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Abstract  Advanced Fiber reinforced polymers have emerged as an important class of engineering materials with all round 

properties for many engineering and social applications. Fiber reinforced composites are widely used in aircrafts, rockets and 

automotive structures for their low weight high strength and stiffness. A designer can utilize the anisotropy produced by 

building up a laminate from plies with a properly selected fiber-resin combination and orientation-stacking sequence to meet 

the performance requirements. The axi-symmetric structure like a pressure vessel would be made out of composite materials 

usually using filament winding process. In spite of their good performance; pressure vessels made by filament winding have 

complexity in analyzing the geometry and properties in their dome parts along the longitudinal axis. Moreover, the fiber angle 

varies in the thickness direction because the fiber path depends on the surface on which fibers are wound. Therefore certain 

analyses like higher order shear deformation theory and finite element analysis is to be computed in order to predict the 

structural behavior of pressure vessel. By observing the results among these numerical techniques, it is seen that the Finite 

element method is not only simple but straight forward for efficient programming and also versatile enough to cover all types 

of problems relevant to practical situations. 

Keywords  Composite Pressure Vessel, First order Shear Deformation Theory, Third order Shear Deformation Theory, 

Finite Element Analysis 

 

1. Introduction 

A Filament winding is an automated process in which 

continuous filament is treated with resin and wound on a 

mandrel in a pattern designed to give strength in one 

direction. The composite pressure vessel fully wrapped with 

epoxy-impregnated E-glass fiber is considered. The quality 

and strength of the final component depends, to a large 

extent, on accurate placement of the fibers or tapes on the 

predefined path. It is well known that the ideal curve on the 

mandrel surface for placement of fibers is the Geodesic 

curve. Geodesic winding can be conveniently carried out on 

the conventional end dome shapes by the method of Claurit’s 

Principle  𝐷𝑠𝑖𝑛𝜑 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  as shown in Figure 1.   

The overall length of the casing is determined based on the 

 

* Corresponding author: 

musthak.mech@gmail.com (Md Musthak) 

Published online at http://journal.sapub.org/cmaterials 

Copyright ©  2019 The Author(s). Published by Scientific & Academic Publishing 

This work is licensed under the Creative Commons Attribution International 

License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

volume requirement. Netting analysis is used to formulate 

and solve the nonlinear equations that result from this 

interaction between the dome shape and fiber orientation 

angles [5,6, and 10]. 

Netting Analysis is used in predicting stresses in a fiber 

reinforced composite by neglecting the contribution of the 

resin system. The cylinder of the filament wound pressure 

vessel was basically composed of helical and hoop layers. 

Whereas the end domes comprises of helical and doilies. 

Doily is a planar reinforcement applied to local areas to 

provide additional strength, usually in hoop direction. Since 

it is not possible to wind hoop layers on the end domes 

directly by filament winding technique, an additional layer 

either a unidirectional fabric or drum wound hoop layers are 

developed and placed on the end domes. The preliminary 

design is performed using netting analysis methods to 

address the inner pressure loading. Netting analysis assumes 

that the fibers provide all of the stiffness and strength in the 

cylinder. This assumption is not only conservative but also 

an excellent basis for quick calculation of composite 

thickness. From netting analysis, Consider a filament wound 

cylinder of radius R pressurized with an internal pressure P. 

http://creativecommons.org/licenses/by/4.0/
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Hoop layers are not possible to develop on the dome portions 

so that doilies are provided for the balance requirement. The 

helical layers are not effective for axial stresses towards the 

pole openings, where the doilies can bare radial and axial 

stresses.  The required hoop thickness, helical thickness and 

doily thickness are designed by equations (1), (2) & (3) 

respectively. The designed ply sequence is shown in Table 1. 

