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Abstract  Deformation behavior of thermal barrier coatings was studied by means of computer aided design. The 

mechanism of instabilities to occur in such coatings was studied based upon their representation in the form of a plate located 

on an elastic foundation. Stability loss manifests itself in the form of a double periodic system of intrusion and extrusion 

zones that is qualitatively consistent with the well-known experimental results. Typical features of the stability loss and its 

dependence on the properties of interfaced materials were investigated by simulating thermal loading of a copper specimen 

with a protective ceramic coating. The influence of the anisotropy of thermal-mechanical properties of the coating material on 

the character of the instability occurrence was estimated. 
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1. Introduction 

Relevance of the problem on research of thermal barrier 

coatings (TBC) [1-5] is related both to the intensive use of 

TBC for power engineering as well as to the permanent 

search for new materials whose use can raise equipment 

life-time at elevated operating temperatures. In doing so, 

TBC is an object that must protect the substrate from high 

temperature impact; if this takes place it possesses high 

adhesion, heat resistance, and ability to keep operating 

properties under multiple cyclic thermo-mechanical loads. 

Studies of TBC including simulation of their deformation 

behavior under the influence of operating loads are oriented 

towards identification the mechanisms and regularities of 

their fracture and improved design. 

The main problem under TBC operation is related to the 

difference in thermal characteristics, primarily the linear 

thermal expansion coefficient (LTEC) of brittle ceramic 

coating and ductile substrate. Under heating there happens 

deformation of the latter that is significantly higher in 

contrast with one of the coating that leads to the appearance 

of powerful stress concentrators at the interface whose 

relaxation occurs by cracking. In general, this problem can 

be diminished to a difference in the elastic moduli of two 

interfaced media. In doing so, the simulation of their 

deformation can be carried out for the case of a layered  
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composite that is well worked out in the framework of the 

elasticity theory [6]. 

The calculation of the stress distribution at the interface 

between two grains in elastically loaded crystal was carried 

out by Yu.V. Grinyaev [7]. It was shown that the distribution 

has a periodic oscillatory pattern with a maximum in the 

middle of the double joint and the gradual stress decay 

towards the edge of the grain. An important result 

concerning the periodic solutions for thermal loading of a 

thin film on a solid substrate is presented by G.P. 

Cherepanov [8]. It is noted that the distribution of stresses in 

such a system is a sine- and cosine-type function that 

depends on the film thickness. 

Development of these results to the case of 

two-dimensional distribution was considered in the study of 

O.I. Cherepanov where behavior of thin shells was simulated 

[9]. A regular two-dimensional strain distribution was 

observed there whose formation is related to the stability loss. 

Visual experimental confirmation of the "chessboard-like" 

distribution of stresses and strains during thermal cycling of 

the copper specimen with nanostructured thermal barrier 

coating is given by V.E. Panin [10]. It is a confirmation of 

the concept of similarity of mass transfer processes that 

develops in the objects of organic and inorganic nature that 

might have periodic (chessboard-like) distribution [11]. 

In this paper, the occurrence of instabilities with periodic 

character was obtained under calculation performed with the 

use of classical approaches of solid mechanics. The object 

under study was thermally loaded copper specimen with a 

ceramic coating. The parametrical calculations were carried 

out to estimate the influence of the properties of interfaced 



 International Journal of Composite Materials 2014, 4(5A): 16-26 17 

 

 

materials, including the anisotropy of the deformation and 

strength properties of the coating. 

The following stages of analysis were employed: i) the 

calculation of the temperature distribution in the coating and 

the substrate in transitional regime under the influence of 

thermal impact; ii) estimation of parameters of the 

stress-strain state of the coating under the influence of 

thermal loads; iii) simulation of the stability loss process at 

calculations for different geometrical and stiffness 

parameters of the coating and substrate; iv) evaluation of 

stresses in the coating after the stability loss. 

