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Abstract  Mass transfer rates across catalytic membrane interfaces accompanied by first-order, irreversible reactions 
have been investigated. The catalyst particles impregnated in the membrane matrix are assumed to be very fine, 
nanometer-sized particles which are uniformly distributed in the structure of the membrane layer. Pseudo-homogeneous 
models have been developed to describe mass transport through this catalytic membrane layer. The models developed 
include the mass transport into and inside the catalytic part icles as well as through the membrane layer taking into account 
convective and diffusive flows, so it is also valid in the limiting cases namely without convective flow (Pe=0), or with very 
large convective flow (Pe >> 1). The models describe two operating modes (with and without sweep phase on the permeate 
side of the catalytic membrane layer) and apply two different boundary conditions for the feed boundary layer. One of the 
boundary conditions approaches the diffusive flow by the Fickian one assuming linear concentration distribution while the 
other one solves exactly the mass transport in the feed boundary layer. The different model results obtained are compared to 
each other proving the importance of the carefully decision of the operating modes and boundary conditions. The 
mathematical model has been verified by means of experimental data taken from the literature. 
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1. Introduction 
The catalytic membrane reactor as a promising novel 

techno logy  is  widely  recommended  fo r carry ing  out 
heterogeneous reactions. A number of reactions have been 
inves t igated  by  means  o f th is  p roces s , s uch  as 
dehydrogenation of alkanes to alkenes, partial oxidation 
reactions using inorganic or organic peroxides, as well as 
part ial hydrogenat ions , hydrat ion , etc. As  catalyt ic 
membrane reactors for these reactions, intrinsically catalyt ic 
membranes can be used (e.g. zeolite or metallic  membranes) 
or membranes that have been made catalytic by dispersion 
or impregnation of catalytically  act ive part icles such as  
metallic complexes, metallic clusters or activated carbon, 
zeo lite part icles, etc. throughout dense po lymeric- or 
inorganic membrane layers[1]. In the majority of the above 
experiments, the reactants are separated from each other by 
the catalytic membrane layer. In this case the reactants are 
absorbed into the catalyt ic membrane matrix and then 
t rans ported  by  d iffus ion  (and  convect ion) from the  
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membrane interface into catalyst particles where they react. 
Mass transport limitation can be experienced with this 
method, which can  also reduce selectivity. The application 
of a sweep gas on the permeate side dilutes the permeating 
component, thus increasing the chemical reaction gradient 
and the driving force for permeation (e.g. see Westermann 
and Melin[2]). At the present time, the use of a 
flow-through catalytic membrane layer is recommended 
more frequently for catalytic reactions[2]. If the reactant 
mixtu re is forced to flow through the pores of a membrane 
which has been impregnated with catalyst, the intensive 
contact allows fo r h igh catalytic activity  with negligib le 
diffusive mass transport resistance. By  means of convective 
flow the desired concentration level of reactants can be 
maintained and side reactions can often be avoided (see 
review by Julbe et al.[3]). When describing catalytic 
processes in a membrane reactor, therefore, the effect of 
convective flow should also be taken into account. Yamada 
et al.[4] reported isomerizat ion of 1-butene as the first 
application of a catalytic membrane as a flow-through 
reactor. Th is method has been used for a number of 
gas-phase and liquid-phase catalytic reactions such as VOC 
decomposition[5], photocatalytic oxidation[6], part ial 
oxidation[7], part ial hydrogenation[8-10] and 
hydrogenation of nitrate in water[11]. 
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From a chemical engineering point of view, it is 
important to predict the mass transfer rate of the reactant 
entering the membrane layer from the upstream phase, and 
also to predict the downstream mass transfer rate on the 
permeate side of the catalytic membrane as a function of the 
physico-chemical parameters. If this transfer (permeat ion) 
rate is known as a function of the reaction rate constant, it 
can be substituted into the boundary conditions of the 
differential mass balance equations for the upstream and/or 
the downstream phases. Basically, in order to describe the 
mass transfer rate, a heterogeneous model can be used for 
larger particles and/or a pseudo-homogeneous one for very 
fine catalyst particles[12]. Both approaches, namely the 
heterogeneous model fo r larger catalyst particles and the 
homogeneous one for submicron part icles, have been 
applied for mass transfer through a catalytic membrane 
layer. Nagy[12] has analysed diffusive mass transport 
through a membrane layer with dispersed catalyst particles. 
It was shown that both the heterogeneous and the 
pseudo-homogeneous models give practically the same 
results in the very fine, sub-micrometer particle size range. 
The convective velocity was not taken into account in 
Nagy’s model[12] cited. Recently  Nagy analysis the effect 
of the convective velocity on the enzyme catalysed 
reaction[13] as well as summarizes the most important mass 
transport equations of a membrane layer taking also into 
account the simultaneous effect of the convective and 
diffusive flows[14,15]. These papers extend previous 
investigations by including the effect of convective flow, 
applying two different operating modes, namely with and 
without sweep phase on the permeate side as well as two 
different models, namely an approaching and the exact 
models. Mathematical equations have been developed to 
describe the simultaneous effect of diffusive flow and 
convective flow and this paper analyses mass transport and 
concentration distribution by applying the model developed. 
The pseudo-homogeneous model will be presented in detail, 
assuming that the catalyst particles are in the 
nanometer-sized range, as this is the case in most catalytic 
membrane reactors. 

The main  purpose of this paper is to present the various 
steps of the mathemat ical solutions, as well as to study the 
effect of mass transport parameters of the catalyt ic 
membrane layer on the mass transfer rates. At the end of 
this paper, the predicted data are compared  with measured 
ones taken from the literature. The method presented in this 
paper can also be applied to higher order chemical 
reactions. 

