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Abstract  Rare events and class imbalance is very often in classification problems. Rare diseases which are good example 
for rare events are life-threating and vast majority of them are genetically determined. Moreover, traditionally appropriate 
analysis of cost data generated by clinical trial is problematic. The distribution of cost data is generally highly skewed 
because a few patients faced with large costs. Several ensemble learning methods (ELM) were applied to health care datasets 
such as predicting individual expenditures and disease risks for patients. These methods are consists of a set of individual 
training classifiers such as Bagging and Boosting. This study aims to compare ELM classification performances applied on 
thyroid disease dataset. Data came from UCI Machine Learning Repository. Diagnosed as a hyperthyroid determined as a 
dependent variable for classification. ID.3, C4.5, CART, NB, KNN, RF, SVM, NN were used as ELMs. Bagging and 
Boosting were implemented to improve prediction performances. “k” 10 fold cross validation and AUC was examined to 
evaluate classication performances of ELMs. Study results reveal that single ELM have superior prediction performance 
compared with Bagging and Boosting applications. In addition to that kNN, RF and NN have superior classification 
performance compared with other ELMs. Future research is needed to better understand the role of ELM to improve 
prediction performance of rare disease data.  
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1. Introduction 

Rare events that occur with low frequency, if one class 
contains significantly more samples than the others. These 
events frequently causes imbalanced data problem in 
statistics. Presenting imbalanced data to the classifier will 
produce undesirable results [1]. Rare diseases are good 
examples for rare events. Most rare diseases are 
life-threating and the vast majority of them are genetically 
determined. Low prevalence of rare diseases requires special 
attention to improve diagnosis, care and prevention [2]. 
Fraudulent credit card transactions [3], word 
mispronunciation [4], oil spills [5], train derailments [6], 
tornadoes [7] are popular examples of rare events. The low 
prevalence of rare diseases improves their social and 
economic impact. Economic impacts are associated with 
specialized health and educational services, loss of income 
for caregivers and loss of productivity for society are some of 
these impacts [8].  

Disease prediction is becoming a prominent research area 
due to the increasing popularity of big datasets. Large public 
datasets are valuable  sources and they are still a  valuable  
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resources to obtain useful information about rare diseases. 
First, they may provide population level clinical information. 
Second, they are available to develop methodologies for 
clinical decision support systems that can be employed for 
electronic medical records [1]. On the other hand, the 
appropriate analysis of cost data generated by clinical trial is 
problematic. While the usual outcome of interest is the 
population mean cost for a particular treatment, the 
distribution of cost data is generally highly skew because a 
few patients incur very large costs [9]. The distribution of 
costs and expenditures for health care shares a number of 
characteristics that make their use in economic analysis 
difficult. The costs are typically highly skewed to the right. 
Under these circumstances analysts have often found that use 
of standard least squares estimators often leads to analytical 
problems from highly influential outliers [10]. A minority of 
patients are responsible for a high proportion of health care 
costs is one of the biggest reason of that rare events are more 
observed than severe cases [11].   

Learning classifiers from imbalanced datasets is important 
and observed very often in practice. Traditional classifiers 
tend to classify all the data into the majority class, which is 
usually the less important class. Scholars suggest that it is 
hard to achieve good prediction performance results while 
using traditional methods, several machine learning 
techniques were applied to healthcare datasets to improve 
future prediction of diseases. These modern statistical 
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learning algorithms are effective methods for predicting 
individual expenditures and disease risks for patients. 
Modern methods combine the predictions of multiple base 
learners to form ensembles, which typically achieve better 
predictive performance than individual base learners [12]. 
Several machine learning techniques were applied to health 
care datasets these include such as predicting individual 
expenses and disease risks for patients.  