 

Figure 1.  Winding angle along the meridian and ply sequence on the composite pressure vessel 

Table 1.  Details of the Ply Sequence on the Composite Pressure Vessel 

S.No. 
Winding Angle 

(degrees) 

Axial Coordinate 

(mm) 

Radial Contour 

(mm) 
Ply sequence on composite pressure vessel 

1 90 0.00 50 [+α/90/+α/90/+α/90/+α] 

2 42 12.6 76 [+α/90/+α/90/90/90/+α/90/+α] 

3 34 17.21 91 [+α/90/90/+α/90/90/90/+α/90/90/+α] 

4 23-29 23 - 39 105 - 130 [+α/90/90/90/+α/90/90/90/+α/90/90/90/+α] 

5 17-21 49 - 86 142-170 [+α/90/90/90/90/+α/90/90/90/+α/90/90/90/90/+α] 

6 16.6 99 - 1534 176 [90/90/+α/90/+α/90/90/90/+α/90/+α/90/90] 

7 17-21 1552 - 1558 142-170 [+α/90/90/90/90/+α/90/90/90/+α/90/90/90/90/+α] 

8 23-29 1598-1615 105 - 130 [+α/90/90/90/+α/90/90/90/+α/90/90/90/+α] 

9 34 1620.83 91 [+α/90/90/+α/90/90/90/+α/90/90/+α] 

10 42 1625.44 76 [+α/90/+α/90/90/90/+α/90/+α] 

11 90 1638.00 50 [+α/90/+α/90/+α/90/+α] 

 

𝑡𝑓90 =
Pr(2−𝑡𝑎𝑛 2∅)

2𝜎𝑓90 (𝑐𝑜𝑠𝛽 )
                (1) 

𝑡𝑓𝜙 =
𝑃𝑟

2𝜎𝑓∅𝑐𝑜𝑠
2∅(𝑐𝑜𝑠𝛽 )

              (2) 

𝑡𝑓𝑑𝑜𝑖𝑙𝑦 =
 2∗Pr(2−𝑡𝑎𝑛 2∅)

2𝜎𝑓90(𝑐𝑜𝑠𝛽 )
            (3) 

Literature Survey 

T. Kant et al [8] present a refined higher-order theory for 

free vibration analysis of un-symmetrically laminated 

multilayered plates. The theory accounts for parabolic 

distribution of the transverse shear strains through the 

thickness of the plate and rotary inertia effects. Ngo Nhu 

Khoa et al [14] presents a rectangular non–conforming 

element based on Reddy’s higher-order shear deformation 

plate theory is developed. F. Auricchio et al [1] proposed 

mixed variational formulations for a first-order shear 

deformation laminate theory. M. Rastgaar Aagaah et al [15] 

presented natural frequencies of square laminated composite 

plates for different supports at edges. S Latheswary et al [10] 

studied the behavior of laminated composite plates under 

static loading by using a four-noded element with seven 

degrees of- freedom per node, based on higher-order shear 

deformation theory. 

T. Kant et al [9] presents a higher-order displacement 

model for the behavior of symmetric and un-symmetric 

laminated composite and sandwich cylindrical shells based 

on Co finite element discretization. X. Huang et al [6] 

presents a simple and efficient method is used for buckling 

analysis of a laminated circular cylindrical shell based on a 

two-surface theory. Csonka. B. et al [5] presented structural 

and sensitivity analysis for the optimization of laminated 

axisymmetric shells subjected to static constraints and 

arbitrary loading. 

Cho-chung Liang et al [4] have performed studies on an 

optimum end dome contours for filament- wound composite 
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pressure vessels, subjected to geometrical limitations, 

winding condition, which can very closely perform the 

isotensoid behavior. Jae-Sung Park et al [7] have studied 

structural analysis of composite pressure vessel by 

considering the geodesic path deviation (non-geodesic 

trajectory) on an end dome of an arbitrary surface. Semi 

geodesic path equations are developed for the contour and 

further carried out FEA using Abacus software. In the above 

cases the prediction of failure of the arbitrary contour 

structure becomes difficult. Moreover for known curvatures, 

like cylinder, hemispherical and iso tensoid contours, it is 

easy to quantify the design parameters such as winding 

thickness and winding angle. Cheol-Ung Kim et al [3] 

developed semi geodesic path algorithm to calculate possible 

winding patterns and also performed Finite element analysis. 

Beakou. A and Mohamed. A [2] used the Classical laminated 

theory in order to analyse the influence of variable scattering 

on the optimum winding angle of cylindrical composites.  

Many methods are proposed for progressive failure 

analysis to understand structural behavior of the shell. 

Nagesh [13] developed a degradation model incorporated 

into the finite element analysis (ANSYS Software) of the 

pressure vessel based on a progressive failure criterion. The 

procedure to understand the layer wise stress and strain 

components are not available unless each layer is modelled 

respectively.  