2. Theory 
In this section different mathemat ical models will be 

shown and solved in order to describe the mass transport 
through catalytic membrane layer with forced flow through 
it. It is assumed that the catalyst particles are very fine 
particles with size less than 1 μm. Thus, the so called 

pseudo-homogeneous model[12,14,15] was applied for 
description of the mass transport through the catalytic 
membrane layer. The catalyst particle can be porous one 
(e.g. zeo lite part icles), or dense one without diffusivity 
inside it (e.g. metal clusters). Accordingly, d ifferent mass 
transfer rate equations can be defined between the 
membrane and particles as will be shown in this section.  

In order to increase the efficiency of the catalytic 
membrane, the size of particles chosen should be as low as 
possible[12]. The use of nanometer-sized catalyst particles is 
thus recommended. The differential mass balance equation 
for diffusive and convective flows in the catalytic membrane 
layer, for unsteady-state, can be as: 
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with init ial and boundary conditions as: 
if  t = 0, y > 0  then C=Co 

if  t > 0, y = 0  then C=C* 
if  t > 0, y = δ  then C=Co 

The functions Q provides the specific source term induced 
by the mass transport into the catalytic nanoparticles 
distributed uniformly  in the catalytic membrane layer. The 
mass transfer rate into the catalytic particle can depend on 
the external mass transfer resistance around the particles as 
well as on the internal transport accompanied by chemical 
reaction. Note that in the case of nanometer-sized part icles 
the diffusion time, tD, (tD=R2/Dp) can be very small, thus, it 
can easily be much shorter than the reaction t ime, tr  (tr=1/k1 
for first-order reaction). Th is fact should be taken into 
account to define the Q value. E.g. for dp=100 nm and Dp=1 
x10-12 m2/s, the diffusion time is equal to 0.01 s. In the slow 
reaction rate regime, if 3.0D/Rkt/t p

2
1rD <≡=λ , the 

saturated concentration, C*, can exist throughout the particle, 
i.e. if tr < 9 s according to the above example. In this case the 
so called effect iveness factor is considered to be unit and 
accordingly the internal mass transport can be regarded to be 
instantaneous. 

2.1. Mass Trans port into the Dis persed Nanometer-Sized 
Catalyst Particles  

Two important cases will be discussed, namely  
instantaneous and finite internal mass transport rates. Both 
cases can be important when chemical react ion takes place 
inside of the particles or on the particle surface. As chemical 
reaction, the first-order one will be discussed. Several 
non-linear reactions can be approached by first-order one 
dividing the membrane layer into thin sub-layers as will be 
shown in the Appendix. Accordingly these reactions can be 
handled as first-order ones. 

2.1.1. Mass Transport Rates with Instantaneous Internal 
Mass Transport 

The chemical reaction takes place on the internal interface 
of the catalyst particles with the reaction rate: 

*
1

*
1 CkC~k~Q ≡ω= where 

1k~  is the react ion rate constant 
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related to the catalyst interface, m3/(m2s), ω~  is the availab le 
catalytic surface area per unit volume of catalyst, m2/m3, and 
k1 also rate constant, 1/s ( ω= 11 k~k ). Thus, one can obtain 
applying the known Henry equation for the catalyst interface, 
namely HC= *

pC  as: 

HCkCkQ 1
*
p1 ==               (2) 

In Eq. (2) the external mass transfer resistance is neglected, 
thus the interface concentration of the catalytic particles is 
equal to the “bulk” one in the membrane matrix.  

In the case of inorganic catalyst particles, as zeo lite, the 
Langmuir-Hinshelwood kinetics the most commonly used 
kinetic expression to explain the heterogeneous catalytic 
process[16]. Assuming that the react ion of a component 
occurs in a simple unimolecular elementary reaction step and 
that the kinetics are first order with respect to the surface 
concentration of the adsorbed reactant, the reaction rate can 
be expressed as[16]:  

KC1
kKCQ
+

=                    (3a) 

This reaction is often approximated to first-order kinetics 
for condition KC << 1 or to zero-order kinetics for condition 
KC >> 1. Similar kinetic expression can be applied for 
biochemical reactions according to the Michaelis-Menten or 
Monod kinetics: 

CK
CvQ

m

max

+
=                  (3b) 

Replacing Eqs. (3) into Eq. (1), the d ifferential equation 
obtained for steady-state case can only be solved by 
analytical approach (this will be shown in Appendix) or 
numerically. How the Eqs. (3) can be linearized is given by 
Eq. (A1) in the APPENDIX. 

2.1.2. Mass Transport with Finite Internal Mass Transport 

It the reaction rate is fast then there can be strong 
concentration gradient inside of the particle, thus the internal 
transport should also be taken into account. The internal 
specific mass transfer rate in spherical particles, Jp, for 
steady-state conditions and when mass transport is 
accompanied by a first-order chemical reaction, can be given 
according to Bird et al.[17] as follows: 
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The external mass transfer resistance through the catalyst 

particle depends on the thickness of the diffusion boundary 
layer, δp. The value of δp can be estimated from the distance 
between particles[12]. As this value is limited by 

neighboring particles, the value o f βp will be somewhat 
higher than that calculated from the well known equation, 
namely 2 = βpdp / Dp, where the value of δp is assumed to be 
infinite. Th is results in: 
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From Eqs. (5) and (6), for the mass transfer rate with 

overall mass transfer resistance with Hp = Cp/C: 
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H
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        (7) 

Thus, the value of Q will be as: 
CJQ sump ωβ≡ω=              (8) 

where ω is the catalyst surface per membrane volume, m2/m3 

2.1.3. Reaction Occurs on the Outer Interface of the Catalyt ic 
Particles 

It often might occur that the chemical react ion takes place 
on the interface of the particles, e.g. in cases of metallic 
clusters, the diffusion inside the dense particles are 
negligibly. Assuming the Henry’s sorption isotherm of the 
reacting component onto the spherical catalytic surface (CHf 
= qf), applying DdC/dr = kfHfC boundary condition at the 
catalyst’s interface, at r = R, the Φ  reaction modulus can be 
given for first-order reaction, as follows[see Eq. (11) for Φ]: 
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where kf is the interface reaction rate constant. The above 
model is obviously a simplified one. 