2. Description of Model’s Parameters 

In the plane formulation the computational area under 

analysis to include a substrate ABCF and thermal barrier 

coating CDEF (Figure 1), is subjected to intense heating 

(thermal impact) being applied to the surface ED. It is 

assumed that the thickness of the coating and the substrate 

AFE = BCD are much smaller of two other linear dimensions. 

Characteristics of aluminum oxide (Al2O3), and copper (Cu) 

were used for specifying the material of thermal barrier 

coating CDEF and one of the substrate ABCF, consequently.  

 

Figure 1.  Configuration of a computational area 

For alumina specific heat С = 1106 J/kggrad, density  = 

3970 kg/m3, the coefficients of thermal conductivity in the 

direction of the x and y axes made Кхх = Куу = 40 W/mgrad. 

As for copper, the specific heat C = 380 J/kggrad, density  

= 8900 kg/m3, the coefficients of thermal conductivity were 

Кхх = Куу = 385 W/mgrad. 

3. Solution of the Thermal Conductivity 
Problem 

To determine the temperature field by the finite elements 

method (FEM) [12-14] the non-stationary thermal 

conductivity problem for the ABCDEF area is solved. At the 

boundary of materials with different physical and 

mechanical properties (line FC) conditions of ideal thermal 

contact were applied: in particular equality of temperature 

and heat flows [12]. Symmetry conditions were put at the 

edges of AE and BD:  

0; 0;
AE BD

T T

x x

 
 

 
          (1) 

Formulation of these conditions reflects the fact that the 

boundaries imposed by AE and BD lines artificially limit the 

size of the region to be analyzed, as in a real situation 

interfaced area has exactly the same characteristics as the 

design.  

Dirichlet conditions are set at the AB and ED edges: 

0 *;
AB ED

T T T Т            (2) 

It is assumed that at the moment t = 0, the temperature in 

the entire ABCDEF region was constant and equal to the 

initial value: 

T(х, у) = T0.               (3) 

When solving the problem by FEM heat equation with the 

boundary conditions (1) and (2) are reduced to minimize the 

functional [13]: 
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(4) 

where  

S1 – surface area where the heat flow is given; 

S2 – surface area, where the convective heat exchange 

takes place; 

Kxx, Kyy – coefficients of thermal conductivity; 

Т – temperature; 

 = с, с –specific heat,  – density; 

V – volume of the specimen; 

q – heat flow; 

h – coefficient of heat transfer; 

TGRN – ambient temperature. 

The mesh of finite elements comprises 7200 elements and 

3721 node. When solving the problem of the temperature 

distribution in the computational area a system of linear 

algebraic equations (SLAE) corresponding to this mesh 

contains 3721 equations. Non-stationary heat conductivity 

problem is solved by an implicit scheme [12]. The 

temperature field and isolines in the computational area at 

the time t = 0.05 s are shown in Figure 2 The coating 

thickness was 500 µm, while the substrate one – 0.011 m. 

4. Calculation of Temperature, 
Deformations and Stresses in an 
Anisotropic Medium  

To calculate the stress-strain state in the computational 

area the finite element method is used. To do this, the 

potential energy of an elastic body is stored when it is 
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subjected to surface forces Px, Py, Pz in the presence of initial 

deformations 0 as the energy functional П, under condition 

of its minimum 

 
0,

П

U





 

where  U  – displacement vector, a system of linear 

algebraic equations is obtained  

    K U F , 

where [K] – the global stiffness matrix of the mechanical 

system, {F} – vector of loads.  

The global stiffness matrix of the finite element mesh is 

the sum of stiffness matrices of individual elements: 

 

and stiffness matrix for an individual element can be written 

as: 

( )
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Global force vector {F} is the vector sum of forces of 

individual elements {f(e)} 

 

and the vector of forces of one finite element in the presence 

of surface forces Рх, Ру, Рz and initial deformations can be 

written as follows:  
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The vector of initial (temperature) deformation in the case 

of plane stress in the local coordinate system X1, Y1, 

coinciding with the axes of orthotropy, is: 

 1
0

1

2
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where 1 , 2  – thermal expansion coefficients along the 

axes of orthotropy О1Х1, О1У1, Т – change of the 

temperature (heating, cooling) of a finite element. 