Madhavi.M et al [11] and Md. Musthak et al [12] have 

developed a methodology based on classical lamination 

theory in MATLAB software. The various failure criteria of 

composite pressure vessel like matrix crack failure; load 

carried by each ply, strains and stresses at each layer, burst 

pressure values at various positions of the pressure vessels 

can be computed. In the present study, extensive literature 

survey is carried out to understand the concepts of shear 

deformation theories for advanced composite materials. 

Previous research about shear deformation theories is 

categorized into higher order shear deformation theory 

applied for analysis of laminated multilayered plates and 

laminated multilayered shells. However there is no higher 

order shear deformation method for filament wound 

structures. To predict inter-laminar stresses and strains in the 

composite pressure vessel the higher order shear deformation 

theories were considered. 

2. Shell Analysis 

The present study deals with structural shell analysis of 

composite pressure vessel by using higher order shear 

deformation theories. A mathematical model that relates the 

stress resultants and higher deformation theories is 

developed. The main goal in pressure vessel design is to 

assure safe and satisfactory performance of a vessel. It is 

recognized that different kinds of stress have different 

degrees of significance and must be held to different limit. 

For three-dimensional bodies we are accustomed to 

describe the distribution of forces by means of the stresses, 

giving components of the force per unit area across a 

surface. For thin shells one can obtain a simpler and more 

enlightening picture by introducing stress-resultants, 

quantities defined on coordinate curves on the middle 

surface which when integrated along such a curve give the 

same total pressure as do the stresses integrated over a 

normal section of the shell cut along the curve. 

Geometrically composite pressure vessel consists of 

cylindrical portion and end dome portions of hemispherical 

shape. Hence a mathematical model is developed for stress 

resultants of cylindrical portion and end dome portions. 

2.1. Mathematical Modeling of Stress Resultants 

Consider a shell of revolution consisting of K composite 

layers, each layer being reinforced by fibers oriented at 

angles + I and -I to the meridian, similar to the shell 

consideration as assumed by Bunakov V.A and Protasov 

V.D [4]. The shell is loaded by a uniform internal pressure p 

and axial forces Q0, distributed uniformly over the edge of 

the polar opening with radius r0, shown in figure 2. Let R1 

and R2 are principal radii of curvature as calculated by means 

of the relations. 

 

Figure 2.  Pressure Vessel Shell Element of ith Layer 

The stress resultants per unit length can be defined as 

follows: 
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For shallow shells like pressure vessels, one can neglect 
ζ

R1
𝑎𝑛𝑑 

ζ

R2
 and obtain 𝑁12 = 𝑁21  𝑎𝑛𝑑 𝑀12 = 𝑀21 , as in a 

plate theory.  

The shear forces 𝑄𝑥  𝑎𝑛𝑑 𝑄𝑦  for a shell are derived by the 

moment and shear force equilibrium equations below.   

 

𝜕𝑀1

𝜕𝜉1
+

𝜕𝑀6

𝜕𝜉2
= 𝑄1

𝜕𝑀6

𝜕𝜉1
+

𝜕𝑀2

𝜕𝜉2
= 𝑄2

               (6) 

2.1.1. Stress Resultants on Cylindrical Surface of Composite 

Pressure Vessel 

These stress resultants are assumed to be due only to an 

internal pressure, p, acting in the direction of r. A section of 

a cylindrical shell of composite pressure vessel is shown in 

Figure 3. The hoop (circumferential) stress (𝜎 ℎ𝑜𝑜𝑝 ) and the 

longitudinal stress (𝜎 𝑙𝑜𝑛𝑔 ) are indicated in the figure.  

Considering a cross-section of the shell perpendicular to 

its axis, we have 

𝑝𝜋𝑅2  =  𝜎𝑙𝑜𝑛𝑔  (2𝜋𝑅𝑡) 

This gives 

𝜎𝑙𝑜𝑛𝑔 = 𝜎1 =
𝑝𝑅

2𝑡
                 (7) 

Considering equilibrium across the cut section, we have, 

𝑝𝐿(2𝑅)  =  2𝜎ℎ𝑜𝑜𝑝  𝑡𝐿 

This gives 

𝜎ℎ𝑜𝑜𝑝 = 𝜎2 =
𝑝𝑅

𝑡
                 (8) 

