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Abstract  Whole genome transcriptional regulation involves an enormous number of physicochemical processes re-
sponsible for phenotypic variability and organismal function. The actual mechanisms of regulation are only partially under-
stood. In this sense, an extremely important conundrum is related with the probabilistic inference of gene regulatory net-
works. A plethora of different methods and algorithms exists. Many of these algorithms are inspired in statistical mechanics 
and rely on information theoretical grounds. However, an important shortcoming of most of these methods, when it comes 
to deconvolute the actual, functional structure of gene regulatory networks lies in the presence of indirect interactions. We 
present a proposal to discover and assess for such indirect interactions within the framework of information theory by 
means of the data processing inequality. We also present some actual examples of the applicability of the method in several 
instances in the field of functional genomics. 
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1. Introduction 
One important problem in contemporary computational 

biology and biophysics, is that of reconstructing the best 
possible set of (physicochemical) regulatory interactions 
between genes (a so called gene regulatory network -GRN) 
from partial knowledge, as given for example by means of 
gene expression analysis experiments. This has turned to be 
so, since most common pathologies are not caused by the 
mutation of a single gene, rather they are complex diseases 
that arise due to the dynamic interaction of many genes and 
environmental factors. In order to perform GRN inference, 
we need to understand on a quantitative (or, at least, 
semi-quantitative) level the functional interplay between 
thousands of genes and their related proteins. 

Way too many issues arise in the analysis of whole ge-
nome gene expression. Current challenges include the na-
ture of the experimental set-ups, since microarray technol-
ogy generates highly noisy signals. The so-called high di-
mensionality problem also arise given the fact that there are 
far more variables involved (number of genes and interac-
tions among them) than experimental samples. Finally, we 
must deal with a great complexity due the highly nonlinear 
character of the biochemical dynamics underlying whole 
genome translation, RNA processing and regulation. 
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Information theory (IT) offers a powerful theoretical 
foundation, which is useful to develop algorithms and 
computational techniques able to deal with network infer-
ence problems as applied to real data. In the case of inferring 
physical interactions from correlation measures, IT even 
provides a useful (but far from trivial!) analogy with thermal 
systems and statistical mechanics. There are, however open 
questions and shortcomings related with the application of IT 
to transcriptional network inference. The applied algorithms 
should return intelligible models (i.e. they must result un-
derstandable); they should also rely on little a priori 
knowledge. The methods may be able to deal with thousands 
of variables and detect non-linear dependencies. Currently, 
all of these features should be accomplished even when we 
start with tens (or at most few hundreds) of highly noisy 
samples.  

There are several alternate ways proposed in the literature 
in order to accomplish such a task. In our opinion, after 
having been consider a number of methods[1-3], the best 
benchmarking options for the GRN inference scenario, are 
the use of sequential search algorithms[4] (as opposed to 
stochastic search; that typically involve finding assignment 
structures for large constrained datasets, hence have a high 
computational complexity, even NP-hard -exponentially 
large search-space-) and performance measures based on 
IT[1, 5 ], since this made feature selection fast end efficient, 
and also provide an easy means to communicate the results to 
non-specialists  (e.g. molecular biologists, geneticists and 
physicians)[6,7]. 
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2. The Gene Network Inference Problem 
Information theoretical measures have been applied to 

infer gene-gene interactions in transcriptional networks[8,9]. 
In particular, the family of probability measures that includes 
mutual information, Markov random fields and Kulback- 
Liebler divergences, has established itself as a sound and 
robust alternative for this task[1].  

However, due to the fact that conditional probabilities 
obey a tower property (i.e. if X and Y are random variables 
with compact support on the same probability space (triple), 
then the expected value of the conditional expected value of 
X given Y is the same as the expected value of X), a number 
of false positive links appear (due to the fact that conditional 
correlations for chains of events obey the tower property), in 
some instances as a consequence of indirect correla-
tions[10,11].  

For instance, if process A has a high value of conditional 
information (say, mutual information) with process B, and 
process B is also highly correlated with process C, most 
common algorithms would predict also a (possibly non- 
existent) link between processes A and C.  