2.2. Mass Trans port in the Catalytic Membrane Layer 

Taking into account Eqs. (2) or (8) as source term, one can 
get simple first-order kinetics. The differential mass balance 
equation for the polymeric or macroporous ceramic catalyt ic 
membrane layer, fo r steady-state, taking both diffusive and 
convective flow into account, can be given, according to Eq. 
(1), as: 

0C
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( ) 1

2

k
1D ε−
ωδ
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where υ denotes the convective velocity, D is the diffusion 
coefficient of the membrane, and δ is the membrane 
thickness. The membrane concentration, C is given here in a 
unit of measure of gmol/m3. This can be easily obtained by 
means of the usually applied in the e.g. g/g unit of measure 
with the equation of C = wρ/M, where w concentration in 
kg/kg, ρ – membrane density, kg/m3, M-molar weight, 
kg/mol. 

2/PeYCeC~ −=              (12) 
Introducing a new variable, C~ [see Eq. (12)] the 

following differential equation is obtained from Eq. (11): 

0C~
dY

C~d 2
2

2

=Θ−             (13) 

where 

2
2
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The general solution of Eq. (13) is well known[14], so the 
concentration distribution in the catalytic membrane layer 
can be given as follows: 

YY~
SeTeC λλ +=               (14) 

with  

Θ−=λ
2

Pe
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2
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The inlet and the outlet mass transfer rate can easily be 
expressed by means of Eq. (14). The overall in let mass 
transfer rate, namely the sum of the diffusive and convective 
mass transfer rates, is given by: 

( )S~T
dX
dCDCJ o

0Y
0Y

λ+λβ=−υ=
=

=    (15) 

The outlet mass transfer rate is obtained in a similar way  to 
Eq. (15) fo r Y=1: 

( )λλ λ+λβ= Se~TeJ
~o

out         (16) 

The value of parameters T and S can be determined from 
the boundary conditions which can vary  according to the 
operating conditions used. Assuming that the external mass 
transfer resistance on the feed side, namely the diffusive 
resistance, is not negligible, the simultaneous effect of the 
flu id boundary layer should also be taken into account. 
Basically, the effect of the external, diffusive mass transfer 
resistance, in presence of convective flow can be described 
by two models: (i) the diffusive mass flow is regarded to be 
constant through the boundary layer (this diffusive flow is 
called as Fickian one in this paper), accordingly the sum of 
the diffusive and convective flows varies in the boundary 
layer (Model A) or (ii) that it varies in the boundary layer, 
according to the change of the convective mass flow due to 
the curvature of the concentration in the boundary layer 
(Model B). This latter one should be regarded as exact 
solution, namely the sum of the d iffusive and convective 
flows is constant throughout the boundary layer. According 

to the mass transfer conditions of the permeate phase, 
namely there is a sweep phase or there is not sweep phase, 
two operating modes will be distinguished according to Figs. 
1a and 1b.  

 
Figure 1.  Concentration distribution in the membrane reactor with 
convective flow applying a sweep phase on the permeation side (Fig. 1a) 
and without sweep phase (Fig. 1b) 

The essential d ifference between the models is that there is 
a sweep phase that can remove the transported component 
from the downstream side providing the low concentration of 
the reacted component and its high d iffusive mass transfer 
rate (dC/dY > 0; Models A1 and B1). There is no sweep phase, 
thus the outlet phase is moving by convective flow from the 
membrane due to the lower pressure on the permeate side 
and there is no diffusive flow, on the outlet membrane 
interface (dC/dY = 0; Models A2 and B2). 

2.2.1. Mass Transport Models with Fickian Diffusive Flow 
in the Boundary Layer (Approaching Solution, Models 
A) 

The simultaneous effect of the membrane and the 
boundary layers, on the mass transport, is taken into account. 
In presence of the convective flow, the overall mass transfer 
rate will be the sum of the d iffusive and convective flows. 
Regarding the effect of the boundary layers on both sides of 
the membrane, the boundary conditions can be different on 
the feed side and permeate side, depending on the operating 
mode. Note that the Fickian  diffusive flow along the 
diffusion path[as it is given in Eqs. (17) and (18)] assumed 
that the concentration distribution is linear, the concentration 
gradient is constant, in the boundary layer, independently of 
the presence of convective flow. Accordingly, the sum of the 
diffusive and the convective flow will change throughout the 
boundary layer due to the concentration change. In the reality, 
the concentration curve will be concave one due to the 
convective velocity thus, the sum of the diffusive and the 
convective flow remains constant as a function of the local 
coordinate in the boundary layer.  