Ensemble learning methods (ELMs) are effective methods 
to deal with imbalanced data. They consists of a set of 
individual classifiers, such as decision trees. Decision trees 
are combined novel instances and they are more accurate 
than any of the single classifiers in the ensemble.       
ID.3 (Interactive Dichotomizer 3), C4.5 and CART 
(Classification and Regression Trees) are well known 
examples of decision tree based ELMs. ID.3 algorithm uses 
the concept of information gain. It uses information entropy 
minimization criteria in tree growing process. C4.5 is an 
another popular decision tree algorithm, it is an extended 
version of ID.3 algorithm. CART generates binary decision 
tree constructed by splitting the data in a node into small 
nodes repeatedly, starting with the root node that includes the 
whole learning sample [13]. RF (Random Forest) is an 
ensemble learner and a method that generates many 
classifiers and gathers their results. RF will produce multiple 
CART trees. Each tree in the RF will take a vote for some 
input x, then the output of the classifier is determined by 
majority voting of the trees. RF can handle with high 
dimensional data and use a large number of trees in the 
ensemble [1]. RF is an effective method to overcome 
imbalanced data. It also estimates the importance of 
variables used in the classification. kNN (k-Nearest 
Neighbors) is an another well-known ensemble learning 
method to handle imbalanced data. It is a non-parametric 
method used for classification and regression. The input 
consists of the “k” closest training examples in the feature 
space. In k-NN classification, the output is a categoric 
variable. An object is classified by a majority vote to its 
neighbors in this algorithm. Thus, an object is classified by a 
majority vote to its neighbors, with the object being assigned 
to the class most common among its k nearest neighbor [14]. 
SVM (Support Vector Machine) is a binary classifier and it is 
assumed to be linearly separable in the input sphere. For 
binary case it is suggested that a hyper plane exist such that 
all points belongs to one class are on the one side, and all 
points belonging to the other class are on the other side of the 
hyperplane [13]. NB (Naive Bayes) is an another ensemble 
learning method assign class labels to problem instances. All 
NB classifiers assume that the value of a particular feature is 
independent of the value of any other feature, given the class 
variable [15]. In the last decade the use of artificial 
intelligence has become widely accepted in medical 
applications. NN (Neural Networks) are popular methods of 
artificial intelligence. Ease optimization and accuracy of 
prediction, flexible non-linear modelling of large datasets 
and potential to support clinical decision making are 
advantages of using NN [16].   

Bagging and Boosting are comparably new methods for 
generating ensembles [17-19]. Bagging predictor is a method 
for generating numerous versions of predictor and using 
these to get an aggregated predictor. The aggregation 
averages over the versions when predicting a numerical 
outcome and does a majority vote when predicting a class 
[17]. Bagging can make weak learners to learn parallel since 
random dataset is used for training [20]. Boosting [18] 
includes a family of methods. The focus of these methods is 
to produce a series of classifiers. The training set used for 
each number of the series is chosen based on the 
performance of the earlier classifier(s) in the series. In 
Boosting, instances that are incorrectly predicted by former 
classifiers in the series are selected more often than examples 
that were correctly predicted. Thus, Boosting produce new 
classifiers that are better able to predict examples for which 
the current ensemble’s performance is bad. AUC (Area 
Under the ROC Curve) is a performance measure of a plot 
that represents the performance of a binary classifier system. 
The curve is created by plotting the true positive rate against 
the false positive rate. AUC values lies between 0.5 and 1 
where 0.5 is a bad classifier and 1 denotes an excellent 
classifier [13].  

Here are some examples from the literature emphasizing 
prediction performance differences between ELMs. Davis  
et al. (2008) was used ELMs to predict individual disease 
risk based on medical history. The prediction was performed 
multiple times for each patient, each time employing 
different sets of variables. In the end, the clustering were 
combined to form an ensemble [21]. Moturu et al. (2007) 
predicted future high cost patients, data taken from Arizona 
Medicaid program and 20 non-random data samples created, 
each sample with 1.000 data points to overcome the problem 
of imbalanced data. Variety of classification methods such as: 
SVM, Logistic regression, Logistic Model Trees, AdaBoost 
and LogitBoost were used in the analysis [22]. Mantzaris   
et al. (2008) predicted Osteoporosis using NN [23]. Hebert  
et al. (1999) identified persons with diabetes using Medicare 
claims data [24]. They have constructed a problem where the 
diabetes claims occur less frequently to be sensitive 
indicators for persons with diabetes. Yu et al. (2010) 
examined a method using SVM for detecting persons with 
diabetes and prediabetes [25]. Zhang et al. (2009) compared 
prediction performances of AdaBoost, LogitBoost and RF to 
logistic regression and SVM in the classification of breast 
cancer metastasis [26]. They concluded that ensemble 
learners have higher accuracy compared to the non-ensemble 
learners. There are large number of studies in the literature 
emphasizing the prediction performance differences of 
ELMs. However, lack number of studies that has been 
carried out specifically to compare prediction performance 
of ELMs while using rare diseases and left-skewed cost data. 
To fill this void in the literature this study aims to compare 
prediction performances of ELMs while implementing 
bagging and boosting algorithms on rare disease and 
left-skewed cost data. The next sections of the paper describe 
study materials and methods, analysis, results and 
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conclusions. 

