we
apply[]NP2 to the resulting schema in order to enable the final
program to implement the initially specified probabilistic
behaviour.

To implement the above idea, we introduce a new set of
schema calculus operations into our Z-based formalism that
can be applied to probabilistic schemas appropriately. In the
Z notation[6], there exist operators ¬, ∧, ∨, ∃, ∀, and ;
for the schema calculus operations negation, conjunction,
disjunction, existential quantifier, universal quantifier, and
sequential composition, respectively. Here, we define a new
set of operators consisting of ¬𝑝𝑝 , ∧𝑝𝑝 , ∨𝑝𝑝 , ∃𝑝𝑝 , ∀𝑝𝑝 , and ;𝑝𝑝 :

Definition 3.3. Let PS1 and PS2 be two probabilistic
schemas. Now, we have:
¬𝑃𝑃𝑆𝑆1 ≅ [¬[𝑃𝑃𝑆𝑆1]𝑁𝑁𝑁𝑁1]𝑁𝑁𝑁𝑁2

𝑃𝑃𝑆𝑆1℘𝑝𝑝 𝑃𝑃𝑃𝑃2 ≅ [([𝑃𝑃𝑃𝑃1]𝑁𝑁𝑁𝑁1℘[𝑃𝑃𝑃𝑃2]𝑁𝑁𝑁𝑁1)]𝑁𝑁𝑁𝑁2 ℘ ∈ {∧,∨, ; }
𝜚𝜚𝑝𝑝 𝑑𝑑ℎ . 𝑃𝑃𝑆𝑆1 ≅ [𝜚𝜚𝑝𝑝 𝑑𝑑ℎ . [𝑃𝑃𝑆𝑆1]𝑁𝑁𝑁𝑁1]𝑁𝑁𝑁𝑁2 𝜚𝜚 ∈ {∃, ∀}

where dh is the declaration of quantified variables.
To show the usability of the new operations, we apply ∨𝑝𝑝

to P_P_WF and Exception. By this example, we also show
that in the case of disjunction between a probabilistic schema
and an ordinary one, we must apply a slight change to the
ordinary schema after using[]NP1 and before using ∨:

𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊 ∨𝑝𝑝 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
≅ [([𝑃𝑃_𝑃𝑃_𝑊𝑊𝑊𝑊]𝑁𝑁𝑃𝑃1 ∨ [𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸]𝑁𝑁𝑃𝑃1)]𝑁𝑁𝑁𝑁2 ≅ [𝑥𝑥? , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∈ (𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁)|∀(𝑦𝑦!, 𝑟𝑟!, 𝑝𝑝!) ∈ (𝑁𝑁 × 𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑁𝑁). (𝑦𝑦!, 𝑟𝑟!, 𝑝𝑝!)
∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⟺ ((𝑥𝑥? = 2 ∧ 𝑟𝑟! = 𝑜𝑜𝑜𝑜 ∧ (((0 ≤ 𝑝𝑝! < 4 ∧ 𝑦𝑦! =

1∨4≤𝑝𝑝!<9∧𝑦𝑦!=2∨(9≤𝑝𝑝!<10∧𝑦𝑦!=3)))
∨ (𝑥𝑥? <> 2 ∧ 𝑟𝑟! = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∧ 𝑦𝑦! = 0))]

The above resulting schema specifies a total operation.
When x? = 2, this operation produces a sequence consisting
of all allowable values of y! and p! and also reports OK.
When x? <> 2, the operation assigns 0 to y! and reports
ERROR; however, the possible values of p! has not been

determined for this case, and p! can take any natural number;
it violates producing a finite sequence for pvar.

To solve this problem, it is enough to introduce p! into the
declaration part of Exception and add a conjunct such as p! =
0, limiting the possible values of p!, into the predicate part of
Exception before using ∨ between P_P_WF and Exception.
Notice that this modification is not required when we use
conjunction or sequential composition operators between a
probabilistic schema and an ordinary one since in these cases,
we apply a conjunction between the predicate parts of two
schemas; this scenario automatically limits the possible
values of p!.