 

(а) 

 

(b) 

 

(c) 

Figure 2.  а) Surface illustrating temperature distribution, b) isolines of 

temperature at the time t = 0.05 s, c) temperature change in the center of the 

plate (curve О2О1) at the time t=0.05 s, coordinate yS is measured from point 

О2  to point О1 
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Figure 3.  The relative orientation of the global XOY and local X1ОY1 coordinate systems 

Thermal strain vector {0} in the global coordinate system OXY is associated with deformation vector 
1
0{ }  in the local 

coordinate system ОХ1У1 by relations [16]: 
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               (5) 

 
Equation (5) in a reduced form can be written as  
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. 

Matrix [T*] is called the transformation matrix for strains 

[15-17].  

Hooke's law for an anisotropic material can be written as: 

        0D     

Matrix of elastic characteristics [D] in the case where the 

local axis (orthotropy) ОX1Y1 coincides with the global axes 

OXY is equal to: 

 
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11 12

1 1 1
12 22

1
33

0

0

0 0

d d

D D d d

d

 
 

     
 
  

        (6) 

In formula (6) the values 
1 1 1 1
11 22 12 33, , ,d d d d

 
are 

respectively: 

1 1 11 2 1 2
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1 2 1 2 1 2

, , ,
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E E E
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
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1
33 .d G where Е1, Е2  – elastic moduli along axes Х1 , Y1; 

1, 2  – Poisson's ratios; G – shear modulus. 

Matrix of elastic characteristics [D] in the case when the 

local axes (orthotropy) OH1Y1 do not coincide with the 

global axes OXY, and is equal to [17]: 

   
1

1 *D T D T

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where [D1] – matrix of elastic properties in the local ОХ1Y1 

axes, [T] – the strains transformation matrix [17]:  

 
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One should noticed that [T*]-1=[T]T, i.e. inverse matrix of 

strain transformation is the transposed matrix of strains 

transformation [17]. In view of the foregoing observations of 

the matrix of elastic characteristics can be represented as 

follows: 

     1 .
T
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Consequently, the matrix of elastic properties of the 

anisotropic body will be completely filled and can be written 

as: 
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In the [D] matrix its elements are equal to: 
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(а)                                                      (b) 

 

(c) 

Figure 4.  а) Surface showing distribution of stresses σ11 in nonuniformly heated solid, b) isolines of stresses σ11 at t = 0.05 s, c) stress changing σ11 in the 

center of the plate (line О2О1) at t = 0.05 s, yS coordinate is measured from point О2 to point O1 
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In the case of plane stress state of anisotropic medium the 

integral associated with thermal expansion (initial 

deformation), belongs to the force vector and is equal to [13]: 
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Where bi = y(i)-y(k), сi = x(k)-x(j). Coefficients bj, cj, bk, ck 

in (9) are obtained by cyclic substitution. 

Figure 4 a, b shows the surface of stresses 11 and stress 

isolines corresponding to the temperature given in Figure 2. 

Figure 4, c also demonstrates a curve of stress changing 11 

along the line O2O1. The boundary conditions for solving the 

problem of the stress-strain state were specified. 

Displacement along the y axis on the AB line is equal to 0; 

displacement along the x-axis at the point O1 is equal to 0. 