One way to assess and correct for these indirect links is -as 
we will show later- by use of the Data Processing Inequality 
(DPI) which is a simple but useful theorem that states that no 
matter what processing you do on some data, you cannot get 
more information (in the sense of Shannon[10]) out of a set 
of data than was there to begin with. DPI then provides a 
bound on how much can be accomplished with signal proc-
essing.  

We will outline an algorithmic implementation of the DPI 
within the framework of GRN inference and structure as-
sessment and discuss some of its applications in the con-
temporary molecular biophysics of gene regulation. 

2.1. The Joint Probability Distribution Approach (Guilt 
by Association) 

A growing number of deconvolution methods (also called 
reverse engineering methods) for the probabilistic inference 
of gene regulatory networks, have been proposed[2,3]. In 
general, the goal of such methods is to provide a defined 
representation of the cellular network topology of the tran-
scriptional interactions as it is revealed by, for instance, gene 
expression measurements, either by means of whole genome 
microarray expression data or, more recently by means of 
RNA-sequencing experiments (RNA-seq) aimed also at 
determining cellular gene expression patterns. Expression 
levels are then treated as samples taken from a joint prob-
ability distribution.  

Deconvolution methods look to discover GRNs based on 
statistical dependence structure within this joint distribu-
tion[4]. The central aim is to develop a methodology to 
decompose the Statistical Dependency Matrix into a series of 
well defined contributions coming from interactions of 
several orders of complexity. 

There are two major challenges related to the feature se-

lection and network inference procedures: i) non-linearity 
and ii) large number of variables. Information theoretical 
methods are often efficient techniques to deal with such 
drawbacks[5-9]. Most of these methods rely on some form of 
mutual information (MI) metric. MI is a model independent 
information-theoretic measure of dependency which has 
been used to define (and also to quantify) relevance, redun-
dancy and interaction in large noisy datasets. 

If we resort to the standard practice of defining mutual 
information in terms of information-theoretical entropies (or 
uncertainties), then for two random variables X and Y, MI 
can be understood just as the amount of uncertainty in X 
which is removed by knowing Y, that corresponds with the 
accepted meaning of mutual information as the amount of 
information (that is, reduction in uncertainty) that knowing 
either variable provides about the other[1]. 

In fact, it is easy to see, that the mutual information is just 
the Kullback-Leibler distance between the joint distribution, 
PXY(x,y), and the product of the independent –marginal- 
distributions, PX(x) PY(y), thus, MI is an extended measure 
of statistical dependency[1]. MI is also able to capture 
non-linear dependencies[8,9] and it is also rather fast to 
compute. For such reasons, it can be calculated a high 
number of times in a still reasonable amount of time, an 
explicit requirement in whole-genome transcription analy-
sis[9]. 

Deconvolution of a GRN based on maximum entropy op-
timization of the JPD of gene-gene interactions as given by 
gene expression experimental data is implemented as fol-
lows[9]. The Joint Probability Distribution (JPD) for the 
stationary expression of all genes ({ })iP g , = 1, ,i N  could 
be written as follows[8]: 

1({ }) =
Hgen

iP g exp
Z

               (1) 

, , ,
, , ,

= [ ( ) ( , ) ( , , ) ]
N N N

gen i i i j i j i j k i j k
i i j i j k

H g g g g g g− Φ − Φ − Φ −∑ ∑ ∑ 
   (2) 

Here N is the number of genes, Z is a normalization factor 
(i.e. the statistical mechanics partition function), the Φ 's are 
interaction potentials. A set of variables (genes) Ω , 
interacts with each other if and only if the potential ΩΦ  
between such set of variables is non-zero. The relative 
contribution of ΩΦ  is taken as proportional to the strength 
of the interaction between this set. 

Equation 2 does not define the potentials uniquely, thus, 
additional constraints should be provided in order to avoid 
ambiguity. A usual approach to do so is specify Φ 's using 
maximum entropy (MaxEnt) approximations consistent with 
the available information on the system in the form of 
marginals. In the case of the gene network inference problem, 
the use of marginals is closely related with a class of methods, 
commonly termed hidden Markov models (HMMs)[1]. As in 
the case of HMMs the rationale behind marginals is in 
recognizing that, eventhough some priors are given, there 
remains a (probably quite large) set of unknown parameters 
that may affect the inference process and should be taken 
into account even if by an indirect treatment.  
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Hidden Markov models and MaxEnt approaches differ in 
the marginalizing procedure, since in HMMs the hidden 
states take the place of the unknown variables, whereas in 
MaxEnt approximations these are marginalized instead.  A 
common way to do so, is by considering that interaction 
potentials (already marginalized, or to use the language of 
statistical physics, coarse-grained) are in some sense 
equivalent to correlation measures.  