4. Specification of Markov-Chains
In this section, we show the resulting formalism can be

used to specify any Markov chain. Markov chains are widely
used to model stochastic processes with the Markov property
(the next state of the system depends only on the current state)
and discrete (finite or countable) state space]7]. Since usu-
ally a Markov chain would be defined for a discrete set of
times, we first concentrate on discrete-time Markov chains.

Suppose that we are going to specify an arbitrary dis-
crete-time Markov chain with n states S1, ..., Sn (n ≥ 1). Also,
suppose that for each Si and Sj (1≤ i, j ≤ n), pij denotes the
fixed probability that the system process will next be in state
Sj, provided that it is in state Si now. The state schema of the
system and its initialization schema are as follows:
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≅ [𝑠𝑠 ∈ 𝑁𝑁|1 ≤ 𝑠𝑠 ≤ 𝑛𝑛]
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≅ [𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶 ′|𝑠𝑠′ = 𝑚𝑚]
where s and m indicate the current and initial states of the
system, respectively.

Now, for each system state Si (1 ≤ i ≤ n), we consider a
probabilistic schema to model transitions from Si to all sys-
tem states (including Si itself) as follows:
𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ≅ [△ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝑠𝑠 = 𝑖𝑖 ∧ (𝑃𝑃𝑖𝑖1: 𝑠𝑠′ = 1; … ; 𝑝𝑝𝑖𝑖𝑖𝑖 : 𝑠𝑠′

= 𝑛𝑛)]
Finally, having the above defined probabilistic schemas,

the following specification describes the stochastic process
formally:

𝑃𝑃_𝐷𝐷𝐷𝐷𝐷𝐷 ≅ 𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚1 ∨𝑝𝑝 𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 ∨𝑝𝑝 ...
∨𝑝𝑝 𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛

Now, we are going to specify an arbitrary CTMC (Con-
tinuous Time Markov Chain) with n states, i.e., a stochastic
process that moves from a state to another state similar to
what we see in a Discrete Time Markov chain (DTMC);
however, the amount of time which this process spends in
each state, before proceeding to the next state, is exponen-
tially distributed]9].

In practice, the transition probability function from state i
to state j, shown as Pij(t), is often not easy to be determined
explicitly, so a CTMC is usually described by transition
rates]9].

Whenever a CTMC enters a state i, it spends an amount of
time, called the dwell time (or holding time) in that state. The

 Computer Science and Engineering 2012, 2(3): 24-31 29

holding time in state i is exponentially distributed with mean
1/qi, where qi represents the rate at which the process leaves
state i. At the expiration of the holding time, the process
makes a transition to another state j with probability pij,
where:

∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1𝑗𝑗
We have a more notion: qij represents the transition rate

from state i to state j. In other words, this is the mean number
of transitions from i to j per unit time. In this way, we have qij
= qi*pij, and the following properties hold:

(1) qij determines the distribution of a CTMC completely
as qi =∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗 and 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖

𝑞𝑞𝑖𝑖
� .

(2) By definition, a CTMC always goes to another state
during a transition, thus, qij and pij are only defined for 𝑖𝑖 ≠ 𝑗𝑗.
We may set qii = pii = 0.

(3) In working with a CTMC, it is useful to think that from
each state i, transitions to other states occur at independent
exponential rates qij, that is, the transition times to other
states are independent exponential random variables of
means 1

qij
 (qij = 0 means no transition from i to j is possible).