Model A1 (dC/dY>0 at Y=1). In this case, due to the effect 
of the sweeping phase, the external mass transfer resistance 
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on both sides of the membrane should be taken into account 
in the boundary conditions, though the role of o

2β  is 
gradually dimin ished as the catalytic reaction rate increases. 
The concentration distribution in the catalytic membrane, 
when applying a sweep phase on the two sides of the 
membrane, is illustrated in Figure 1a. On  the upper part of 
the catalytic membrane layer, in  Fig. 1a, the fine catalyst 
particles are illustrated with black dots. It is assumed that 
these particles are homogeneously distributed in the 
membrane matrix. Due to sweeping phase, the concentration 
of the bulk phase on the permeate side may  be lower than that 
on the membrane interface. The value o f o

LC here denotes 
the liquid or gas phase concentration on the bulk phases (see 
Fig. A1), on both sides of the catalytic membrane layer. The 
boundary conditions can be given for that case as: 

( ) JCCC 2L
o

1L
o
12L =−β+υ ∗∗  at Y=0     (17) 

( ) out
o

2L2L
o
22L JCCC =−β+υ ∗∗  at Y=1     (18) 

Boundary conditions given by Eqs. (17) and (18) are only  
valid in  two phase flows. Where ∗

1LC  and ∗
2LC  denotes the 

interface concentration on the both sides of membrane layer, 
o
1β  and o

2β  are mass transfer coefficients in the continuous 

phase, βo the membrane mass transfer coefficient (βo = D/δ), 
H denotes the distribution coefficient between the 
continuous phase and the membrane phase. The solution of 
the algebraic equations obtained, applying Eqs. (14) to (18) 
can be received by means of known mathematical 
manipulations. Thus, the values of T and S obtained are as 
follows: 
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An important limiting case should also be mentioned, 
namely the case when the external d iffusive mass transfer 
resistances on both sides of membrane can be neglected, i.e. 
when ∞→βo

1 and ∞→βo
2 . For that case the 

concentration distribution and the inlet mass transfer rate can 
be expressed by Eqs. (21) and (22), respectively[14]. 
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Model A2 (dC/dY=0 at Y=1). For the convective flow 
catalytic membrane reactor operating in another mode, for 
instance in dead-end mode as in  Figure 1b, the boundary 
condition on the permeate side of the membrane should be 
changed. In this case the concentration of the permeate phase 
does not change during its transport from the outer 
membrane interface, and consequently dC/dY = 0. If there is 
no sweeping phase on the downstream side then the correct 
boundary conditions will be as[the value of J is defined by 
Eq. (15)]: 

( ) JCCC 1L
o

1L
o
11L =−β+υ ∗∗  at Y=0   (24) 

0eSe~T Y~
=λ+λ λλ  at Y=1      (25) 

After solution one can get as: 
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The values of φ3 and φ4 are the same as they are g iven after 
Eq. (20). Knowing the values of T and S parameters, the in let 
or the outlet mass transfer rates can be calculated by means 
of Eqs. (15) and (16), respectively.  

2.2.2. Models with constant diffusive plus convective flows 
in the boundary layer (exact solution, Models B) 

This, so called exact, model takes into account that the 
concentration change is not linear due to the presence of the 
convective flow but the sum of the convective and the 
diffusive flows will be constant throughout the boundary 
layer. The d ifferential mass balance equation, given for the 
boundary layer, should be solved. That is, with constant 
transport parameters and in dimensionless space coordinate 
as (Y=y/δ1, δ1 is the thickness of the feed boundary layer, m): 

0
dY
dCPe

dY
Cd L

1L2
L

2

=−            (28) 

where (PeL1 denotes the Peclet number in the boundary 
layer) 
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The solution of differential equation, Eq. (28) is as 
follows[14]: 

STeC YPe
L

1L +=           (29) 

Values of T and S parameters can be determined, without 
external d iffusive mass transfer resistances, by the boundary 
conditions as: 

At   Y=0  o
1LL CC =           (30) 

At   Y=1  *
1LL CC =           (31) 

The concentration distribution, applying Eqs. (30) and (31) 
as boundary conditions, is as follows: 
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Thus, the physical mass transfer rate, through the 
boundary layer, can be obtained, by means of Eq. (33), 
taking into account both the diffusive and the convective 
flows[see Eq. (15)] as follows: 
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Note that the physical mass transfer coefficient in the case 
of the simultaneous effect of the diffusion and convection,  

o
◊β , ( o

◊β denotes the overall mass transfer coefficient in 
presence of convective plus diffusive flows) can be much 
higher than that of the diffusive mass transfer coefficient, 

11
o
1 /D δ=β . The o

◊β  value increases linearly if PeL1 > 
about 3. It is also to be noted that the driving  force depends 
on the Peclet number as it is given by Eq. (33). W ith the 
increase of the PeL1-number, the driving force also increases. 
In limiting case, namely if PeL1→∞, the value of 

0Ce 1L1LPe =∗− . Note that if the diffusive flow is equal to zero 
on the down stream side of the boundary layer then the mass 
transfer rate on the down stream side is as: J = υ o

2LC , thus 
this fact does not automatically mean that the outlet 
concentration gradient is equal to zero. 

Knowing the mass transfer rate into the boundary layer 
(Eq. 33) and the membrane layer[Eq. (22) for Model A1 and 
Eq. (39) for Model B1], applying the well-known 
resistance-in-series model, the overall mass transfer rate can 
be given for the above case, as well. 

Model B1 (dC/dY>0 at Y=1): The overall in let mass 
transfer rate, applying Eqs. (22) and (33) is, for first-order 
chemical reaction in the membrane layer, as follows: 

( )1
1 2

LPeo o
ovov L LJ C Ke Cβ −

◊ = −    (35) 

where 
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−
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The value of β is defined by Eq. (23). Note that the mass 
transfer resistance in the boundary layer of the permeate side 
is not involved in  Eq. (35). It  can be g iven, but that case is not 
discussed here because its complexity  and of its lesser 
importance due to the chemical reaction.  