 

Figure 3.  Cylindrical shell 

Considering the maximum shear stress theory, we have  

𝜎𝑠ℎ𝑒𝑎𝑟 = 𝜎6 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

From the equations (4) and (5) 𝜎𝑚𝑎𝑥 = 𝜎ℎ𝑜𝑜𝑝  and 

𝜎𝑚𝑖𝑛 = 𝜎𝑙𝑜𝑛𝑔  

Therefore 

𝜎𝑠ℎ𝑒𝑎𝑟 = 𝜎6 =
𝑝𝑅

4𝑡
             (9) 

From the equations (5), the stress resultants can be derived 

by considering 
𝜁

R2
= 0 for shallow shells and substituting 

equations (7), (8) & (9) in equation (2), gives the N1, N2, N6, 

M1, M2 and M6 as:  𝑁1 =
𝑝𝑅

2
   ;  𝑁2 = 𝑝𝑅 ;  𝑁6 =

𝑝𝑅

4
; 𝑀1 =

𝑝𝑅𝑡

4
; 𝑀2 =

𝑝𝑅𝑡

2
; 𝑀6 =

𝑝𝑅𝑡

8
. From the equation (6), and derived 

formulas of M1, M2 and M6 for cylindrical shell, the stress 

resultants Q1 and Q2 can be derived as: 𝑄1 =
𝑝𝑡

8
 & 𝑄2 =

𝑝𝑡

2
. 

2.1.2. Stress Resultants on Hemispherical Dome Surface of 

Composite Pressure Vessel 

A section of a hemispherical dome shell of composite 

pressure vessel is shown in Figure 4. The hoop 

(circumferential) stress ( 𝜎 ℎ𝑜𝑜𝑝 ) and the longitudinal  

stress (𝜎 𝑙𝑜𝑛𝑔 ) are indicated in the figure. Considering a 

cross-section of the shell perpendicular to its axis and also 

considering equilibrium across the cut section, we have 

(𝜎 2𝜋 𝑅 𝑡 ) = (𝑝 𝜋 𝑅2) 
This gives 

𝜎ℎ𝑜𝑜𝑝 = 𝜎𝑙𝑜𝑛𝑔 =
𝑝𝑅

2𝑡
             (10) 

 

Figure 4.  Hemisperical dome shell 

The longitudinal stress is equals to that of hoop stress 

hence by considering the maximum shear stress theory, we 

have  

𝜎𝑠ℎ𝑒𝑎𝑟 = 𝜎6 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

From the equation (10) 𝜎𝑚𝑎𝑥 = 𝜎𝑚𝑖𝑛  

This gives 

𝜎𝑠ℎ𝑒𝑎𝑟 = 𝜎6 = 0             (11) 

From the equation (5), the stress resultants can be derived 

by considering 
𝜁

R2
= 0 for shallow shells and substituting 

equations (10), & (11) in equation (5), gives N1, N2, N6,   

M1, M2 and M6 as: N1 = N2 =
𝑝𝑅

2
;  𝑁6 = 0 ; 𝑀1 = 𝑀2 =

𝑝𝑅𝑡

4
;  𝑀6 = 0. From the equation (6) and derived formulas of 

M1, M2 and M6 for hemispherical shell, the stress resultants 

Q1 and Q2 can be derived as:  𝑄1 = 0; 𝑄2 =
𝑝𝑡

4
  . But 𝑄1  

should not be zero, because the shear forces will be present at 

junction of the dome and cylinder, at the end of the dome and 

at the junction of hoop and doily layers, so to predict the 

shear forces at these portions the dome is assumed to be 

discretized as small conical frustums as shown in figure 5. 

Hence further the stress resultants for the conical shell were 

developed.    
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Figure 5.  Hemispherical dome descritized into conical frustums 

2.1.3. Stress Resultants on Conical Frustum Surface on 

Composite Pressure Vessel Dome 

A section of a conical shell of composite pressure vessel 

dome is shown in Figure 6. The hoop (circumferential) 

stress (𝜎 ℎ𝑜𝑜𝑝 ) and the longitudinal stress (𝜎 𝑙𝑜𝑛𝑔 ) are 

indicated in the figure. Considering a cross-section of the 

shell perpendicular to its axis at middle of both maximum 

and minimum radius, we have 

𝑝𝜋𝑅2  =  𝜎𝑙𝑜𝑛𝑔  (2𝜋𝑅𝑡) 