Now having transition rates in place, the resulting for-
malism in sections 2 and 3 can be used again to specify any
CTMC. The state schema of the system and its initialization
schema are as follows:
[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≅ [𝑠𝑠: 𝑁𝑁, 𝑛𝑛: 𝑁𝑁, 𝑞𝑞: 𝑁𝑁 × 𝑁𝑁 → 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠: 𝑁𝑁 →
𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒 1≤𝑠𝑠≤𝑛𝑛∧𝑑𝑑𝑜𝑜𝑚𝑚 𝑞𝑞=𝑖𝑖:𝑁𝑁, 𝑗𝑗:𝑁𝑁 1≤𝑖𝑖≤𝑛𝑛, 1≤𝑗𝑗≤𝑛𝑛}∧1≤𝑑𝑑𝑜𝑜𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠 ≤ 𝑛𝑛]
where s shows the current state of the CTMC, n is the
number of states, q is a function that shows transition rates
for any two different states, and rate_s is a function that
shows 𝑞𝑞𝑖𝑖 for each state i.
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≅ [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′ , 𝑛𝑛? : 𝑁𝑁, 𝑚𝑚? : 𝑁𝑁𝑁𝑁? : 𝑁𝑁 × 𝑁𝑁 → 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑛𝑛′

= 𝑛𝑛?∧ 𝑠𝑠′ = 𝑚𝑚?∧ 𝑞𝑞′ = 𝑞𝑞?∧ ∀ 𝑖𝑖: 1. . 𝑛𝑛 . 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠′(𝑖𝑖) =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑞𝑞′ , 𝑖𝑖)]

Where n? is the initial state of the CTMC, q? Corresponds
to transition rates, and GetRate is defined by an axiomatic
definition (see Figure 1) to compute the rate for a given state.

Figure 1. Axiomatic definition of GetRate

Now, for each system state si (1 ≤ 𝑠𝑠𝑖𝑖 ≤ 𝑛𝑛), we consider a
probabilistic schema to model transitions from 𝑠𝑠𝑖𝑖 to all sys-
tem states as follows:

𝑃𝑃_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 = [∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠 = 𝑖𝑖 ∧ (𝑞𝑞 (𝑖𝑖,1)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 _𝑠𝑠(𝑖𝑖)

: 𝑠𝑠′ = 1

, … , 𝑞𝑞(𝑖𝑖,𝑖𝑖−1)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 _𝑠𝑠(𝑖𝑖−1)

: 𝑠𝑠′ =i-1, 𝑞𝑞(𝑖𝑖,𝑖𝑖+1)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 _𝑠𝑠(𝑖𝑖+1)

: 𝑠𝑠′ =i+1,..,

𝑞𝑞(𝑖𝑖,𝑛𝑛)
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 _𝑠𝑠(𝑛𝑛)

: 𝑠𝑠′ = 𝑛𝑛]

Since there is no transition from a state to itself, 𝑞𝑞𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖

 is not
considered in the constraint part of 𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑖𝑖 . Now,
the total specification of the system is as follows:

𝑃𝑃_𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 ∨𝑝𝑝 𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 ∨𝑝𝑝 … ∨𝑝𝑝
𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛

Example 4.1. A computer system has three states: Idle,
working, and failed; when it is idle, jobs arrive according to
an exponential distribution with rate 𝛼𝛼 and are completed
according to an exponential distribution with rate 𝛽𝛽. When
the computer is working, it is failed according to an expo-
nential distribution with rate 𝑤𝑤, and when it is idle, it is
failed according to an exponential distribution with rate 𝜏𝜏.
Finally, when the computer is in a failed state, it goes to the
working state according to an exponential distribution with
rate 𝜇𝜇.

We use values 1, 2 and 3 to specify idle, working and
failed states, respectively, as shown in Figure 2:

2

3

1

α

β

w

μ

τ

Figure 2. Continues time Markov chain for a computer system

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≅ [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′ , 𝑛𝑛? : 𝑁𝑁, 𝑞𝑞? : 𝑁𝑁 × 𝑁𝑁 → 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝑛𝑛′
= 𝑛𝑛?∧ 𝑠𝑠′ = 𝑚𝑚 ∧ 𝑞𝑞′ = 𝑞𝑞?∧ ∀ 𝑖𝑖: 1. .3. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠′(𝑖𝑖)
= 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑞𝑞′ , 𝑖𝑖)]

where 𝑛𝑛? = 3 and 𝑞𝑞? = {(1,2) → 𝛼𝛼, (1,3) → 𝜏𝜏, (2,1) →
𝛽𝛽, 2,3→𝑤𝑤, 3,2→ 𝜇𝜇 here.