    

5. Stability of a Thermal Barrier 
Coating 

Aluminum oxide layer on the copper substrate is modeled 

as a plate on an elastic Winkler basis [15]. Stability equation 

of anisotropic plate onto elastic basis has the form [15, 16, 

20]: 

4 4 4

11 16 12 664 3 2 2
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In equation (10) D11, D22, D12, D66, D16, D26, are, 

respectively, 

3 3 32
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where h - thickness of the plate. The coefficients а11, а22, …, 

а26  are included in the physical relations for the anisotropic 

plate to coupling stress and strain as follows [20] 
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For an orthotropic material the coefficients а11, …, а66 in 

the case when the axis of material orthotropy X1, Y1 coincides 

with the global axes X, Y, are equal to 
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where Е1, Е2 – elastic moduli along х1 and у1 axes, 1,2 – 

Poisson's ratios, G – shear modulus. 

For the case when orthotropy axes Х1, Y1 of a material 

constitute angle  with the global axes X, Y, the coefficients 

а11,…,а66 in (11) are converted analogously to coefficients 

d11,…,d33 in formula (7). 

Strain components x,y,xy  are related to the bending in 

the center of the surface w by the following relations: 

2 2 2

2 2
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  
     
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  (12) 

Appearing in (12) the value z is the distance from the 

center of the plate surface to the current point. 

 

Figure 5.  Material orthotropy axis Х1, Y1 are rotated relative to the global 

axes X, Y at the angle  

The homogeneous equation (10) can be solved together 

with the homogeneous boundary conditions. If edges of the 

plate are tightly clamped, the boundary conditions are: 

0, 0; 0, , 0; 0
w w

x w x a w
x x

 
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 
 (13) 
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Equations of stability (10) together with boundary 
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conditions (13, 14) are a system of homogeneous differential 

equations in partial derivatives with homogeneous boundary 

conditions. The nontrivial condition for solution of the 

system of homogeneous equations determines the critical 

load of the plate on an elastic basis under compressive 

thermal stresses x, y. 

Finding the critical load for a plate lying onto elastic 

foundation is a matter of finding the proper number of 

eigenvalues of a differential equation in partial derivatives. 

In this paper, this problem was solved by the finite difference 

method (FDM). By replacing differential operators by their 

finite difference analogues in all nodes of a finite difference 

mesh in equation (10), one can obtain a homogeneous system 

of linear algebraic equations (SLAE), where the number of 

equations is less than the number of unknown parameters [15, 

17]. Substituting in the boundary conditions (13, 14) 

differential operators of finite differencing, we obtain SLAE 

which is added to the existing one. In the end, after sampling 

stability equations and boundary conditions a homogeneous 

linear algebraic equation in which the number of equations is 

equal to the number of unknowns can be obtained. For the 

existence of a nontrivial solution of this system, it is 

necessary to have its determinant being equal to zero. 

In order to calculate the determinant of SLAE the Gauss 

method was used [18]. It should be noted that in order to 

calculate the value of the determinant in the process of Gauss 

it is enough to execute the direct route, while the reverse one 

is not necessary. Matrix elements on the main diagonal after 

the direct calculation have been multiplied, to obtain the 

value of the system determinant corresponding to specific 

values of compressive stresses. 

Stress value at which the determinant becomes equal zero, 

was taken as a critical one. In practice, the value of the 

determinant is not calculated but its sign for different values 

of stresses x, y. Stress interval where the determinant 

changes the sign, determines the critical load with any 

reasonable degree of accuracy. Thereafter, the eigenvector of 

the system of algebraic equations is found. It was believed 

that one component (with number n) of the eigenvector is 

constant (e.g., 1), the other ones of the eigenvector are 

obtained by solving the system of (n-1) equations. Thus, an 

eigenvector of the SLAE was determined (stability loss form) 

with the accuracy up to a constant factor. 

6. Examples of Calculation of 
Orthotropic Plate Stability onto 
Elastic Basis  

For the calculation of finite-difference mesh containing 

3600 cells and 3721 nodes were used. At the same time the 

stresses х and у found for nodes of the finite element mesh 

can be used. It should be noticed that discretization of the 

stability equations of an anisotropic plate (10) by finite 

difference method results in a system of algebraic equations 

with a nonsymmetric matrix. When using the finite element 

method the matrix of the system of algebraic equations is 

always symmetric. Method of solution for systems of linear 

algebraic equations with nonsymmetric matrix is presented 

in [21]. 