Model B2 (dC/dY=0 at Y=1). Look at first the 
concentration distribution and the mass transfer rate in the 
membrane layer fo r that case, namely when dC/dY = 0 at 
Y=1. Assuming that there is no mass transfer resistance in 
the feed phase, thus, at Y=0 then o

1LHCCC ≡= ∗ , 
Applying to it Eq.  

(25) as boundary condition for the permeate side, and 
using Eq. (14), one can get as[13]: 

( )[ ] ( )[ ]
o

1LHC
coshsinh

2
Pe

Y1cosh
2

PeY1sinh

2
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



= (38) 

with Φ  and Θ defined after Eqs. (11) and (13). Note that Eq. 
(38) does not involve the external mass transfer resistances. 
The inlet mass transfer rate, namely the sum of the diffusive 
and the convective flows, can be given as: 

o
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The overall mass transfer rate, applying Eqs. (33) and (39),  
will be as: 

o
1ovov CJ β=◊              (40) 

with  

1

1

1
1 Lov

o

Pee
H

β

β β◊

−=
+           (41) 

where o
1◊β and β is defined by Eqs. (34) and (39). 

2.3. Intrinsically Catalytic Membrane Reactor 
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In this case, only the value of Ф differs from that of the 
catalytic membrane layer with dispersed catalyst particles. In 
the case of a first-order reaction, the value of Ф can be 
expressed for an intrinsic membrane layer with the following 
simple equation: 

D
k 2

1δ=Φ                 (42) 

The mass transfer rate o r the concentration profile  can  be 
estimated in a similar way to that for a membrane layer with 
dispersed catalyst particles. This case is not discussed in 
detail in this paper. The effect on the mass transfer rate and 
concentration distribution in the membrane reactor is 
basically the same as that obtained by the model developed 
for dispersed catalyst particles.  

3. Results and Discussion 
Two important transport models for convection flow 

catalytic membrane layer are presented in this paper. The 
difference between them is determined by the flow 
conditions on the permeate side, namely the permeated 
component is transported by a sweep phase from the 
membrane interface (dC/dY>0 at Y=1, Models A1 and B1) or 
there is no sweep phase (dC/dY=0 at Y=1, Models A2 and B2) 
on the permeate side. Obviously, these models can give 
essentially different in let mass transfer rate. On the other 
hand, two important cases are also discussed regarding the 
external mass transfer resistance, namely modeled it by the 
so called Fickian diffusion flow (Models A1 and A2) and by 
the so called exact model, where the diffusion flow 
permanently increases due to the decreasing convective flow 
(their sum should be constant throughout the boundary layer) 
on the diffusion path in the boundary layer (Models B1 and 
B2).  

3.1. Models for Membrane Reactor with S weep Phase on 
the Permeate Side (dC/dY>0 at Y=1) 

 
Figure 2.  Concentration distribution in the membrane layer at different 
values of the reaction modulus, Φ, applying the Fickian diffusion flow in the 

boundary layers (Model A1 dC/dY>0 at Y=1); ( 4oo
1 10x1 −=β=β  

m/s; ∞→βo
2 ; Pe=1;  PeL1=1;[ o

1
o

1L /PePe ββ= ]; H=1; 0Co
2L = ) 

Note that the application of the Fickian diffusion flow for 
the inlet and the outlet boundary layers[Eqs. (17) and (18)] is 
an approximation. The question is that its application can be 
acceptable and under what conditions. Typical concentration 
distribution curves of a catalyt ic membrane layer are shown 
for Model A1 (Fig. 2) and for Model B1 (Fig. 3). 

The concentration was predicted by Eqs. (19) and (20) as 
well as by Eq. (21).  

 
Figure 3.  Concentration distribution in the membrane layer at different 
values of the reaction modulus, Φ, applying the exact diffusion flow in the 
inlet boundary layers (Model B1 dC/dY>0 at Y=1); ( 4oo

1 10x1 −=β=β  

m/s; ∞→βo
2

; Pe=1; PeL1=1;[ o
1

o
1L /PePe ββ= ]; H=1; 0Co

2L = ) 

The value of *
1LC , (see Fig. A1) in Eq. (21), was predicted 

by means of Eq. (33) knowing the J value from Eq. (22). As 
you know there is a  sweep phase on the permeate site, 
consequently there is a diffusive flow, as well on the outlet 
membrane interface, in both cases. The transport parameters 
were chosen to be the same for both models ( 4oo

1 10x1 −=β=β
m/s; ∞→βo

2
; Pe=1; PeL1=1; o

1
o

1L /PePe ββ= , thus, the ν 
convective velocity was the same in the boundary and the 
membrane layers; H=1; 0Co

2L = ). 
The two models g ive significantly different concentration 

distribution. Accordingly the concentration gradient, and 
thus, the overall mass transfer rates will be d ifferent. The 
difference between Models A1 and B1 at e.g. Φ=0.01 is 
caused by the curvature of the of the concentration 
distribution in the boundary layer (not shown here) due to its 
convective velocity, namely PeL1=1 for Model B1. It is 
interesting to note that the inlet concentration increases with 
the increase of Φ value for the exact  solution, i.e. for Model 
B1. Let us look at the inlet mass transfer rates of the two 
models as a function of the reaction rates. Fig. 4 shows it 
when the Fickian  diffusion flow is applied  for the boundary 
layers (Model A1). Jo represents the physical mass transfer 
rate into the catalytic membrane, this being the sum of the 
diffusive and convective flows at Ф=0. As can be seen, the 
tendency of the curves is different in the reaction ranges Pe < 
1 and Pe > 1. In the first case, the value of J/Jo increases with 
increasing value of Ф. In  the range o f, Pe > 1, however, the 
mass transfer rate decreases as a function of Ф. Perfectly 
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other trend is shown by the exact model in presence of sweep 
phase on the permeate side (Model B1, Fig. 5). As it is 
expected, the mass transfer rate g radually increases with the 
increase of the reaction rate. On the other hand, the effect of 
the reaction rate decreases gradually with the increase of the 
Peclet number (note here also PeL1=Pe because oo

1 β=β ). 
Obviously, the two models gives the same mass transfer rate 
when there is no convective flow in the boundary layer (at 
Pe=0.01 it is practically  true), but the difference strongly 
increases with the increase of the Pe-number. 