𝑃𝑃_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 = [∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠 = 1 ∧ (𝛼𝛼
𝛼𝛼+𝜏𝜏

: 𝑠𝑠′ =2,
𝜏𝜏

𝛼𝛼+𝜏𝜏
: 𝑠𝑠′ = 3]

𝑃𝑃_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = [∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠 = 2 ∧ (𝛽𝛽
𝛽𝛽 +𝑤𝑤

: 𝑠𝑠′ =

1, 𝑤𝑤
𝛽𝛽 +𝑤𝑤

: 𝑠𝑠′ = 3]
𝑃𝑃_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3 = [∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠 = 3 ∧ (1: 𝑠𝑠′ = 2,0: 𝑠𝑠′ = 1]

𝑃𝑃_𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 ∨𝑝𝑝 𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 ∨𝑝𝑝 𝑝𝑝_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3

5. Conclusions and Future Work
In this paper, we have presented a Z-based formalism by

30 Hassan Haghighi et al.: A Z-Based Formalism to Specify Markov Chains

which one can specify probabilistic programs formally. To
demonstrate the applicability of this formalism, we have
shown that any probabilistic system that can be modelled
with Markov chains can be formally specified using this
formalism. However, the resulting formalism can only
specify Markov chains in the origin time. In other words, this
formalism specifies stationary Markov chains and cannot be
used for dynamic specification of Markov chains. So, future
work would offer a formalism based on Z that has the capa-
bility of specifying dynamic Markov chains and probabilistic
systems that change during time.

In addition, the current formalism suffers from a main
drawback: as was stated in[4], the interpretation function[]NP
can be only applied to those probabilistic schemas

𝑃𝑃_𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ≅ [𝑥𝑥1 ∈ 𝐴𝐴1; … ; 𝑥𝑥𝑚𝑚 ∈ 𝐴𝐴𝑚𝑚 ; 𝑦𝑦1 ∈ 𝐵𝐵1; … ; 𝑦𝑦𝑛𝑛 ∈
𝐵𝐵𝑛𝑛𝜙𝜙∧(𝑝𝑝1:𝜙𝜙1;…;𝑝𝑝𝑙𝑙:𝜙𝜙𝑙𝑙)]
that obey the following law: for every predicate ϕk (k: 1..l),
each combination of values of before state and input vari-
ables with one and only one combination of values of after
state and output variables satisfies ϕk.

To compare our work with other approaches in the litera-
ture which apply formal methods to probabilistic systems, it
is worth mentioning that, as we have stated in section 1,
most of the contributions in the literature have focused on
the verification of probabilistic programs. As one related
work, we can point to[13] in which a rewrite based specifi-
cation language, called PMAUDE, has been proposed for
specifying probabilistic concurrent and real-time systems.
Specifications in PMAUDE are based on a probabilistic
rewrite theory which has both a rigorous formal basis and
the characteristics of a high-level programming language. In
other words, this theory allows us to express both specifica-
tions and programs within the same formalism.

Although our specification language in this paper is based
on a different theory in comparison to that of[13] (i.e., set
theory in comparison to rewrite theory), we are going to
utilize one advantage of[13] in our future work; this advan-
tage is that PMAUDE allows specifications to be easily
written in a way that they have no un-quantified nondeter-
minism. More precisely, all occurrences of nondeterminism
are replaced by quantified nondeterminism such as prob-
abilistic choices and stochastic real-time; hence, this work
does not have the problem of ours when both nondetermin-
ism and probability exist in the specification simultaneously.

As another related work, we can point to[14] in which a
formalism that is based on the notion of state-transition is
proposed to specify probabilistic processes. In this work,
Jonsson and Larsen define a refinement relation between
probabilistic specifications as inclusion between the sets of
processes that satisfy the respective specifications. One of
the most advantages of[14] is the ability to consider variable
probabilities for each transition. More precisely, each tran-
sition is labelled by an appropriate interval of probabilities.
Although we use a different theory (set theory instead of
state-transition) as the basis of our specification language,
we are going to employ the idea of[14] to enrich our
framework to support variable probabilities.