Critical loads and stability loss forms of the plate (coating) 

under compression in two x and y directions are shown in 

figure 6. It was assumed that in the sub-critical state х and 

у stresses are equal to each other. Algorithm for finding the 

critical stresses varies only slightly, if the ratio of the stresses 

will be arbitrary.   

When solving the stability problem with boundary 

conditions of both types the hinged support and rigid one 

have been defined. The modulus of subgrade reaction of the 

elastic foundation is equal to zero for the cases considered in 

Figure 6. The difference between the critical stresses 

obtained numerically in this paper, and the analytic ones 

makes 5%. Analytical solution for finding the critical 

stresses for an orthotropic plate with hinged support on the 

edges is given in [19, 20]. 

 

 

(а) 

 

 

(b) 

Figure 6.  Critical stresses and stability loss of orthotropic plate with 

rigidly clamped edges: (a) and hinged support edges; (b) the ratio 

h/a=h/b=1/100 

Critical loads and stability loss forms of orthotropic plate 

on an elastic foundation are shown in Figure 7. Hinged 

support or rigid clamping on all edges was used as boundary 

conditions. The ratio of the plate thickness to the length of 

the side along the x or y axis are equal to 
1

200

h h

a b
  . 

The elastic moduli Е1 = 380 GPa, Е2 = 190 GPa, G =80 GPa, 

Poisson's ratios 1 = 0.30, 2 = 0.15. Coefficient of subgrade 
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k = 1 × 1010 N/м3, coefficients of linear thermal expansion 1 

= 6 × 10-6 K-1, 2 = 9 × 10-6 K-1. 

 

 

(а) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 7.  Critical stresses and stability loss of orthotropic plate on an 

elastic foundation. a, d – hinged support, b, c – rigid clamping of the edges 

It is clear that the thermal impact causes stability loss of 

thermal barrier coating. Stability loss form looks like a 

chessboard, and along the axis of orthotropy with a high 

modulus of elasticity three half-waves were observed, while 

along the axis with a smaller module five half-waves can be 

placed. When rotating the axes of orthotropy by 90 the 

pattern of wave generation rotates accordingly under 

conditions of stability loss. 

 

 

 

 

 

 

 

 

 

Figure 8.  Critical stress and stability loss forms of an orthotropic plate 

onto elastic foundation with rigid clamping edges. Orthotropy axis Х1О1Y1 

are rotated relative to the global axes ОХY by the angle α 
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Figure 8 shows the critical stresses and stability loss when 

the orthotropy О1X1Y1 axes are rotated relative to the global 

OXY axes by 45, coefficient of subgrade reaction k = 1 × 

1010 N/m3. There is anisotropy; the matrix of elastic 

properties [D] is full. It is seen from Figure 8 that the pattern 

of wave generation is symmetrical regarding the orthotropy 

axes Х1О1Y1.  

When rotating the orthotropy axes by 90 the pattern of 

wave generation is rotated by 90, as well. If the ratio of plate 

thickness to the length of its side is equal to h/a = 0.01, then 

along the monoaxially orthotropy number of half-waves is 

equal to unit. Along the other axis the number of half-waves 

is equal to 3 If the ratio of plate thickness to the length of the 

side is equal to h/a = 1/200 then along one orthotropy axis 

the number of half-waves is 4, while along the other one – 3. 

7. Stress - Strain State of an Anisotropic 
Plate after Stability Loss due to 
Thermal Impact 

As the result of heating the size of orthotropic plate 

increases along the x and y axes by L1 и L2, and L1 = 

1ТL10, L1 = 2ТL20. Bending of the plate (y = 0.015 m) 

is shown in Figure 9. 