 
Figure 4.  Enhancement as a function of the reaction modulus, Φ, for the 
case of Fickian diffusion flow in the boundary layer with sweep phase on the 
permeate side (Model A1; parameters as in Fig.2 excluding Pe) 

 
Figure 5.  Enhancement as a function of the reaction modulus, Φ, for the 
case of exact model with sweep phase on the permeate side (Model B1; 
parameters as in Fig.2 excluding Pe) 

The ratio of the mass transfer rates is plotted in Fig. 6, 
namely the approaching solution (Model A1) is related to the 
exact one, (Model B1, i.e. JModel B1/JModel A1 is plotted, noted 
by B1/A1 in the axis of ord inate) as a function of the 
membrane Peclet number, at different values of the in let o

1β
mass transfer coefficient. As can be seen there exists an 
essential difference between the two models. This difference 
can be very large with increasing value of the Peclet number 
(note here PeL1=Pe). The difference between the two models 
can only be neglected at low values of Pe-number. That 
means that the Model A1 can be applied in very  limited cases, 
only.  

 
Figure 6.  The relative values of mass transfer rates of different models as a 
function of the Peclet number (JModel B1/JModel A1) (parameters as in Fig 2 

excluding o
1β and consequently Pe1) 

3.2. Models for Membrane Reactor Without S weep 
Phase on the Permeate Side (dC/dY=0 at Y=1) 

Typical concentration distributions are shown in Figs. 7 
and 8, for Fickian diffusion rate in the boundary layer 
(Model A2) and for the exact solution (Model B2).  

 
Figure 7.  Concentration distribution in the membrane layer at different 
values of the reaction modulus, Φ, applying the Fickian diffusion flow in the 
boundary layers (model A2, dC/dY=0 at Y=1); parameters as in Fig. 2 

The concentration was predicted by Eqs. (26) and (27) for 
Model A and Eq. (38) for Model B. The *

1LC  value was 

calculated by Eq. (33) for Eq. (38) replacing o
1LC by it. Here 

the diffusive flow in the catalytic membrane layer is equal to 
zero, thus is can not have any influence on the concentration 
distribution in the catalytic membrane layer. Against that 
there is difference between the models. 

The Model B gives somewhat higher membrane 
concentration. With increasing value of the Φ reaction 
modulus, the concentration decreases, and due to it, the 
difference between the models also decreases. It can be 
stated the difference between the models is much less than 
that in the case when dC/dY>0 at Y=1. On the other hand, 
the average value of the membrane concentration can be 
higher here comparing that to the case of the models with 
dC/dY>0 at Y=1. Accordingly the reaction rate can also be 
higher in this case. This can  be important especially  when the 
reaction rate constant is low, e.g. in the cases of bioreactions. 
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The overall mass transfer rates can also differ from each 
other (not shown here).  

 
Figure 8.  Concentration distribution in the membrane layer at different 
values of the reaction modulus, Φ, applying the exact diffusion flow in the 
boundary layers (Model B2, dC/dY>0 at Y=1); parameters as in Fig. 2 

3.3. Comparison of Operating Modes by the Exact 
Model 

 
Figure 9.  The ratio of the mass transfer rates with different operation 
modes applying the exact solution (JModel B1/JModel B2) as a function of the 
reaction modulus at different values of Peclet number ( 4oo

1 10x1 −=β=β  

m/s; ∞→βo
2 ; Pe=1; PeL1=1; H=1; 0Co

2L = ) 

The presence of a sweep phase can strongly affect the 
outlet concentration and thus, the diffusive outlet flow on the 
permeate side of the catalytic membrane layer. Accordingly, 
the sum of the diffusive and the convective flows should 
depend on the operating conditions, namely there is a sweep 
phase (dC/dY>0 at Y=1) or there is not a sweep phase 
(dC/dY=0 at Y=1). Thus, it seems to be interesting to 
investigate how the ratio of the mass transfer rates can 
depend on the values of Φ and Pe (Fig. 9) applying the exact 
model, namely Model B. As can be seen the ratio of the mass 
transfer rates, namely JModel B1/JModel B2 can essentially differ 
from unity. Th is ratio gradually tends to unit with increasing 
reaction rate due to  the low concentration values of reactant 
in the membrane layer. Otherwise, it strongly depends on 
Peclet number at lower values of reaction modulus. This 
dependence is decreasing with increasing convective 

velocity. Accordingly, it can be predicted by the models 
presented which one is more advantageous to application for 
a given reaction system. 