Where 𝑅 =
𝑟1+𝑟2

2
; 

This gives 

𝜎𝑙𝑜𝑛𝑔 = 𝜎1 =
𝑝𝑅

2𝑡
=

𝑝 𝑟1+𝑟2 

4𝑡
       (12) 

Considering equilibrium across the cut section, we have, 

𝑝𝐿(2𝑅)  =  2𝜎ℎ𝑜𝑜𝑝  𝑡𝐿 

This gives 

𝜎ℎ𝑜𝑜𝑝 = 𝜎2 =
𝑝𝑅

𝑡
=

𝑝 𝑟1+𝑟2 

2𝑡
        (13) 

 

Figure 6.  Conical shell 

Considering the maximum shear stress theory, we have  

𝜎𝑠ℎ𝑒𝑎𝑟 = 𝜎6 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

From the equations (12) and (13) 

𝜎𝑚𝑎𝑥 = 𝜎ℎ𝑜𝑜𝑝  𝑎𝑛𝑑 𝜎𝑚𝑖𝑛 = 𝜎𝑙𝑜𝑛𝑔  

This gives 

𝜎𝑠ℎ𝑒𝑎𝑟 = 𝜎6 =
𝑝𝑅

4𝑡
=

𝑝 𝑟1+𝑟2 

8𝑡
         (14) 

From the equation (5), the stress resultants can be derived 

by considering 
𝜁

R2
= 0 for shallow shells and substituting 

equations (12), (13) & (14) in equation (5), gives N1, N2, N6, 

M1, M2 and M6 as: 𝑁1 =
𝑝 𝑟1+𝑟2 

4 cos 𝛽
;  𝑁2 =

𝑝 𝑟1+𝑟2 

2
;  𝑁6 =

𝑝 𝑟1+𝑟2  2 cos 𝛽−1 

4 cos 𝛽
;  𝑀1 =

𝑝𝑡  𝑟1+𝑟2 

4 cos 𝛽
     ;  𝑀2 =

𝑝 𝑟1+𝑟2 𝑡

4
. Where 

𝛽 is slope of contour. From the equation (6), and derived 

formulas of M1, M2 and M6 for Conical shell; the stress 

resultants Q1 and Q2 can be derived as: 

𝑄1 = 𝑝𝑡  
2 cos 𝛽−1

8 cos 𝛽
 ;  𝑄2 =

𝑝𝑡

2
. 

2.2. First Order-Shear Deformation Theory 

First order-shear deformation theory (FOSDT) extends  

the kinematics of the classical lamination theory (CLT) by 

including a gross transverse shear deformation in its 

kinematic assumptions; i.e., the transverse shear strain is 

assumed to be constant with respect to the thickness 

coordinate. As in CLT, FOSDT also assumes each ply is in a 

state of plane stress condition but transverse shear stresses 

are not neglected. The constitutive relations for FOSDT were 

derived using lamina constitutive equations (15) and the 

equations (16). 

 

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

 =  

𝑄11
∗ 𝑄12

∗ 𝑄16
∗

𝑄12
∗ 𝑄22

∗ 𝑄26
∗

𝑄16
∗ 𝑄26

∗ 𝑄66
∗
  

𝜖𝑥

𝜖𝑦

𝛾𝑥𝑦
       (15) 

 
 𝜏𝑦𝑧

𝜏𝑥𝑦
 =  

𝑄44
∗1 𝑄45

∗1

𝑄45
∗1 𝑄55

∗1  
𝛾𝑦𝑧
𝛾𝑥𝑦

         (16) 

The general laminate Force-Deformation equations are 

defined as 

 
𝑁∗

𝑀∗ =  
𝐴𝑖𝑗

∗ 𝐵𝑖𝑗
∗

𝐵𝑖𝑗
∗ 𝐷𝑖𝑗

∗   
𝜖∗

𝑘∗           (17) 

Where 𝜖∗(𝜖𝑥
∗ , 𝜖𝑦

∗ , 𝜖𝑥𝑦
∗ ) are mid-plane strains and 

𝑘∗(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑥𝑦 ) are mid-plane curvatures and the laminate 

stiffness coefficients (𝐴𝑖𝑗
∗ , 𝐵𝑖𝑗

∗ , 𝐷𝑖𝑗
∗ ) are defined as. 