2. Metarials & Methods 
2.1. Aims 

The aim of this study is to compare classification 
performance of ELMs using rare disease and left skewed 
cost data. For this aim algorithms which are ID.3, C4.5, 
CART, NB, KNN, RF, SVM, NN were implemented on 
thyroid disease data while performing Bagging and Boosting 
respectively.  

2.2. Dataset 

The thyroid disease dataset came from UCI Machine 
Learning Repository-Center for Machine Learning and 
Intelligent Systems. Table 1 shows description of thyroid 
disease dataset. The thyroid is an endocrine gland in the neck, 
consisting of two lobes connected by an isthmus. The thyroid 
gland secretes thyroid hormones, which primarily influence 
the metabolic rate and protein synthesis. The thyroid disease 
(ann-thyroid) dataset is a classification dataset. The problem 
is to determine whether a patient referred to the clinic is 
hypothyroid [27, 28]. Basal thyroid-stimulating hormone 
(TSH) test costs for individual patients considered as cost 
variable. This cost is in Canadian dollars and the cost 
information is from the Ontario Health Insurance program’s 
fee schedule (Table 1). 

Table 1.  Hyperthroid Dataset Description 

Variable Explanation /Categories Type 

Age (A) Age of the patient Continuous 
Sex (S) Male, Female Categoric 
On Thyroxine (OT)* True, False Categoric 
Query on Thyroxine (QoT) True, False Categoric 
On Antithyroid Medication (OAM)* True, False Categoric 
Thyroid Surgery (TS) True, False Categoric 
Query Hypothyroid (QHPT)* True, False Categoric 
Query Hyperthyroid (QHRT)* True, False Categoric 
Pregnant (P) True, False Categoric 
Sick (S) True, False Categoric 
Tumor (T) True, False Categoric 
Lithium (L)* True, False Categoric 
Goitre (G)* True, False Categoric 
TSH* Test Costs (TSHC) Continuous Continuous 

Explanations:*Thyroxine: is a hormone the thyroid gland secretes into the 
bloodstream. Antithyroid Medication: sometimes written as anti-thyroid 
medications- are a common treatment for hyperthyroidism. Hypothyroid: 
Hypothyroid relating to or affected with hypothyroidism. Hyperthyroid: 
Hyperthyroid is the condition that occurs due to excessive production of 
thyroid hormone by the thyroid gland. Goiter: Goiter is the most common 
thyroid abnormality in lithium-treated patients, occurring in approximately 
40 to 50 percent TSH: Thyroid Stimulating Hormone measured by 
radioimmuno assay. The cost information is from the Ontario Health 
Insurance Program’s fee schedule. The cost is in Canadian dollars. The 
costs in this file are for individual tests, considered in isolation. 

 

Source: Thyroid disease records supplied by the Garavan 
Institute and J. Ross Quinlan, New South Wales Institute, 
Sydney, Australia. UCI Machine Learning 
Repository-Center for Machine Learning and Intelligent 
Systems. 

2.3. Analysis 

Diagnosed as a hyperthyroid determined as a dependent 
variable all other variables are determined as covariates. ID.3, 
C4.5, CART, NB, KNN, RF, SVM, NN were used, 10, 20, 
30, 40, 50, 60, 70, 80, 90 and 100 trees were generated for RF. 
Bagging and Boosting were implemented to improve the 
accuracy of classification performances. “k” 10 fold cross 
validation was performed and an area plot was used to 
visualize prediction performances of ELMs. AUC was used 
to evaluate classication performance of ensemble methods. 
All variables are normalized to have zero means and unit 
variances.  

This will allow to handle with parameters of different 
units and scales. Logarithmic transformation implemented to 
TSH cost data. AUC was used for comparison of 
classification performances. 5-fold cross validation was 
performed in the analysis. Prediction performances of 
different ELMs are visualized on an area graph and Kruskall 
Wallis variance analysis was performed for comparison of 
ELMs prediction performance differences. 