 

Figure 9.  Normal bending (deflection) W of the plate after stability loss 

due to a temperature effect. Boundary conditions – rigid clamping on all 

edges. The ratio h/a = h/b = 1/100 

Normal bending of the plate W is calculated from the 

condition that the length of the curve ABC is L10+1ТL10. 

Length of the curve ABC was calculated using the formula: 

60
2 2

10 1 10 1 1

1

( ) ( ) .
i

i i i i

i

L TL x x w w


 



      (15) 

Parameters of the SSS of the orthotropic plate under 

bending W calculated on the basis of equation (12) are shown 

in Figure 10. 

Figure 11 shows the bending of a single cell of a 

"chessboard" to occur under stability loss of a plate. It is 

easily seen that the elastic foundation reduces the plate 

bending approximately by 2 times. 

 

 

 

 

Figure 10.  Bending W of the orthotropic plate during heating and stability 

loss. Edges of a plate are clamped rigidly. The ratio h/a=h/b=1/100.  

Stresses along the x axis (11), stresses along the axis y (22), shear stresses 

12. Elastic base is absent 

The parameters of the stress-strain state of the plate on an 

elastic foundation after stability loss are presented in Figure 

12.  

It may be noticed that the decrease in a film thickness 

(plate) and increase in rigidity (elastic modulus) of the 

substrate leads to growth in the number of half-waves at a 

fixed size of calculated area, and reduction of their 

amplitudes (Figure 12). Values of the stresses that arise due 

to the stability loss depend not only on the absolute value of 

the bending as the curvature of coating surface that occurs 

after stability loss, i.e. from the second derivatives of 
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0,00000
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bending along the axes being parallel to the surface. In 

addition, stresses depend on the thickness of a plate. In this 

sense, the thickness affects the maximum stress values in two 

ways: on the one hand, under decrease in the thickness of the 

coating the enlargement in the number of waves under the 

stability loss leads to growth in curvatures, on the other hand 

– the couple stresses are reduced by reduction in the 

so-called cylindrical rigidity of the plate. 

 

(а) 

 

(b) 

Figure 11.  Bending of the plates: without elastic foundation (a), 

coefficient of subgrade reaction K = 0; with elastic foundation (b), 

coefficient of subgrade reaction K = 11010 n/m3 

 

 

 

 

Figure 12.  Stresses along the x and y axes, the shear stresses in the plate on 

an elastic foundation under stability loss when heated. The bending of the 

plate after stability loss. The ratio h/a = h/b = 1/200. Coefficient of subgrade 

К = 11010 N/m3 

This fact can be used for parametric studies and the 

determination of rational values of a coating thickness 

depending on the deformation, strength, and thermal 

characteristics of the coating and substrate materials. 

8. Conclusions 

Under the effect of thermal impact at the beginning when 

the substrate is still in its initial state (cold), there are 

significant compressive stresses in the coating, which may 

cause the stability loss as a thin-walled plate simulating the 

coating located on an elastic foundation (substrate). 

Extreme stress values are arranged in chessboard-like 

order at stability loss of the coating. If the physical and 

mechanical characteristics of the coating are anisotropic, 

changing the general pattern of the stability loss is changed 

compared to the isotropic coating. "Cells" of the chessboard 

are stretched along the axis which corresponds to a greater 

modulus. 

At the stability loss of the plate onto elastic foundation the 

number of waves on the coating surface increases with the 

stiffness of the elastic foundation and the reduction in the 

ratio of the plate thickness to its width and length. 

Calculations for a particular orthotropic coating had shown 

that for a square plate along the axis with a larger modulus of 

elasticity is a smaller number of half-waves rather than along 

the orthotropy axis with a lower modulus of elasticity.  

The stability loss of an anisotropic plate, whose axis is 

rotated relative to the global axes, intrusions and extrusions 

are arranged symmetrically with respect to the axes of 

orthotropy. 
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