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Abstract  Elasticity prediction based on phase properties is an important task in the analysis and design of composite 

materials. Microstructure-based finite element modeling of composite representative volume element (RVE) has a number of 

advantages over experimental and analytical methods for the task. However, there are a number of challenges in the 

conventional geometry-based finite element modeling (GB-FEM) of RVE, e.g. time-consuming in the construction of 

workable geometric models and in the generation of high-quality finite element meshes. To overcome these challenges, we 

developed a voxel-based finite element modeling (VB-FEM) procedure. In contrast to GB-FEM, VB-FEM first generates a 

uniform grid mesh and then identifies elements that belong to the inclusions. The rest steps are the same as those in GB-FEM. 

We compared the performance of GB-FEM and VB-FEM in two representative numerical examples. The results show that 

upon convergence, elasticity constants characterized by VB-FEM and GB-FEM have excellent agreement. Regarding their 

computational efficiency, although for the composite having regularly-distributed and large-size inclusions, GB-FEM is 

significantly more efficient than VB-FEM; However, for the composite having randomly-distributed and small-size 

inclusions, VB-FEM has similar and even higher efficiency than GB-FEM. Besides overcoming the mentioned challenges, 

VB-FEM has a number of additional advantages over GB-FEM. We conclude that VB-FEM is an effective tool for elasticity 

prediction of particulate composites. 
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1. Introduction 

Particulate composite materials are widely used in 

industrial products and engineering structures due to their 

merits such as easy-to-manufacture, customized mechanical 

properties and great flexibility of design. Prediction of 

composite elasticity constants based on phase properties is a 

key task in the design of various composite materials. There 

are primarily three categories of methods available for the 

prediction of composite properties, i.e. mechanical testing 

[1-3], analytical micromechanics models [4,5] and finite 

element modeling of representative volume element (RVE) 

[6-9]. Mechanical testing is direct and reliable, but it is also 

time-consuming and expensive. Micromechanical models 

are the most efficient and convenient ones, because they 

offer analytical expressions. Nevertheless, they are usually 

based on special assumptions, for example dilute dispersion. 

Therefore, they have limited accuracy for composites that do  
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not strictly satisfy the assumptions, e.g. composites that have 

large contrast of phase properties and high volume-fraction 

of inclusions [5]. Finite element modeling of RVE has the 

merits of both mechanical testing and micromechanical 

models, but avoids their drawbacks. Therefore, finite element 

modeling of RVE is widely applied in the study and design 

of composite materials [10-14]. 

There are basically two types of finite element modeling 

approaches available for elasticity prediction of composite 

materials, one is geometry based [10,15], the other is voxel 

based [16,17]. Take particulate composite as an example,    

in geometry-based finite element modeling (GB-FEM), a 

geometric model of the microstructure of RVE, which 

includes matrix and inclusions, is first constructed; Material 

properties are assigned to the matrix and the inclusions; A 

finite element mesh is then generated from the geometric 

model; Appropriate loading and constraint conditions are 

applied for the characterization of various elastic properties. 

Although theoretically geometry-based finite element 

modeling is an ideal tool for composite property prediction, 

there are a number of practical challenges. The first one is in 

the construction of a workable RVE geometric model [10,18]. 

Inclusions in actual composites are random distributed and 
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have different geometric shapes and sizes. Inclusions (e.g. 

two spheres) that are infinitely close to each other may result 

in severely distorted and even degenerated geometric entities. 

This kind of geometric model is difficult to create even   

with relaxed geometric tolerances. Even with a valid RVE 

geometric model, there are still challenges in the generation 

of high-quality finite element meshes [19,20]. The existence 

of distorted and degenerated geometric entities may first  

fail the generation of a finite element mesh and then may 

result in severely distorted finite elements. Mesh quality 

significantly affects the accuracy of finite element solutions. 

To improve mesh quality, adaptive meshing has to be used 

[20], which is time-consuming but still cannot guarantee the 

quality. 

Voxel-based finite element models (VB-FEM) constructed 

from quantitative computed tomography (CT) or micro-CT 

are often used in the study of bone mechanical properties 

[17,21-23]. The main difference between VB-FEM and 

GB-FEM is in the generation of finite element mesh. In 

contrast to GB-FEM, where a finite element mesh is 

generated from a geometric model, VB-FEM directly 

converts voxels in digital images into brick elements. 