𝐴𝑖𝑗
∗ =  [𝑄𝑖𝑗

∗ ]𝑘 𝑍𝑘 − 𝑍𝑘−1 ,

𝑛

𝑘=1

i, j = 1,2,6 

𝐵𝑖𝑗
∗ =

1

2
 [𝑄𝑖𝑗

∗ ]𝑘 𝑍𝑘
2 − 𝑍𝑘−1

2  , i, j = 1,2,6

𝑛

𝑘=1

 

𝐷𝑖𝑗
∗ =

1

3
 [𝑄𝑖𝑗

∗ ]𝑘 𝑍𝑘
3 − 𝑍𝑘−1

3  , i, j = 1,2,6

𝑛

𝑘=1

 

In addition to CLT equations in FOSDT the Shear 

Force-Shear Deformation are defined as. 

 
𝑄𝑦

𝑄𝑥
 =  𝐾𝑠  

𝐴44 𝐴45

𝐴45 𝐴55
  

𝜖𝑦𝑧

𝜖𝑥𝑧
          (18) 

Where 

𝐴𝑖𝑗 =  [𝑄𝑖𝑗
∗ ]𝑘 𝑍𝑘 − 𝑍𝑘−1 ,

𝑛

𝑘=1

i, j = 4,5 

The analytical solutions of the composite Pressure vessel 

are obtained by using above equations. 

2.3. Third Order-Shear Deformation Theory 

The classical laminate theory and the first order shear 

deformation theory are the simplest equivalent single-layer 
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theories, and they adequately describe the kinematic 

behavior of most laminates. Higher-order theories can 

represent the kinematics better, may not require shear 

correction factors, and can yield more accurate interlaminar 

stress distributions. However, they involve higher-order 

stress resultants. The constitutive relations for any layer in 

the shell are in equation (19). The stress resultants are related 

to the strains by relations given in equation (20) & (21). 

 

𝜎𝑥   
𝜎𝑦   

𝜏𝑥𝑦    
 =  

𝑄11
∗     𝑄12

∗     𝑄16
∗     

𝑄12
∗     𝑄22

∗     𝑄26
∗     

𝑄16
∗     𝑄26

∗     𝑄66
∗     
  

𝜖𝑥 
𝜖𝑦   

𝛾𝑥𝑦    
        (19) 

 
𝑁 

𝑀 

𝑃 
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∗    𝐸𝑖𝑗
∗    

𝐵𝑖𝑗
∗    𝐷𝑖𝑗

∗    𝐹𝑖𝑗
∗   

𝐸𝑖𝑗
∗    𝐹𝑖𝑗

∗   𝐻𝑖𝑗
∗    

  
𝜖1#

𝜖2#

𝜖3#

          (20) 

 
𝑄 

𝑅 
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𝐴𝑖𝑗
∗1 𝐷𝑖𝑗

∗1

𝐷𝑖𝑗
∗1 𝐹𝑖𝑗

∗1  
𝛾∗
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In which 

(𝐴𝑖𝑗
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∗    ]𝑘 1, 𝑍, 𝑍2, 𝑍3, 𝑍4, 𝑍6 

𝑍𝐾+1

𝑍𝐾
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𝑛

𝑘=1

(𝐴𝑖𝑗
∗1, 𝐷𝑖𝑗

∗1, 𝐹𝑖𝑗
∗1)
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∗1 

𝑘
 1, 𝑍2, 𝑍4 
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𝑍𝐾

  dz

𝑛

𝑘=1

 

For Third order shear deformation theory, 𝑦 = 𝑀𝛼𝛽
∗ =

𝑃𝛼𝛽
∗ =  𝑅𝛼𝛽

∗ =  0. The analytical solutions of the composite 

Pressure vessel are obtained by using above equations. 

2.4. Finite Element Analysis Using ANSYS Software 

The study is analyzed by considering the entire pressure 

vessel with half cut section. The material data considered for 

the study are: 𝐸11 = 34.88 𝐺𝑃𝑎;  𝐸22 = 8.77 𝐺𝑃𝑎;  𝐸33 =
8.77 𝐺𝑃𝑎; 𝐺12 = 2.72 𝐺𝑃𝑎;  𝐺23 = 1.26 𝐺𝑃𝑎;  𝐺31 =
2.72 𝐺𝑃𝑎;  𝜗12 = 0.21; 𝜗23 = 0.3; 𝜗31 = 0.05.  Loading 

and bounadary conditions are given separately to the models. 