3. Results 
3.1. Descriptive Statistics 

As previously mentioned, in this study being diagnosed by 
thyroid disease determined as a dependent variable for 
classification based model. 4.8% (151) of patients were 
diagnosed by thyroid and called “hyperthyroid” group. 
However, 95.2% (3012) of them were non-hyperthyroid. 
Descriptive statistics for predictive variables are as follows: 
69% of patients were female, 85.4% of patients didn’t on 
thyroxin, 98.3% of them didn’t query on thyroxin, 98.7% of 
them didn’t take antithyroid medication, 96.7% of them 
didn’t have thyroid surgery, 92.4% of them didn’t query 
hypothyroid, 98% of them were not pregnant, 96.9% of them 
were not sick, 98.7% of them didn’t have a tumor, 99.9% of 
them didn’t have a lithium, 96.9% of them didn’t have a 
goiter and 92.3% of them didn’t query hyperthyroid.  

The mean values of continuous predictive variables are as 
follows; age 51 (±17.88) and TSH costs 19.40 (±8.08). 
Figure 1 shows distribution of TSH cost data, it is seen that 
the distribution of TSH cost data is negatively skewed. As a 
part of preliminary analysis procedure Z transformation was 
implemented on TSH cost data. After that, natural logarithm 
(Ln) of TSH cost was taken.  

It is seen that the distribution of TSH cost data become 
positively skewed after transformation (Figure 1).  

 

https://www.endocrineweb.com/conditions/hyperthyroidism/hyperthyroidism-overactivity-thyroid-gland
https://en.wikipedia.org/wiki/Thyroid_hormone
https://en.wikipedia.org/wiki/Thyroid_gland
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Table 2.  Descriptive Statistics for Categorical Variables 

Variables Categories n % Variables Categories n % 

Sex Male 981 31 Pregnant True 63 2 
Female 2182 69 False 3100 98 

On Thyroxine True 461 14.6 Sick True 99 3.1 
False 2702 85.4 False 3064 96.9 

Query on Thyroxine True 55 1.7 Tumor True 40 1.3 

False 3108 98.3 False 3123 98.7 
On Antithyroid Medication True 42 1.3 Lithium True 2 0.1 

False 3121 98.7 False 3161 99.9 

Thyroid Surgery True 104 3.3 Goitre True 99 3.1 
False 3059 96.7  False 3064 96.9 

Query Hypothyroid True 241 7.6 Query Hyperthyroid True 243 7.7 

False 2922 92.4 False 2920 92.3 
Total 3163 100 Total 3163 100 

Figure 1.  Distribution of TSH Cost Data 

Table 3.  Descriptive Statistics for Continuous Variables 

Continuous Variables 

Age 
Mean SD.* 
51.13 17.88 

TSH Costs 
Mean SD. 
19.40 8.08 

*SD: Standard Deviation 

3.2. Correlations between Independent Variables and 
ELM Performance Comparison 

As a part of preliminary analysis procedure, correlations 
between independent variables examined by using Pearson 
correlation coefficient. Standardized Z scores of study 

variables was used in examination of correlation coefficients 
of study variables. Table 4 shows matrix of Spearman 
correlation coefficients of study variables. Literature 
suggests that the magnitude of 0.70 and higher indicate 
variables which have high correlations [29]. All correlation 
coefficients are lower in this table in other words, there is no 
multi collinearity problem was detected between 
independent variables. Table 5 shows ELMs performance 
comparisons. AUC was used as a performance measure and 
k=5 fold cross validation was implemented as a part of cross 
validation procedure. Figure 2 visualize performance results 
differences between prediction methods. Kruskall Wallis 
variance analysis verifies statistical significance of 
prediction performance differences between different ELMs. 
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Table 4.  Correlations between Independent Variables 

 A S OT QoT AM TS QHPT QHRT P S T L G TSHC 

A 1              
S -0.02 1             

QT -0.01 0.13** 1            

QoT -0.02 -0.04** -0.01 1           
AM -0.05** 0.02 -0.02 -0.01 1          
TS -0.01 0.03* 0.02 0.01 -0.06 1         

QHPT 0.04** 0.07** 0.07** -0.02 -0.03 0.01 1        
QHRT -0.08** 0.06** -0.08** -0.03* 0.12** 0.02 -0.02 1       

P -0.15** 0.09** -0.01 -0.01 0.03 -0.01 -0.01 0.06 1      

S 0.06** -0.01 -0.06** -0.02 -0.02 -0.03 -0.05** -0.05 -0.02 1     
T -0.06** 0.09 -0.02 0.05** -0.03 -0.02 -0.03 -0.03 0.04 -0.02 1    
L -0.02 0.01 -0.01 -0.03 -0.03 -0.05 0.04* -0.07 -0.04 -0.05 -0.03 1   