3.4. Case Study 
The catalytic membrane reactor in  a flow-through mode 

also appears to be a promising process for industrial 
application[2]. A special case will be shown to demonstrate 
the role of the convective velocity in the membrane reactors. 
In this example, the membrane operates in dead-end mode 
and no separation procedure is performed. The task of the 
membrane is to provide for intensive contact between 
reactant and catalyst, combined with a short contact time and 
a narrow residence time distribution. Ilinitch et al.[11] have 
measured the reduction of aqueous nitrates using mono- and 
bimetallic pallad ium-copper catalysts impregnated in 
γ-Al2O3 support layers. The metal content was kept between 
1.7 and around 7 w% with a particle size below 3-5 nm. The 
membrane layer is p laced in a tank with stirring to  circulate 
all feed solution through this membrane. The concentration 
of the reactant passing the membrane can be much lower 
than that in the feed phase. This value depends on the 
convective stream and the chemical reaction rate. The 
authors measured the nitrate conversion in three different 
modes, i.e. without convective flow and for two  different 
values of convective flow with a surface velocity of 7 x 10-6 
and 16.5 x 10-6 m/s (see Figure 12 in Ilinitch et al.[11]). For 
evaluation of the experimental results, the model A has been 
used with  0o

2 =β . It is easy to see that the outlet 
concentration is equal to the “bulk” concentration behind the 
membrane layer, as illustrated in Fig. 1b. The concentration 
change in the circulated reaction solution can be given as 
follows[CL1 represents the bulk concentration denoted by 

o
1C  in Eqs. (19) to (20)]: 
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( ) ( )
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L
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dCV R J J
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



      (43) 

The value of CL1 denotes as the bulk concentration in the 
stirred tank. Its value changes as a function of time. The 
values of T and S parameters are given in Eqs. (19) and (20). 
Indicating the initial concentration of the reaction solution as 
CLo and solving Eq. (43), the following time function of 
concentration is obtained:  

t
LoL eCC θ−=               (44) 

with  

( ) ( )λλ −λ+−λ
πβ

=θ e1~Se1T
V

R~ ~o2

 
The data used for calculation are listed in Table 1.  
Taking the diffusion stream through the membrane into 

account, the value of Dt represents the residence time of the 
reaction solution as given by the following equation: 

DR
Vt 2D π
δ

=                  (45) 
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Performing the calculation using data from Table 1, the 
value of Dt  obtained was 400 min.  

Table 1.  Values of parameters used for calculation of the concentration 
change in the membrane layer[11,15] 

V= 85 x 10-6 m3 δ=4,6 x 10-3m 

D= 1 x 10-8 m2/s R~ =2.25 x 10-2 m 

s/m10x2 6o −=β  R2π oβ =3.2 x 10-9 m3/s 

υ1=7 x 10-6 m/s Pe1=3.5 

υ2=16.5 x 10-6 m/s Pe2=8.3 

 
Figure 10.  Performance of catalytic membrane reactor situated in a 
perfectly mixed tank at different values of membrane Peclet number (points 
are measured data[11], lines are the predicted one) 

The concentration of the reactant solution obtained was 
about 0.4 for the case of the diffusion driven mode (Pe=0) 
with Ф=1, whereas the value is around 0.08 for the case of 
the convective flow mode with Pe=10 at 3t/t D = . These 
data are in line with the measured values, as can be seen in 
Fig. 10. The points represent the measured data whilst the 
continuous lines indicate the calculated values. It should be 
noted that the overall first-order kinetics was assumed for the 
nitrate-ion in the calculat ion. The H2 concentration was kept 
constant during the reaction. The Ф values should be 
estimated for calcu lation of the conversion vs. time function. 
The value was obtained by fitting the measured conversion 
data from diffusion-driven flow (Pe=0). The continuous line 
for Pe=0 in Figure 10 was obtained using an estimated value 
of Ф=1.8. This value was then used for calculation of the 
curves for Pe=3.5 and 8. The continuous lines obtained by 
simulation are plotted together with the measured points. 
The calculated data for Pe=3.5 are slightly lower than the 
measured values, whereas the data obtained for Pe=8 are in 
surprisingly good agreement with the measured points. The 
good agreement between the measured and the calculated 
data proves that the model developed is suitable for 
estimating mass transport and conversion in the presence of 
both convective and diffusive flows.  

4. Conclusions 

A mathematical model has been developed in order to 
predict mass transport through a catalytic membrane reactor 
containing dispersed nanometer-sized catalyst particles 
using forced convective flow through the membrane layer, as 
well as for the case where the nanometer-sized catalyt ic 
particles are regularly dispersed in  the membrane layer or the 
membrane intrinsically catalytic. Transport models 
developed include the mass transport into and inside the 
catalytic particles as well as through the catalytic membrane 
layer, taking into account both convective and diffusive 
flows. It has been shown that the two operating modes, 
namely with or without sweep phase on the permeate side 
can give essentially different in let mass transfer rates. On the 
other hand, the application of the Fickian d iffusive flow in 
the feed boundary condition in presence of convective flow 
can lead significant error in the mass transfer rate predicted. 
This error quickly  increases with increasing boundary layer’s 
Peclet number due to the increasing curvature of the 
concentration distribution. Accordingly the application of 
the mass transfer coefficient predicted by the dimensionless 
number fo r the feed boundary layer should be avoided in the 
presence of forced convective flow. The models presented 
describe mass transport in good agreement with the 
measured data, proving that it can be used to estimate the 
mass transport process for a catalytic membrane reactor. 
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Nomenclature 
C = concentration in the membrane, mol/m3 

Ci= concentration in the boundary layer, mol/m3 (i=1,2) 
Co= bulk concentration at t=0, mol/m3 

∗
pC = concentration on the catalyst interface, mol/m3 

dp= particle size, m 
D= diffusion coefficient in the membrane matrix, m2/s 
h= distance between particles, m 
H = solubility coefficient of reactant between polymer matrix 

and the continuous phase, 
Hd = solubility coefficient between catalytic particles and the 

membrane phase, 
Hf = adsorption coefficient on the catalyst surface (=q/C), 

(mol/m2)/(mol/m3) 
Jo = mass transfer rate without chemical reaction, mol/(m2s) 
J = mass transfer rate into the catalytic membrane layer in 

presence of chemical reaction with constant diffusive flow in the 
boundary layers, mol/(m2s) 