To be more precise; two highly correlated genes (say in 
their mRNA expression levels) are believed to be physically 
interacting (by means of some still undisclosed -but probably 
physically complex-mechanisms) in the transcriptional 
regulation network[9]. Hence, the interaction potentials 

, ( , )i j i jg gΦ  are approximated by correlation measures, say 
mutual information, i.e. 

, ( , ) ( , )i j i j i jg g MI g gΦ ≈ . 

2.2. Direct and Indirect Interactions: How to tell? the 
Data Processing Inequality 

As stated before, DPI provides a bound on how much can 
be accomplished with signal processing[11]. More 
quantitatively speaking, let us consider two random variables, 
X  and Y , whose mutual information is ( , )MI X Y . Now 
consider a third random variable, Z , that is a (probabilistic) 
function of Y  only. It can be shown that | |=Z XY Z YP P , which 
in turn implies that | |=X YZ X YP P , as follows from Bayes' 
theorem. 

The DPI simply states that Z  cannot have more 
information about X  than Y  has about X ; that is 

( ; ) ( ; )MI X Z MI X Y≤ . This inequality, which is a property of 
Shannon's information, can be proved. The inequality 
follows because conditioning on an extra variable (in this 
case Y  as well as Z ) can only decrease entropy (in a 
similar way to what occurs in statistical physics when adding 
constraints to a thermal system thermodynamic entropy can 
only decrease, conversely when removing constraints, say by 
allowing an irreversible process to take place, 
thermodynamic entropy can only increase), and the second 
to last equality follows because | |=X YZ X YP P [8,12]. More 
formally, 

Definition 1 Three random variables X , Y  and Z  are 
said to form a Markov chain (in that order) denoted 
X Y Z→ → , if the conditional distribution of Z  depends 

only on Y  and is independent of X . That is, if we know Y , 
knowing X  does not tell us any more about Z  than if we 
know only Y . 

If X , Y  and Z  form a Markov chain, then the Joint 
Probability Distribution can be written: 

( , , ) = ( ) ( | ) ( | )P X Y Z P X P Y X P Z Y         (3) 
Theorem 1 The Data Processing Inequality: If X , Y  

and Z  form a Markov chain, then  
( ; ) ( ; )MI X Z MI X Y≤                  (4) 

Proof: By the chain rule for mutual information we can 
write: 

( ; , ) = ( ; ) ( ; | )MI X Y Z MI X Z MI X Y Z+  
( ; ) ( ; | )MI X Y MI X Z Y+  

By the Markov property, since X  and Z  are 

independent, given Y , ( ; | ) = 0MI X Z Y , then, since 
( ; , ) 0MI X Y Z ≥  we have: ( ; ) ( ; )MI X Z MI X Y≤  c.q.d. 

In reference[8] the application of DPI has shown that if 
genes 1g  and 3g  interact only through a third gene, 2g  
within a given GRN; we have that 1 3( , )MI g g ≤  

1 2 2 3min[ ( , ); ( , )]MI g g MI g g . 
Hence, the least of the three MIs can come from indirect 

interactions only so that the proposed algorithm examines 
each gene triplet for which all three MIs are greater than 
some threshold value 0MI  and removes the edge with the 
smallest value. DPI is thus useful to quantify efficiently the 
dependencies among a large number of genes. The DPI 
algorithm eliminates those statistical dependencies that 
might be of an indirect nature, such as between two genes 
that are separated by intermediate steps in a transcriptional 
cascade. Such genes will very likely have non-linear 
correlated expression profiles which may result in in high MI, 
and otherwise would be selected as candidate interacting 
genes.  

In fields such as developmental biology and cancer 
genetics, there is a growing need to place the vast number of 
newly identified gene variants into well-ordered genetic and 
molecular pathways. This will require efficient methods to 
determine which genes interact directly and indirectly. In 
this sense a methodology such as DPI-characterization will 
result extremely useful indeed.  