G -0.03* 0.09** -0.02 0.04 -0.02 -0.02 -0.02 0.04 0.07 -0.03 -0.02 -0.05 1  
TSHC -0.20** 0.03 -0.07** 0.10** 0.02 -0.03* -0.05** 0.13 -0.08 -0.04 0.03 -0.01 0.07 1 

Pearson correlation coefficient **p<0.01, *p<0.05 

Table 5.  Ensemble Learning Methods Performance Comparison Using AUC Values 

ELM 
Single 

CVM AUC 
ELM 

Bagging 
CVM AUC 

ELM 
Boosting 

CVM AUC 

ID.3 k=5 0.6000 ID.3 Bag. k=5 0.5491 ID.3 Boost. k=5 0.5190 
C4.5 k=5 0.5883 C4.5 Bag. k=5 0.5539 C4.5 Boost. k=5 0.5052 

CART k=5 0.5976 CART Bag. k=5 0.5523 CART Boost. k=5 0.5187 
NB k=5 0.4808 NB Bag. k=5 0.4965 NB Boost. k=5 0.5002 

kNN k=5 0.6031 kNN Bag. k=5 0.5831 kNN Boost. k=5 0.6302 

RF 10 k=5 0.6203 RF 10 Bag. k=5 0.5097 RF 10 Boost. k=5 0.5000 
RF 20 k=5 0.6257 RF 20 Bag. k=5 0.5029 RF 20 Boost. k=5 0.5000 
RF 30 k=5 0.6493 RF 30 Bag. k=5 0.5032 RF 30 Boost. k=5 0.5000 

RF 40 k=5 0.6502 RF 40 Bag. k=5 0.5032 RF 40 Boost. k=5 0.5000 
RF 50 k=5 0.6532 RF 50 Bag. k=5 0.5032 RF 50 Boost. k=5 0.5000 
RF 60 k=5 0.6551 RF 60 Bag. k=5 0.5032 RF 60 Boost. k=5 0.5000 

RF 70 k=5 0.6537 RF 70 Bag. k=5 0.5000 RF 70 Boost. k=5 0.5000 
RF 80 k=5 0.6539 RF 80 Bag. k=5 0.5000 RF 80 Boost. k=5 0.5000 
RF 90 k=5 0.6542 RF 90 Bag. k=5 0.5000 RF 90 Boost. k=5 0.5000 

RF 100 k=5 0.6509 RF 100 Bag. k=5 0.5000 RF 100 Boost. k=5 0.5000 
SVM k=5 0.5700 SVM Bag. k=5 0.5046 SVM Boost. k=5 0.5000 
NN k=5 0.6393 NN Bag. k=5 0.5084 NN Boost. k=5 0.5000 

Abbreviations: Bag. Bagging, Boost. Boosting, ELM: Ensemble Learning Methods, AUC: Area Under the ROC Curve,        
CVM: Cross Validation Method, k: “k” fold cross validation, ID.3: Iterative Dichotomiser 3 C4.5: Extended version of ID.3,   
CART: Classification and Regression Trees, NB: Naive Bayes, kNN: k-Nearest Neighbor, RF: Random Forest,              
SVM: Support Vector Machine, NN: Neural Network (Table 5). 

  
Figure 2 shows comparison of AUC prediction 

performances of ELMs. It is seen that the application of 
single ELMs have superior performance results compared 
with Bagging and Boosting applications. In addition to that 
kNN, RF and NN has superior prediction performance 
compared with other ELMs. 

Kruskall Wallis Variance analysis test results shows that 
the difference between prediction performance results of 
ELM are statistically significant (X2 = 26.33; p<0.001).  