REFERENCES
[1] A. McIver and C. Morgan, Developing and reasoning about

probabilistic programs in pGCL, Lecture Notes in Computer
Science, pp. 123–155, 2006.

[2] A. McIver and C. Morgan, Abstraction and refinement in
probabilistic systems, ACM SIGMETRICS Performance
Evaluation Review, vol. 32, no. 4, pp. 41–47, 2005.

[3] C. Morgan, A. McIver, and J. Hurd, Probabilistic guarded
commands mechanized in HOL, Theoretical Computer
Science, pp. 96–112, 2005.

[4] H. Haghighi and M. M. Javanmard, A constructive approach
for developing probabilistic programs, In: Fundamentals of
Software Engineering (FSEN11), Tehran, Iran, 2011.

[5] D. Kozen, Semantics of probabilistic programs, Journal of
Computer and System Sciences, pp. 328–350, 1981.

[6] J. Woodcock and J. Davies, Using Z, specifications, refine-
ment and proof, Prentice Hall, 1996.

[7] S. Meyn and R. L. Tweedie, Markov chains and stochastic
stability, Second Edition, Cambridge University Press, 2008.

[8] S. H. Mirian-Hosseinabadi, “Constructive Z,” Ph.D. disser-
tation, Essex Univ., 1997.

[9] S. M. Ross, “Stochastic Process,” Production Coordination
Elm street publishing, 1996.

[10] A. Di Pierro, C. Hankin, and H.A. Wiklicky, Probabilistic
λ-calculus and quantitative program analysis, Journal of
Logic and Computation. vol. 15, no. 2, 2005.

[11] S. Park, F. Pfenning, and S. Thrun, A probabilistic language
based upon sampling functions, In: ACM Symp. on Principles
of Prog. Lang., pp. 171–182, 2005.

[12] N. Ramsey and A. Pfeffer, Stochastic lambda calculus and
monads of probability distributions, In: 29th ACM Symp. on
Principles of Prog. Lang., 2002.

[13] G. Agha, J. Meseguer, and K. Senfor, PMaude: Re-
write-based specification language for probabilistic object
systems, ENTCS, vol. 153, no. 2, pp. 213-239, 2006.

[14] B. Jonsson and K. G. Larsen, Specification and refinement of
probabilistic processes, In: Sixth Annual IEEE Symposium
on Logic in Computer Science, 1991.

[15] P. Martin-L¨of, An intuitionistic theory of types: predicative
part, (H.E. Rose, J.C. Sheperdson, Eds.), North Holland, pp.
73–118, 1975.

[16] C. Morgan, The generalized substitution language ex-
tended to probabilistic programs, In: the 2nd International
B Conference, vol. 1393 of Lecture Notes in Computer
Science, 1998.

[17] T. S. Hoang, The development of a probabilistic B-Method
and a supporting toolkit, Ph.D. dissertation, School of Com-
puter Science and Engineering, The University of New South
Wales, 2005.

[18] R. Lassaigne, and S. Peyronnet, Probabilistic verification and

 Computer Science and Engineering 2012, 2(3): 24-31 31

approximation, In Annals of Pure and Applied Logic, pp.
122-131, 2007.

[19] H. L.S. Younes, and R. G. Simmons, Statistical probabilistic
model checking with a focus on time-bounded properties, In
Information and Computation 204, pp. 1368-1409, 2006.

[20] M. Kwiatkowska, G. Norman, and D. Parker, Advances and
challenges of probabilistic model checking, In 48th Annual
Allerton Conference, pp. 1691-1698, 2010.

[21] O. Hassan, “Formal probabilistic analysis using theorem
proving,” Ph.D. dissertation, Concorodia Univ., 2008.

[22] M. Kwiatkowska, Quantitative verification:models, tech-
niques and tools, In Proc. 6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 449-458, 2007.

	1. Introduction
	2. Specifying Probabilistic Operations
	3. A Calculus for Probabilistic Schemas
	4. Specification of Markov-Chains
	5. Conclusions and Future Work