The layered composite 3-D shell-281 shell element is a more 

developed element and has more capabilities to model 

filament wound layered structures. The model is revolved for 

1800 and the analysis is performed. The domes are divided 

into zones and in each zone the material and geometrical 

properties are incorporated into the layers of the element. 

Since the composite shell is produced by helical winding  

(±∅) and hoop winding, the shell is discretized into certain 

number of zones. Each zone is assumed to have constant 

angle of winding and thickness. The winding angle, axial 

length of the pressure vessel and radial contour are 

considered from table 1 for modeling in ANSYS. The shell is 

constrained at the both openings i.e. Uy=0 and symmetric 

boundary conditions on the cut edges of shell. A uniform 

internal pressure of 50 bar is applied on the inner surface of 

the shell. The axial direction in the analysis is considered as 

Y-direction and radial direction in X-direction. 

3. Results and Discussions 

3.1. Inter-laminar Transverse Directional Behaviour 

It is necessary to determine the distribution of the 

transverse shear stresses and transverse shear strains at the 

junctions of cylindrical and dome portions of a composite 

pressure vessel where hoop and doilies will meet together 

but were not continuous fibers. By using derived shear 

resultants Q for two cases; one is cylindrical case and 

another conical case, the transverse shear stresses and 

transverse shear strains at the junctions of cylindrical and 

dome portion were predicted. Due to different fiber 

orientation the transverse shear stiffness can change 

considerably from layer to layer. That causes an abrupt 

change of transverse shear at the layer interface, which 

cannot be matched by displacement functions with 

continuous derivatives. This deficiency gave rise to 

proposing layer-wise models.  

 

Graph 1.  Transverse Shear Stresses (S13) For Cylindrical Portion 

 

Graph 2.  Transverse Shear Stress (S13) For Dome Portion When Conical 

Shell Is Considered 

By observing the graph 1 and graph 2, finite element 

analysis and first order shear deformation shell theory shows 

linear variation of value and the same shape of graph in both 

assumptions, i.e., cylinder for cylindrical portion and cone 

for dome portion. These two theories (FEA & FOSDT) show 

maximum value of transverse shear stress (S13) at hoop 

layers on cylindrical portion as well as doilies on dome 

portion and minimum value of transverse shear stress (S13) 
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was observed at 3rd, 7th, 11th and 15th layers (all are helical 

layers). FEA is having maximum value comparing with 

FOSDT. TOSDT shows the layer-wise variation in both the 

cases. Accordingly, TOSDT shows maximum value of 

transverse shear stress (S13) for middle layer of pressure 

vessel and minimum value of transverse shear stress (S13) 

for 4th layer and 14th layer (helical layers). 

 

Graph 3.  Transverse Shear Stress (S23) For Cylindrical Portion 

 

Graph 4.  Transverse Shear Stress (S23) For Dome Portion When Conical 

Shell Is Considered 

By observing the graph 3 and graph 4, finite element 

analysis and first order shear deformation shell theory shows 

linear variation of value and the same shape of graph in both 

assumptions, i.e., cylinder for cylindrical portion and cone 

for dome portion. These two theories (FEA & FOSDT) show 

maximum value of transverse shear stress (S23) at  helical 

layers and minimum value of transverse shear stress (S23) 

was observed at hoop layers on cylindrical portion or doilies 

on dome portion. FEA is having maximum value comparing 

with FOSDT. TOSDT shows the layer-wise variation in both 

the cases. Accordingly, TOSDT shows maximum value of 

transverse shear stress (S23) for 7th layer and 11th layer (both 

are helical layers) of pressure vessel and minimum value of 

transverse shear stress (S23) for 2nd layer and 16th layer (both 

are hoop layers). 

By observing the graph 5 and graph 6, finite element 

analysis and first order shear deformation shell theory shows 

linear variation of value and the same shape of graph in both 

assumptions, i.e., cylinder for cylindrical portion and cone 

for dome portion. These two theories (FEA & FOSDT) show 

maximum value of transverse shear strain (E13) at hoop 

layers on cylindrical portion as well as doilies on dome 

portion and minimum value of transverse shear strain (E13) 

was observed at 3rd, 7th, 11th and 15th layers (helical layers). 