 

Table 6.  Kruskall Wallis Variance Analysis Test Results Difference 

 
ELM 

 
N 

Mean 
Rank Chi-Square 

 
p 

ELM-Single 17 40.53 

26.33 <0.001 ELM-Bagging 17 21.47 

ELM-Boosting 17 16 
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Figure 2.  Comparison of AUC Prediction Performances of ELM 

4. Conclusions 

Rare events and class imbalance are critical to prediction 
in the field of data mining and particularly data classification 
[30]. Thyroid disease dataset used in this study which is 
highly imbalanced. In this data 4.8% of the patients have 
hyperthyroid, 95.2% of them are not. ELM examined and 
compared to improve prediction performances and will 
achieve high classification accuracy. ID.3, C4.5, CART, NB, 
kNN, RF, SVM and NN were implemented on thyroid 
disease data. k=5 fold cross validation was implemented to 
achieve better performance results. Study results show that 
single ELM have superior performance compared with 
Bagging and Boosting applications. Moreover kNN, RF and 
NN have better prediction results compared with other ELM.  

Despite scholars suggest that “all models are wrong” and 
“no data are normally distributed” [31, 32]. This study 
examined a detailed preliminary analysis procedure to 
overcome measurement unit differences of predictive 
variables, multicollinearity problem and class imbalance of 
predictive variable and left-skewed distribution of cost data. 
Z transformation, Pearson correlation coefficient and natural 
logarithm of cost data implemented into the dataset. Highly 
skewed nature of cost data is not a new issue. It is highly 
believed that parametric models not work to handle highly 
positive skewed nature of cost data. However, for this study 
TSH cost data has a left-skewed distribution. QALYs 
distribution which takes less attention in the literature has 
heavy left tails the same with TSH cost data in this study. As 
a part of the preliminary analysis procedure TSH cost data 
normalized with Z transformation and after that natural 
logarithm was implemented. After normalization and Ln 
transformation the shape of TSH cost data became positively 
skewed. Finally, study results supports that kNN, RF and NN 
are prior algorithms are to handle imbalanced dataset to 
predict thyroid disease.  

A number of studies in the literature supports our study 
results and emphasize the superior performance of kNN, RF 
and NN. They have concluded that kNN, RF and NN are 
computationally efficient and better handle with highly 
imbalanced dataset. Moreover, they are more vulnerable to 
noise detection compared with other methods [33]. In 
addition to that, previous work has demonstrated that 
Bagging and Boosting are very effective methods for 
decision trees. However, there has been little empirical 
testing with NN. Previous authors are concentrated on 
decision trees due to their fast training speed and 
well-established default parameter settings [34]. As a 
support for previous study results, after performing extensive 
normalization, transformation and cross validation exercises, 
study results show that three of the ELMs performed well 
enough to be used in many application. One question is 
necessary to answer is why kNN was more effective than 
other classifiers. Horton and Nakai (1997) answers that 
question and suggests that other classifiers suffer from some 
shortcomings like data fragmentation and repeatedly 
partitioning [35]. From the other point of view, as kNN 
performs well with small number of input variables, but 
struggles when the number of inputs is very large. Also kNN 
works well if all the data has same scale. Thus, data 
normalization is a good idea to improve performance of kNN 
[36]. Chernozhukov et al. (2016) suggest that modern 
supervised machine learning methods are designed to solve 
prediction problems very well [37]. In order to avoid 
overfitting problem and improve prediction performance 
results, it is advisable to use a very broad set of ELMs to 
improve prediction performances. A number of studies in the 
literature compare prediction performances of different ELM. 
However, there is little evidence focus on rare diseases as an 
example of rare events. It is hoped that in the light of this 
study, future studies will applied aggregated methods on rare 
disease data to solve rare events problems. 

 

REFERENCES 
[1] M. Khalilia, S. Chakraborty and M. Popescu “Predicting 

Disease Risks from Highly Imbalanced Data Using Random 
Forest”, BMC Medical Informatics and Decision Modelling, 
vol. 11, no. 51, pp.1-13, 2011.  

[2] S. Ayme and J. Schmidtke “Networking For Rare Diseases: 
An Necessity for Europe”, Bundesgesundheitsblatt 
Gesundheitsforschung Gesundheitsschutz, pp. 1477-1483, 
2007.  

[3] P.K. Chan and S. J. Stolfo “Toward Scalable Learning with 
Non-Uniform Class and Cost Distributions: A Case Study in 
Credit Card Fraud Detection”, in Proceedings of the Fourth 
International Conference on Knowledge Discovery and Data 
Mining, pp.164–168, AAAI Press, 1998. 