Another advantage of VB-FEM is that material properties 

are reflected in voxel intensity or Hounsfield Unit (HU), 

which provides realistic information on the distribution of 

inhomogeneous bone density. There are two major concerns 

about VB-FEM. One is its computational efficiency. Since 

digital images usually consist of a large number of voxels, 

the resulting finite element meshes usually consist of a  

huge number of elements. The other concern is the 

non-smoothness of model boundaries, which may introduce 

stress concentration. 

Despite of the above concerns, VB-FEM avoids the 

difficulties of GB-FEM in the creation of geometric model 

and in the generation of high-quality mesh. Voxel-based 

finite element meshes always have good quality. For the 

above reasons, we are motivated to compare the accuracy 

and efficiency of GB-FEM and VB-FEM in elasticity 

prediction of particulate composites, to study the possibility 

of using VB-FEM in elasticity prediction of particulate 

composites to avoid the difficulties of GB-FEM. 

2. Materials and Methods 

To compare their performance, GB-FEM and VB-FEM 

are constructed from the same composite RVE as illustrated 

in Figure 1. In GB-FEM, the matrix and the inclusions are 

meshed separately. A number of issues are introduced by this 

strategy, which has been discussed before. In contrast, for 

VB-FEM a uniform grid mesh is first generated for the whole 

domain occupied by the RVE. Then, the information of 

inclusion location and size in the RVE are used to identify 

the elements that belong to the matrix and the inclusions 

respectively. The resulting finite element mesh with 

distinguished Table 1 matrix and inclusions looks like a 

binary digital image, therefore, the terminology of voxel is 

used. As it will be shown later, the resolution of VB-FEM 

mesh, defined as the ratio between element size and the RVE 

size, affects the accuracy of VB-FEM. The rest steps of finite 

element analysis, including assignment of material properties 

and application of loading and constraint conditions, are the 

same as in GB-FEM. The objective of this comparison study 

is to find out whether or not GB-FEM and VB-FEM have 

good agreement upon their convergence, and what are their 

relative computational efficiency. 

 

Figure 1.  Construction of GB-FEM and VB-FEM from the same 

composite RVE 

Table 1.  RVE boundary conditions for characterization of composite elastic properties 

RVE 

Surface 

Young’s Modulus (Ei) and Poisson’s Ratio 

(vij) 
Shear Modulus (Gij) 

Ex, vxy, vxz Ey, vyx, vyz Ez, vzx, vzy Gxy Gyz Gzx 

x = 0 ux = 0 ux = 0 ux = 0 ux = uy = uz = 0 Free Free 

y = 0 uy = 0 uy = 0 uy = 0 Free ux = uy = uz = 0 Free 

z = 0 uy = 0 uy = 0 uz = 0 Free Free ux = uy = uz = 0 

x = 100 ux = 1 
ux (coupled 

DOFs) 

ux (coupled 

DOFs) 

uy = 1, ux 

(coupled 

DOFs) 

Free Free 

y = 100 
uy (coupled 

DOFs)* 
uy = 1 

uy (coupled 

DOFs) 
Free 

uz = 1, uy 

(coupled DOFs) 
Free 

z = 100 
uz (coupled 

DOFs) 

uz (coupled 

DOFs) 
uz = 1 Free Free 

ux = 1, uz 

(coupled DOFs) 

* All nodes on surface y = 100 are forced to have the same displacement uy. 
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RVE elastic properties, including Young’s modulus, 

Poisson’s ratio and shear modulus, are predicted by GB-FEM 

and VB-FEM using the same loading and constraint 

conditions. A cubic RVE with the setup of a coordinate 

system is shown in Figure 2. The side length of the RVE is  

L = 100 units, the unit can be at any length-scale from 

nanometer to meter, because in principle both GB-FEM and 

VB-FEM are applicable to problems of any length-scale. 