For instance, the role of transcriptional cascades in 
development is becoming evident. Well-known examples 
may include, the hierarchical interactions underlying 
hematopoiesis and adipogenesis in vertebrates and the 
ecdysone and segmentation gene pathways in 
Drosophila[25].   

In such cases, “...gene expression in such cascades is 
predominantly controlled at the level of transcript initiation, 
and is based on interactions between sequence-specific 
transcription factors and their cis-acting response elements. 

Two types of regulatory relationships, direct and indirect, 
can be defined. Direct interactions occur independently of 
intermediary gene regulation but need not involve direct 
molecular contact between the regulator and its target gene 
promoter. Indirect interactions require the activation or 
repression of intermediary genes, the products of which act 
on the target gene in question....¨[25].  
This is precisely the scenario in which a methodology such 
as DPI-prunning becomes relevant to distinguish between 
these two different (but often indistinguishable) conditions 
with aims to discern the actual functional mechanisms 
behind them.  
For instance, intron-regulation of transcription has been 
elucidated. Introns are able to affect gene expression 
significantly, both in plants and also in many other 
eukaryotes in a variety of ways. Some introns may contain 
enhancer elements or other types of promoters, whereas 
others function by elevating mRNA accumulation by a 
process called intron-mediated enhancement (IME). The 
intron-regions causing IME must be inside transcribed 
sequences near the start of a gene and in their natural 
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orientation in order to increase expression. Detection of IME 
activity by sequencing is not easy, however by observing 
DPI-curated networks, we may be able to infer some 
candidate genes, and perform deeper studies just in this 
reduced set. 

2.3. Sufficient Statistics and Minimal Networks 

The data processing inequality lies also behind some 
minimal representations. In particular DPI is the foundation 
behind the idea of sufficient statistics. 

Definition 2 Suppose that you have observations 
1 2, , , nx x x  for a random variable X  distributed according 

to some empirical distribution ( )f xθ . A statistic ( )T X  
extracts some of the information in your observed sample 

( )X T X→ , by the DPI, ( , ( )) ( , )MI T X MI Xθ θ≤ . In the cases 
in which equality holds, we call T  a sufficient statistic for 
θ . That is to say, a sufficient statistic for some distribution 

( )f xθ  extracts all of the information within your data 
(samples) 1 2, , , nx x x  about the value of θ . 
Let ( , )f x θ  be a parametric family of probability 
distribution functions for X . A statistic ( )T X  is a 
sufficient statistic for the parameter θ  iff for all sample 
points x  and for all the parameters θ  holds that: 

( , ) = [ ( ) | ] ( )f x g T x h xθ θ              (5) 
with g  and h  non-negative functions, ( )h h θ≠ . We call 
equation 5 a factorization theorem[13] and it is a necessary 
and sufficient condition for sufficient statistics. If no such 
factorization exists for T  (in the support under 
consideration), then T  is not a sufficient statistic (in that 
support). Factorization theorems are important in minimal 
network estimation since they provide a somehow 
independent way of sufficient statistics assessment to DPI 
inference. 

With this in mind, we can see that DPI (via the sufficient 
statistics argument) may be useful to infer Minimal networks, 
i.e. the smaller GRNs that are able to capture µ -almost all 
information content of the correlation structure of the actual 
(larger) biological network. 

3. Applications 
3.1. Minimal networks 

Definition 3 A minimal network in the context of 
transcriptional regulation, is the GRN that spans the 
statistically significant pathways -defined by a threshold in, 
say, a hypergeometric test of known pathways- with the 
minimum number of nodes and links. It is thus a concept 
informally related with network navigability, but instead of 
being defined by its topology, it refers to biological 
functional features. 

Minimal networks are important due to economic, 
logistical and analytical constraints. Nowadays, it is possible 
to infer extremely large and comprehensive gene regulatory 
networks with a certain degree of reliability for a number of 
cellular conditions. Such networks have been, of course, 

studied in their global topological features[14] and have been 
also the object of statistical and data mining analyses to 
search for biological functions and pathways[15-18]. 
However, detailed functional studies about the biological 
behavior of such large GRNs is not plausible neither 
experimentally nor by means of simulations. For that reason, 
research in functional genomics in terms of GRNs should be 
bounded to the minimum sized networks that one can 
find[9]. 