[4] B. Busser, W. Daelemans and A. Bosch “Machine Learning 
Of Word Pronunciation: The Case Against Abstraction”, 
Sixth European Conference on Speech Communication and 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

ID
.3

C
4.

5
C

A
R

T
N

ai
ve

 B
ay

es
 

kN
N

R
F 

10
R

F 
20

R
F 

30
R

F 
40

R
F 

50
R

F 
60

R
F 

70
R

F 
80

R
F 

90
R

F 
10

0
SV

M
 

N
N

ELM-Single ELM-Bagging ELM-Boosting 



 American Journal of Bioinformatics Research 2017, 7(1): 1-8 7 
 

 

Technology-EUROSPEECH, Budapest, Hungary, 1999.  

[5] M. Kubat, R. C. Holte and S. Matwin (1998) “Machine 
Learning for the Detection of Oil Spills in Satellite Radar 
Images”, Machine Learning, vol. 30, no. 2, pp. 195-215.   

[6] J. Quigley, T. Bedford and L. Walls “Estimating Rate of 
Occurrence of Rare Events with Empirical Bayes: A Railway 
Application”, Reliability Engineering and System Safety, vol. 
92, no. 5, pp. 619-627, 2007.  

[7] T.B. Trafalis, H. Ince and M.B. Richman “Tornado Detection 
with Support Vector Machines”, International Conference on 
Computational Science, pp. 289-298, 2003.  

[8] Y. Zurynski, K. Frith, H. Leonard and E. Elliot “Rare 
Childhood Diseases: How Should We Respond”, Arch Dis 
Child, vol.93, pp. 1071-1074, 2008.   

[9] A. Briggs, R. Nixon, S. Dixon and S. Thompson (2005) 
“Parametric Modelling of Cost Data: Some Simulation 
Evidence”, Health Economics, vol. 14, no. 4, pp. 421-428. 

[10] W. Manning “Dealing with Skewed Data on Costs and 
Expenditures” Chapter 41, pp. 439-454. Jones A.M. (2006) 
The Elgar Companion to Health Economics, Second Edition, 
2006.  

[11] A. Manca and S. Palmer (2005) “Handling Missing Data in 
Patient-Level Cost-Effectiveness Analysis Alongside 
Randomized Clinical Trials”, Appl Health Econ Health 
Policy, vol. 4, no. 2, pp. 66-75. 

[12] L. Rokach “Ensemble Based Classifiers” Artificial 
Intelligence Review, vol. 33, no.1, pp. 1-39, 2010.   

[13] R. Chattamvelli “Data Mining Methods”, Alpha Science 
International, Oxford, UK, 2009.   

[14] N. S. Altman “An Introduction to Kernel and 
Nearest-Neighbor Nonparametric Regression”, The American 
Statistician. vol. 46, no. 3, pp. 175–185, 1992.  

[15] S. Russell and P. Norvig [1995]. Artificial Intelligence: A 
Modern Approach (2nd Ed.). Prentice Hall.  
ISBN 978-0137903955, 2003.  

[16] P. J. Lisboa and A. F. G. Taktak “The Use of Artificial Neural 
Networks in Decision Support in Cancer: A systematic 
review”, Neural Networks, vol. 19, no. 4, pp. 408-415, 2006.  

[17] L. Breiman “Bagging Predictors”, Machine Learning, vol. 24, 
no. 2, pp. 123-140, 1996.  

[18] Y. Freund and R. E. Schapire “Experiments with a New 
Boosting Algorithm”,  
http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAP
ERS/boosting-icml.pdf, 1996, Accessed on: 15.3.2017.  

[19] D. Opitz and R. Maclin “Popular Ensemble Methods: An 
Empirical Study”, Journal of Artificial Intelligence Research, 
vol. 11, pp. 169-198, 1999.  

[20] E. Bauer and R. Kohavi “An Empirical Comparison of Voting 
Classification Algorithms: Bagging, Boosting and Variants”, 
Machine Learning, vol. 36, no.1, pp. 105-139, 1999.  

[21] D. A. Davis, N. V. Chawla N., Blumm, N. Christakis, and A. 
L. Barabasi “Predicting Individual Disease Risk Based on 
Medical History”, Proceedings of the 17th ACM Conference 
on Information and Knowledge Management, pp. 769-778, 
2008.  