 

Figure 2.  Cubic RVE and coordinate system 

The loading and constraint conditions listed in Table 1 are 

applied to the RVE for the prediction of Young’s modulus 

𝐸𝑖 , Poisson’s ratio 𝑣𝑖𝑗  and shear modulus 𝐺𝑖𝑗 (𝑖, 𝑗 =

𝑥, 𝑦, 𝑧). The applied constraint conditions are intended to 

mimic the behavior of the RVE in a larger material body and 

to avoid ‘artificial’ stress concentration. Take Young’s 

modulus 𝐸𝑥  as an example, the RVE surfaces at x = 0, y = 

0 and z =0 are constrained in x, y and z direction, 

respectively; a uniform displacement is introduced on 

surface x = L; the surfaces y = L and z = L are forced to have 

uniform displacement from Poisson’s effect. 

After the solution of the finite element equations, RVE 

Young’s modulus, Poisson’s ratio and shear modulus are 

determined by the homogenization theory based on 

volume-averaged stresses and strains [24-26], i.e. 

𝐸𝑖 =
𝜎 𝑖

𝜀 𝑖
 ,          (𝑖 = 𝑥, 𝑦, 𝑧)           (1) 

𝑣𝑖𝑗 = −
𝜀 𝑗

𝜀 𝑖
 ,      (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧)         (2) 

𝐺𝑖𝑗 = −
𝜏 𝑖𝑗

𝛾 𝑖𝑗
 ,     (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧)         (3) 

𝜎 𝑖 =
1

𝑉
  𝜎𝑖

𝑉

𝑑𝑉,            𝜀 𝑖 =
1

𝑉
  𝜀𝑖

𝑉

𝑑𝑉,   

𝜏 𝑖𝑗 =
1

𝑉
  𝜏𝑖𝑗𝑉

𝑑𝑉,            𝛾 𝑖𝑗 =
1

𝑉
  𝛾𝑖𝑗𝑉

𝑑𝑉,    (4) 

In the above equations, 𝜎𝑖 , 𝜀𝑖 , 𝜏𝑖𝑗 , and 𝛾𝑖𝑗  are 

respectively the normal stress, normal strain, shear stress and 

shear strain determined by the finite element analysis; V is 

the volume of RVE. 

Agreement between GB-FEM and VB-FEM is measured 

by the following normalized difference, 

𝛿 𝑃 =
 𝑃𝐺𝐵 −𝑃𝑉𝐵  

(𝑃𝐺𝐵 +𝑃𝐺𝐵 ) 2 
× 100%       (5) 

Where P is a property of the RVE, for example, Young’s 

modulus, Poisson’s ratio, and shear modulus; 𝑃𝐺𝐵  is the 

elastic property predicted by GB-FEM upon convergence; 

𝑃𝑉𝐵  is the property obtained by VB-FEM with a certain 

mesh resolution. A smaller δ value indicates a better 

agreement between GB-FEM and VB-FEM; If δ = 0, there 

would be no difference. 

To compare computational efficiency of GB-FEM and 

VB-FEM, normalized number of nodes (η) is used, which is 

defined as 

𝜂 =
𝑁𝑉𝐵 −𝑁𝐺𝐵

𝑁𝐺𝐵
× 100%          (6) 

Where 𝑁𝑉𝐵  and 𝑁𝐺𝐵  are respectively the number of 

finite element nodes in VB-FEM and GB-FEM. If η > 0, 

more nodes are used in VB-FEM than in GB-FEM; otherwise 

less nodes are used. 

3. Numerical Examples and Results 

A polymer filled with small glass spheres [3] is selected 

for this comparison study. The polymer (matrix) has Young’s 

modulus 𝐸𝑚  = 2.68 GPa and Poisson’s ratio 𝑣𝑚  = 0.394; 

The glass spheres (inclusions) have Young’s modulus 𝐸𝑖  = 

70.0 Gpa and Poisson’s ratio 𝑣𝑖  = 0.23. Two types of RVE 

of the composite, as shown in Figure 3 and Figure 4, are 

constructed to compare GB-FEM and VB-FEM. RVE 1 in 

Figure 3 has large size and regularly distributed spheres, 

while RVE 2 in Figure 4 has small size and randomly 

distributed spheres. 