In order to exemplify the biological relevance of the use of 
the DPI to find out minimal networks, let us consider the 
gene regulatory network related with papillary thyroid 
cancer (PTC-GRN)[9]. In Figure 1 we can see two different 
instances of PTC-GRN. Panel A displays a GRN with 134 
genes and 384 regulatory interactions. DPI was not applied 
in the inference of this network. Panel B displays the same 
GRN as panel A, however DPI was applied in this case to 
prune-off for indirect regulatory interactions. The network in 
panel B consists in 75 genes and 170 regulatory interactions 
among them[9]. 

 
Figure 1.  Gene regulatory networks associated with papillary thyroid 
cancer. Panel A corresponds to a network consisting in 134 genes and 384 
interactions as inferred in[9] with no use of the DPI. Panel B corresponds to 
a network consisting in 75 genes and 170 interactions, panel B is the same 
network as in panel A except that DPI has been applied to prune-off indirect 
interactions 

Network B is smaller than network A (about half-size 
indeed) for this very reason, network B is easier to validate 
and analyze, either experimentally or computationally. Of 
course, this issue in itself is not an advantage, unless a clearer 
biological picture could be extracted from the smaller 
network. We will show that this is the case. First of all, a 
large number of the nodes that were pruned correspond to 
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either hypothetical proteins or poorly annotated genes. For 
the biological researcher these molecules contribute almost 
nothing to their understanding of the underlying biochemical 
phenomena.  

Moreover, given the fact that they formed mostly indirect 
interactions, we could hypothesize that their role (in case of 
not being false positives of the probabilistic inference) would 
be likely as background environmental tuning of the 
regulatory processes and not central to them. One obvious 
change in the network topology is that the biggest cluster in 
panel A is broken down in two smaller clusters. This fact 
reduced the centralization of the network (from 0.178 to 
0.145) and increased slightly the clustering coefficient (from 
0.409 to 0.429), thus making network B more modular. A 
detailed biological function analysis reveal that these 
forming modules possess indeed a clear interpretation.  

Gene ontology (GO) statistical enrichment analysis 
[Hypergeometric tests of the networks against GO Biological 
Processes, corrected for multiple testing by the FDR 
Benjamini-Hochberg algorithm with corrected p-value < 
0.05] showed that after performing DPI statistically 
significant GO terms arise. 

Among these are the following categories: Inflammatory 
response, Platelet- derived growth factor receptor signaling 
pathway, Stem cell maintenance and Hydrogen transport. 
Other GO terms were conserved (that is, are significant in 
network A as well as network B) but its statistical 
significance increased, being this the case of NAD metabolic 
processes and Regulation of RabGTPase activity. Other 
(rather generalistic) processes lost their statistical 
significance after DPI, being this the case of cell projection 
biogenesis and peptidyl-aminoacid modifications. 

Biochemical pathways determined by these networks also 
were fine tuned by application of the DPI. We performed 
Statistical enrichment analysis of biochemical pathways in 
both networks[Hypergeometric tests of the networks against 
pathways in the Reactome database[15], also corrected for 
multiple testing by the FDR Benjamini-Hochberg algorithm 
with corrected p-value < 0.05]. We found the following 
results of the contrast: the lower FDR-corrected p-value for 
network A is 31.1 10−× , whereas the lower FDR-corrected 
p-value for network B is 52.7 10−× . DPI thus improved 
p-value performance by almost two orders of magnitude. 
DPI assessment also prompted new significant biochemical 
pathways, some of the more important are: urokinase 
plasminogen activation and the related plasmin synthesis 
and activation; innate immune system, cell junction 
organization and HNP1-4/CD4/Defensin signaling. 

As we can see, global topological features pointing out to 
greater modularity –hence robustness-; clearer functional 
mechanisms related to inflammation and growth receptor 
signaling (two hallmark processes in Cancer); as well as 
stronger statistics were attained after careful DPI-prunning 
of the network. This means that, at least in this case DPI 
methodology presents itself as an efficient tool for the 
analysis (both functional and modular) of biological 
networks. 