Jout = outlet mass transfer rate, mol/(m2s) 
J◊ = mass transfer rate obtained by variable diffusive flow, 

mol/(m2s) 
j = mass transfer rate into catalytic particles, mol/(m2s) 
k = reaction rate constant, 1/s 
Pe = Peclet number or membrane Peclet number[Eq. (11)],  
q = molar loading on the catalyst surface, mol/m2 
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R = particle radius, m 

R~  = radius of the membrane disc, m 
V = volume of the reaction solution in the stirred tank, m3 

y = space coordinate, m 
Y = dimensionless space coordinate (=y/δ) 
Greek letters 

o
iβ  = physical mass transfer coefficient of the external phases, 

m/s (=Di/δi with i=1,2) 
oβ  = mass transfer coefficient of the polymer membrane layer 

(=D/δ), m/s 
o
◊β  = physical mass transfer coefficient for diffusive plus 

convective flows,[Eq. (34)], m/s 
β  = mass transfer coefficient for diffusive and convective 

flows,[Eqs. (23) and (39)], m/s 

sumβ  = mass transfer coefficient into particles defined in Eq. 
(10), m/s 

o
pβ  = mass transfer coefficient of particles, m/s  

δ = thickness of the membrane layer, m 
δp = thickness of the diffusion boundary layer at the catalyst 

surface, m 
ε = catalyst phase holdup 
υ = convective velocity, m/s 
Φ =reaction modulus (Eq. (11), 
λ =dimensionless quantity after Eq. (14), 
Θ =dimensionless quantity after Eq. (13), 
Subscripts 
f =interface 
L =liquid 
ov =overall mass transfer coefficient or rate 
p = catalyst particle 
1,2 =continuous phases on both sides of membrane 

APPENDIX 
A second-order steady-state differential equation with 

variable (concentration dependent and/or local coordinate 
dependent) parameters and or in the case of nonlinear 
chemical reaction kinetics, e.g. Michaelis-Menten 
kinetics[Eq. (5)], can not be generally solved analytically. A 
numerical method or analytical approach can be 
recommended for its solution. Herewith we show a rather 
simple analytical approach where the mass transfer rate or 
the concentration distribution on side the catalytic membrane 

can be expressed in closed, exp licit mathematical forms. For 
the solution the membrane layer should be divided into N 
sub-layers with constant parameters. This is illustrated in Fig. 
A1.  

 
Figure A1.  Important notations for the catalytic membrane divided into N 
sub-layer for linearization of e.g. Michaelis-Menten kinetics 

The linearized form of the Michaelis-Menten kinetics can 
be as[13,14]: 

CkC
CK

v
Q i

iM

max
i ≡

+
=

       (A1) 
where the value of ki is the first-order reaction rate constant, 

iC denotes the average value of iC  in the ith membrane 
sub-layer. Due to the unknown real value of iC a few 
iteration step is needed to get the exact value of Ci.  
The equation for the ith sub-layer to be solved will be for 
steady-state as: 
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The solution of this equation, according to Eq. (14), will 
be for the ith sub-layer as (i=1,…,N):  
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The Ti and Si parameters can be determined by suitable boundary conditions. Neglecting the external mass transfer 
resistances, the boundary conditions can be given as[14]:  

Co = T1 + S1  at  Y=0                                    (A4) 

( )1 1
1 1
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+ ++ = +  at Y=Yi  i=1,…,N-1             (A5) 

 δ

CN

Ci

DiD1

C1

∆Yl ∆Yi ∆YN

DN

CL2
οkNkik1

Pe1
Pei PeN

CL1
ο CL1

∗

CL2
∗



90  Endre Nagy:  Diffusive Plus Convective Mass Transport Through Catalytic Membrane   
  Layer with Dispersed Nanometer-Sized Catalyst 

 

( ) ( )1 11
1 1 1 1

i ii i i i i iY YY Y i
i i i i i i i i i

i

DT e S e T e S e
D

λ λ ξ λ λ+ +Θ −ΘΘ −Θ +
+ + + ++ = +   at Y=Yi   i=1,…,N-1     (A6) 

NN eSeTC N

~

N
o λλ
δ += at Y=1                                  (A7) 

with  
2/Y)PePe(

i
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The above, well known boundary conditions serve 2N algebraic equations for 2N parameters to be determined. Details for 
the solution see e.g. Nagy’s book[14]. The mass transfer rate at Y=0 can be g iven as: 

)S~T(DJ 1111
1 λ+λ
δ

=                                        (A8)
  The value of T1 and S1 for determination of the mass transfer rate 
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The init ial values of j
iζ  and j

iψ , namely j
1ζ  and j

1ψ  (j=T, S, O) are as: 
YT

1
1e ∆Θ−=ζ ; YS

1
1e ∆Θ=ζ ; ( )Ytanh 1

O
1 ∆Θ−=ζ                          (A15) 

Y
1

T
1

1e~ ∆Θ−λ=ψ  Y
1

S
1

1e ∆Θλ=ψ  1
O
1 A−=ψ                              (A16) 

 
The concentration distribution and/or the outlet mass 

transfer rate can also be easily determined. Applying the 
boundary conditions the other Ti and Si values (i=2,…,N) can 
be determined[14]. Some calculat ions for the 
Michaelis-Menten kinetics are presented in Nagy’s 
book[14].  
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