 

   

(a)                           (b)                           (c) 

Figure 3.  RVE 1: regularly-distributed and large-size spheres. (a) composite; (b) matrix; (c) inclusions 
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(a)                             (b)                             (c) 

Figure 4.  RVE 2: randomly-distributed and large-size spheres. (a) composite; (b) matrix; (c) inclusions 

   

(a)                              (b)                              (c) 

Figure 5.  GB-FEM of RVE 1. (a) whole model; (b) matrix; (c) inclusions 

   

(a)                              (b)                              (c) 

Figure 6.  VB-FEM of RVE 1. (a) whole model; (b) matrix; (c) inclusions 

 

Table 2.  Normalized differences (%) between VB-FEM and converged 
GB-FEM (RVE 1) 

 
VB-FEM Mesh Resolution 

1:20 1:50 1:100 

δ(V) 0.35 0.03 0.01 

δ(Ex) 1.10 0.32 0.05 

δ(Gxy) 0.71 0.18 0.07 

δ(vxy) 0.23 0.08 0.04 

η -40.12 757.75 6,562.15 

All finite element results are produced using ANSYS 

Mechanical APDL (2020 R1, ANSYS, Inc.). In GB-FEM, 

6-node tetrahedral element is used with mesh adaptation; In 

VB-FEM, 8-node brick element is used. 

For RVE 1, sample GB-FEM and VB-FEM meshes are 

displayed respectively in Figure 5 and Figure 6. Variations of 

Young’s moduli predicted by GB-FEM and VB-FEM with 

the number of element nodes are shown in Figure 7. 

Normalized differences between GB-FEM and VB-FEM 

are provided in Table 2, where the normalized differences (δ) 

are calculated based on Equation (5) and the normalized 
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number of nodes is determined by Equation (6). It should be 

men-tioned that δ(V) in Table 2 (as well in Table 3) is 

calculated from the volumes of elements representing the 

spherical inclusions, there is a difference between the sum of 

the element volumes and that of the spheres. 

Table 3.  Normalized differences (%) between VB-FEM and converged 
GB-FEM (RVE 2) 

 
VB-FEM Mesh Resolution 

1:20 1:50 1:100 

δ(V) 3.67 1.65 0.72 

δ(Ex) 1.38 0.50 0.20 

δ(Ey) 1.40 0.37 0.22 

δ(Ez) 1.18 0.30 0.08 

δ(Gxy) 2.36 1.65 0.69 

δ(Gyz) 1.86 1.38 0.87 

δ(Gzx) 2.17 0.94 0.53 

δ(vxy) 0.89 0.31 0.01 

δ(vyz) 0.91 0.26 0.04 

δ(vzx) 1.04 0.60 0.22 

η -99.18 -88.27 -8.90 

For RVE 2, sample meshes are displayed in Figure 8 and 

Figure 9. Variations of Young’s moduli predicted by 

GB-FEM and VB-FEM with the number of element nodes 

are shown in Figure 10, the Young’s modulus in the figure  

is the average of Young’s moduli in the x, y and z axial 

direction shown in Figure 2. The normalized differences 

between GB-FEM and VB-FEM are provided in Table 3. 

 

Figure 7.  Variation of RVE Young’s modulus with number of nodes (RVE 

1) 

 

   

(a)                            (b)                               (c) 

Figure 8.  GB-FEM of RVE 2. (a) whole model; (b) matrix; (c) inclusions 

   

(a)                            (b)                                (c) 

Figure 9.  VB-FEM of RVE 2. (a) whole model; (b) matrix; (c) inclusions
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Figure 10.  Variation of RVE Young’s modulus with number of nodes 

(RVE 2) 

The following observations can be made from the results: 

1)  With mesh resolution refined in VB-FEM, the 

normalized difference in volume fraction of inclusion, 

i.e. δ(V) in Table 2 and Table 3, is gradually reduced, 

indicating that VB-FEM and GB-FEM have closer 

volume fraction of inclusions, but it is difficult for 

them to have exactly the same. 

2)  VB-FEM and GB-FEM converge to very similar  

final solutions, which can be observed from the 

convergence curves in Figure 7 and Figure 10, and 

also from the normalized differences in Table 2 and 

Table 3. If the differences in the volume fraction of 

inclusions are taken in account, the solutions of 

VB-FEM and GB-FEM would be even closer. 