3.2. Master Regulators Discovery: DPI+ non-DPI 

DPI is also a useful method when looking to discover 
genes coding for transcription factors that are acting as 
Master Regulators[19]. Master regulator (MR) genes control 
a multitude of specific cellular processes and transcriptional 
regulation of proteins in large complexes in so-called 
context-dependent manner. Once we located the most highly 
connected genes -hubs- in this non-DPI pruned network, we 
proceeded to look up for these genes in a DPI-version of the 
same network.  

Transcription factors acting as Master Regulators (i.e. TFs 
that are at the top of the transcriptional cascade) are known to 
display many indirect correlations with other genes. For 
instance, if a Master Regulator (say gene A) is a TF for 
another gene (B) that in turn is a TF for a third gene (C); 
non-DPI network will display a link between A and C 
whereas DPI-network will not. By analyzing both versions 
of a network alongside with topological parameters such as 
connectivity degree distributions, it is possible to look up for 
genes that may be Master Regulators. 

If we refer to Figure 2 (which displays a non-DPI version 
of the GRN for the root of Arabidopsis thaliana) in panel A 
we can see a non-DPI pruned version of the complete 
transcriptional regulatory network, whereas in panel B we 
can observe a zoom-in rendering of a small region of the 
network in panel A in which bigger red genes are highly 
connected while smaller green ones have lesser number of 
connections.  

 
Figure 2.  Gene regulatory network in Arabidopsis thaliana. Panel A 
displays the complete transcriptional network for the root of Arabidopsis 
thaliana with no-DPI implemented. Panel B shows a zoom-in of a small 
region of that network displaying genes color-coded and size coded ac-
cording to their connectivity degree. Bigger red genes are highly connected 
while smaller green ones have lesser number of connections 

We can see in the insert that genes that, in principle, are 
Master Regulators in this network (such as AGL19 and 
ATPH1) appear as hubs (bigger red nodes in Figure 2B). By 
comparison between the connectivity degree distribution in 
this network as well as in a DPI-pruned version, in particular 
with regards to these candidate Master regulators, it is 
possible to figure out if they are acting as such. Those of 



 International Journal of Biophysics 2012, 2(2): 18-25 23 
 

 

these genes that show a drastic decrease in their connectivity 
can be further analyzed to determine, whether they are 
indeed master regulators. 

Further investigation revealed the role of such genes in the 
morphogenesis and development in Arabidopsis thaliana. 
AGL 19 is now known to be an important upstream regulator. 
Ectopic expression of AGL19 has been demonstrated to 
strongly accelerate flowering. In fact, AGL19 mutants have 
shown a decreased response to promote flowering by 
prolonged cold. Epistasis analyses unveiled that AGL19 
does not require SOC1 to function. Elevated AGL19 levels 
activate LFY and AP1 -and also by these means, activate 
their corresponding pathways- and eventually cause 
flowering[20].  

With regards to ATPH1, it is structurally a planthomolog
ue of human pleckstrin. As such, facilitates protein-protein 
interaction, in addition to protein- phosphoinositide 
interaction, to regulate cellular signalling. As in the case of 
the human pleckstrin, its role in gene regulation may be 
related with the fact that it can bind phosphatidylinositol 
lipids within biological membranes. It is then, not only a 
transcription factor but also a second messenger molecule 
involved in cell signaling[21]. 

Detailed analysis of gene regulatory networks[8,9, 14] has 
shown convincing evidence on their scale-free nature. The 
behavior of the whole network is dominated by a relatively 
small number of nodes with a large degree of connectivity. 
The genes corresponding to those nodes are known as master 
regulators and collectively drive the regulatory program of 
the underlying cellular phenotypes. Although comprehensiv
e computational genomics techniques have been developed 
to analyze the behavior of master regulators[8], most of these 
rely on vast a priori knowledge in the form of gene 
signatures. One alternative, that may be used in a first stage 
of analysis, is the one above: i.e. set-theoretical difference 
between DPI and non-DPI networks. 

In the example just considered, a number of master 
regulators have been discovered. For some of these, it has 
long been known their role as key transcription factors, while 
for others, only indirect evidence have been available. After 
this analysis, it is possible to prioritize the list of candidate 
master regulators in order to design RNA interference 
experiments to validate their functional role. 