FEA is having maximum value comparing with FOSDT. 

TOSDT shows the layer-wise variation in both the cases. 

Accordingly, TOSDST shows maximum value of transverse 

shear strain (E13) for middle layer of pressure vessel and 

minimum value of transverse shear strain (E13) for 4th layer 

and 14th layer (hoop layers). 

 

Graph 5.  Transverse Shear Strain (E13) For Cylindrical Portion 

 

Graph 6.  Transverse Shear Strain (E13) For Dome Portion When Conical 

Shell Is Considered 

By observing the graph 7 and graph 8, finite element 

analysis and first order shear deformation shell theory shows 

linear variation of value and the same shape of graph in both 

assumptions, i.e., cylinder for cylindrical portion and cone 

for dome portion. These two theories (FEA & FOSDT) show 

maximum value of transverse shear strain (E23) at  helical 

layers and minimum value of transverse shear strain (E23) 

was observed at hoop layers on cylindrical portion or doilies 

on dome portion. FEA is having maximum value comparing 

with FOSDT. TOSDT shows the layer-wise variation in both 

the cases. Accordingly, TOSDT shows maximum value of 

transverse shear strain (E23) for 7th layer and 11th layer (both 

are helical layers) of pressure vessel and minimum value of 

transverse shear strain (E23) for 2nd layer and 16th layer 

(hoop layers). 
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Graph 7.  Transverse Shear Strain (E23) For Cylindrical Portion 

 

Graph 8.  Transverse Shear Strain (E23) For Dome Portion When Conical 

Shell Is Considered 

3.2. Finite Element Analysis of Composite Pressure 

Vessel 

In the finite element analysis, Ux represents the radial 

deformations and Uy indicates the axial deformations of a 

composite pressure vessel. Figure 7 & Figure 8 shows the 

radial and axial deformations simulated by finite element 

analysis. The maximum radial dilations are computed on the 

cylindrical region with a magnitude of 6.7 mm and 

maximum axial dilations with magnitude of 9.5 mm as 

shown in figures 7 & 8. The estimated burst pressure values 

at various locations of composite pressure value ar computed 

by incorporating the progressive failure theory in TOSDT, 

shown in figure 9. In the analysis, the final bursting occurs at 

the cylinder- end dome juntions in the pressure value 62.6 

bar.  

 

Figure 7.  Axial dilation of composite Pressure vessel at 50 bar pressure 

 

Figure 8.  Radial dilation of composite Pressure vessel at 50 bar pressure 

 

Figure 9.  Estimated Burst Pressure (Bar) Values At Various Stations Of The Shell by TOSDT 

4. Conclusions 

The design approach for composite pressure vessel is 

based on netting analysis using E-Glass fiber and epoxy resin. 

Composite pressure vessel is designed by determining the 

thickness of shell, number of helical and hoop layers and 

plies sequence to be laid on the mandrel.  

The proposed analysis procedure mentioned in this study, 
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could reduce the time required to design filament wound 

structures and can check whether the ply design is safe or not 

for the given input conditions. In the analysis, the final 

bursting occurs at the cylinder- end dome juntions in the 

pressure value 62.6 bar.  

The inter-laminar Stresses and Strains were predicted by 

using First Order Shear Deformation Theory (FOSDT), 

Third Order Shear Deformation Theory (TOSDT) and Finite 

Element Method (FEM). The transverse shear stresses and 

transverse shear strains may cause the de-lamination and 

failures at junctions or at pole openings. 

The TOSDT & FEA gives accurate results for the 

through-the-thickness stress response in regions of 

discontinuity such as cut-outs, holes, and boundaries. 

Moreover these theories do not require shear correction 

coefficients to rectify unrealistic variations of the shear 

strain/stress through the thickness.  

Because of the complexities, analytical solutions for the 

prediction of transverse/inter-laminar stresses exist for 

composite laminates with simple geometry, loading and 

boundary conditions. Therefore more emphasis has been 

placed on the use of numerical methods (FOSDST, TOSDST 

& FEA) when the composite laminate problem involves 

complicated geometry, loading and boundary conditions.  
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