[22] S. T., Moturu, W. G. Johnson and L. Huan “Predicting Future 
High-Cost Patients: A Real World Risk Modeling 
Application”, Bioinformatics and Biomedicine, BIBM, IEEE 
International Conference, 2007. 

[23] D. Mantzaris, G. C. Anastassopoulos and D. K. 
Lymberopoulos (2008) “Medical Disease Prediction Using 
Artificial Neural Networks”,  
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=46967
82, 2008, Accessed on: 15.3.2017. 

[24] P. L. Hebert, L. S. Geiss and E. F. Tierney, M. M. Engelgau, 
B. P. Yawn and A. M. McBean “Identifying Persons with 
Diabetes Using Medicare Claims Data”, Am J Med Qual, vol. 
14, no. 6, pp. 270-277, 1999.   

[25] W. Yu, T. Liu, R. Valdez, M. Gwinn and M. J. Khoury 
“Application of Support Vector Machine Modeling for 
Prediction of Common Diseases: The Case of Diabetes and 
Pre-Diabetes”, BMC Medical Informatics and Decision 
Making, 10(1), pp.1-7, 2010.  

[26] W. Zhang, F. Zeng, X. Wu, X. Zhang and R. Jiang “A 
Comparative Study of Ensemble Learning Approaches in the 
Classification of Breast Cancer Metastasis”, Bioinformatics, 
System Biology and Intelligent Computing International 
Conference, pp. 242-245, 2009.  

[27] Hall J. Guyton and Hall Textbook of Medical Physiology 
(12th ed.). Philadelphia, Pa.: Saunders/Elsevier. ISBN 
978-1-4160-4574-8, 2011.  

[28] UCI Machine Learning Repository, Center for Machine 
Learning and Intelligent Systems, Thyroid Disease Data Set, 
https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease, 
Accessed on: 9.3.2017.  

[29] T. Hastie, R. Tibshirani and J. Friedman, The Elements of 
Statistical Learning Data Mining, Inference and Prediction, 
Springer, Second Edition, 2009.  

[30] M. Maalouf and T. B. Trafalis “Robust Weighted Kernel 
Logistic Regression in Imbalanced and Rare Events Data”, 
Computational Statistics & Data Analysis, vol. 55, no. 1, pp. 
168-183, 2011.  

[31] G. E. P. Box “Science and Statistics”, J Am Statist Assoc, vol. 
71, pp. 791-799, 1976.  

[32] M. R. Nester “An Applied Statistician’s Creed”, Appl Statist, 
vol. 45, no. 4, pp. 4001-410, 1996.  

[33] E. L. Cohen, C. A. Caburnay, D. A. Luke, S. Rodgers, G. T. 
Cameron and M. W. Kreuter (2004) “Cancer Coverage in 
General-Audience and Black Newspapers”, Health 
Communication, vol. 23, no. 5, pp. 427-435, 2004.  

[34] J. R. Quinlan “Bagging, Boosting and C4.5”, Proceedings of 
the Thirteenth National Conference on Artificial Intelligence, 
pp. 725–730, 1996.  

[35] P. Horton and K. Nakai “Better Prediction of Protein Cellular 
Localization Sites with the k Nearest Neighbors Classifier”, 
ISMB-97 Proceedings, pp. 147-151, 1997.  

[36] C. M. Ma, W. S. Yang and B. W. Cheng “How the Parameters 
Of K-Nearest Neighbor Algorithm Impact On The Best 
Classification Accuracy: In Case of Parkinson Dataset”, 
Journal of Applied Sciences, vol. 14, no. 2, pp. 171-176, 
2014.   

http://www.public.asu.edu/%7Ejye02/CLASSES/Fall-2005/PAPERS/boosting-icml.pdf
http://www.public.asu.edu/%7Ejye02/CLASSES/Fall-2005/PAPERS/boosting-icml.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4696782
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4696782
https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease


8 Songul Cinaroglu:  Ensemble Learning Methods to Deal with Imbalanced Disease and Left-Skewed Cost Data  
 

 

[37] V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. 
Hansen and W. Newey “Double Machine Learning for 
Treatment and Causal Parameters”, Cornell University 
Library, https://arxiv.org/abs/1608.00060, 2016, Accessed on: 
15.3.2017. 

 

 

 

 
 

https://arxiv.org/abs/1608.00060

	1. Introduction
	2. Metarials & Methods
	3. Results
	4. Conclusions