3.3. Transcription Factor Interactions in Large Networks 

Given a transcription factor, application of the DPI will 
generate predictions about other genes that may be its direct 
transcriptional targets or its upstream transcriptional 
regulators[22,23]. The use of the DPI may result not only in a 
greater assessment of the results but also in a significant 
reduction of the computational burden associated with 
network inference. Zola, et al.[24] presented a parallel 
method integrating mutual information, data processing 
inequality, and statistical testing to detect significant 
dependencies between genes, and efficiently exploit 
parallelism inherent in such computations. They developed a 

method to carry out permutation testing for assessing 
statistical significance of interactions, while reducing its 
computational complexity by a factor of 2( )O n , where n  is 
the number of genes.  

The problem of inference (usually consuming thousand of 
computation hours) at the whole genome network level by 
constructing a 15,222 gene network of the plant Arabidopsis 
thaliana from 3,137 microarray experiments in 30 minutes 
on a 2,048-CPU IBM Blue Gene/L, and in 2 hours and 25 
minutes on a 8-node Cell blade cluster[24]. 

4. Conclusions and Perspectives 
In this work we have shown the relevance of the use of a 

theorem form information theory, the data processing 
inequality (Theorem 1) in the context of primary assessment 
of gene regulatory networks. Due to the many challenges – 
both, experimental and computational- involved in whole 
genome gene regulatory networks. Assessment methods and 
validation procedures are required steps in any GRN analysis. 
Machine learning and statistical bootstrapping techniques 
are commonly used, as is Montecarlo modeling and 
Expectation-Maximization algorithms. However, all these 
methods validate all genes treating them in an equivalent 
way, without taking into account a priori information about 
their function or their role in network topology. 

In contrast, we are presenting an alternative (and 
additional) validation tool developed in information 
theoretical grounds and based in the tenets of signal analysis. 
DPI is one of several probability bounds on the limits in 
signal processing. As such it applies equally to artificial 
signal processing as well as to, for instance biosignals. The 
mathematical applicability requirements are extremely 
general (integrability, compact support, etc.) and are thus, 
almost always met in biological data such as, for instance, 
gene expression experiments. 

If we consider whole genome gene expression patterns as 
signals (as we do when we reverse-engineer GRNs from 
expression data), then DPI states a bound on the mutual 
information measures between two genes. In this way, DPI 
enables us to distinguish -with a certain inference error- 
between direct and indirect transcriptional interactions (or 
more properly between highly correlated and correlated sets 
of gene expression measurements). As we have just stated, 
this distinction happens to be quite an important one in 
functional genomics studies. 

As we have shown, DPI is useful in many instances in the 
field of GRN inference and analysis as it can be applied to 
large as well as to small and medium sized networks. We 
also show its applicability in three different problems. 
Modularity studies in small sized networks via sufficient 
statistics, as well as master regulator search and transcription 
factor interactions in large networks. 

These are just a handful of examples amidst the broad 
variety of situations in which the application of so simple an 
idea as DPI uncovers interesting network properties or helps 
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to assess the validity of the inferred regulatory interactions. 
If applied with a completely stringent threshold, DPI may 
render an originally cycle-containing graph into a DAG thus 
making possible to compare the results of probabilistic 
models based on Bayesian networks with others inferred by 
means of information theory or non-Bayesian statistics. 
Bayesian networks are extremely important tools to evaluate 
regressive models, often useful in clinical settings. For this 
very reason, having a computational tool that allows 
comparison with such Bayesian models results important. 
Even in those cases in which DPI-asymptotics render 
incomplete information about the original networks, we can 
still reach approximate conclusions about the underlying 
systems. 

DPI may also become important when analyzing physical 
interactions such as in protein-protein networks. In such case 
DPI may provide some bounds on the strength of the 
interactions. Due to the fact that DPI calculations possess a 
low algorithmic complexity (i.e. is computationally cheap) it 
is possible to apply it, in the computational chemistry 
inference of protein interactions (whose computational 
burden is high) as some kind of sieve in preliminary results 
before proceeding to more detailed calculations. 

In brief, DPI is a useful, easy to implement, computational 
method for the assessment of the probabilistic inference of 
complex networks that may become important for the 
computational analysis of complex biophysical systems. 
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