3)  Even with a coarse mesh resolution, VB-FEM 

solutions have good agreement with the converged 

GB-FEM. For example, with a 1:20 mesh resolution, 

the maximum normalized difference is only 1.10% 

for RVE 1 (Table 2) and 2.36% for RVE 2 (Table 3). 

Elimination of the differences in volume fraction of 

inclusions would further improve the agreement. 

4)  Regarding computational efficiency, GB-FEM has 

much greater advantage over VB-FEM for RVE 1, 

which can be seen from the convergence in Figure 7 

and the normalized number of element nodes (η) in 

Table 2. However, for RVE 2, VB-FEM and GB-FEM 

have very similar efficiency, as shown by the 

convergence curve in Figure 10 and the η values in 

Table 3. 

4. Discussion and Conclusions 

The results of this comparison study show that for the 

elasticity prediction of particulate composites, GB-FEM and 

VB-FEM have similar accuracy upon their convergence. 

Regarding their computational efficiency, for a composite 

with large size and regularly distributed inclusions (e.g.  

RVE 1), GB-FEM has obvious advantage over VB-FEM; but 

for a composite with small size and randomly distributed 

inclusions (e.g. RVE 2), which is more often encountered    

in engineering, VB-FEM and GB-FEM have similar 

computational efficiency. Nevertheless, VB-FEM avoids all 

the difficulties of GB-FEM that have been discussed at the 

beginning of this paper. In addition, VB-FEM has a number 

of other advantages over GB-FEM. For the creation of 

VB-FEM, the only requirement is nonoverlap among 

inclusions, which is much easier to satisfy than the creation 

of a workable geometric model in GB-FEM. There is no 

restriction on how close two inclusions can be in VB-FEM; 

therefore, a high volume-fraction of inclusion can be 

achieved more easily. The accuracy and computational 

efficiency of VB-FEM are not affected by the number and 

the size of inclusions in the composite, as can be seen from 

the results of RVE 1 and RVE 2 obtained by VB-FEM. 

However, GB-FEM has to greatly increase the number of 

elements, because a large number of small-size elements are 

required to realistically represent the small inclusions and to 

fill in the very narrow gaps between infinitely close 

inclusions. If the volume fraction of inclusions is high, the 

situation will become even worse for GB- FEM [27]. 

  

(a)                     (b) 

Figure 11.  Von-Mises stress distribution in RVE 1. (a) GB-FEM; (b) VB- 

FEM 

Table 4.  Maximum stresses and strains in composite matrix and inclusion (RVE 1) 

 

VB-FEM with Different Mesh 

Resolutions 
GB-FEM 

(Converged) 
1:20 1:50 1:100 

Maximum von-Mises Stress in Matrix (MPa) 200.56 104.45 65.71 41.0 

Maximum von-Mises Stress in Inclusions (MPa) 1,102.30 590.46 367.65 211.74 

Maximum von-Mises Strain in Matrix (X 10-3) 74.84 38.98 24.52 17.34 

Maximum von-Mises Strain in Inclusions (× 10-3) 15.75 8.44 5.25 3.11 
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Although GB-FEM and VB-FEM have similar accuracy in 

the prediction of composite elastic properties, there exist 

significant differences in the stresses and strains determined 

by the two models. Figure 11 (a) and (b) show the patterns of 

von-Mises (v-M) stress distribution produced by GB-FEM 

and VB-FEM for RVE 1 respectively. Quantitative 

differences can be observed from the results listed in Table 4. 

The results in Table 4 show that, generally, with the mesh 

resolution refined, the maximum stresses and maximum 

strains predicted by VB-FEM gradually approach those by 

GB-FEM. However, even with a fine resolution such as 

1:100, VB-FEM still overestimates the stresses and strains 

compared with GB-FEM. The main cause is that the interface 

between inclusion and matrix is not smooth in VB-FEM, 

which may cause stress concentration at the interface. It is 

well known that stresses and strains predicted by GB-FEM 

are also sensitive to mesh quality, especially in composites 

with irregularly distributed inclusions. As discussed before, 

distorted and degenerated geometric entities in GB-FEM 

produce distorted elements, which introduce spuriously large 

stresses and strains. 

Based on this study, it can be concluded that VB-FEM can 

be used in replace of GB-FEM to predict elastic properties of 

particulate composites, but probably not suitable for 

predicting stresses and strains within the composites. 
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