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Abstract DNA microarray technology has revolutionized biological and medical research by enabling biologists to
measure expression levels of thousands of genes in a single experiment. Different computational techniques have been
proposed to extract important biological information from the massive amount of gene expression data generated by DNA
microarray technology. This paper presents a top down hierarchical clustering algorithm that produces a tree of genes called
GERC tree (GERC stands for Gene Expression Recursive Clustering) along with the generated clusters. GERC tree is an
amp le resource of biological information about the genes in an expression dataset. Unlike dendrogram, a GERC tree is not a
binary tree. Genes in a leafnode of GERC tree represent a cluster. The clustering method was used with real-life datasets and

the proposed method has been found satisfactory in terms of homogeneity, p value and z-score.
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1. Introduction

DNA microarray technology enables the biologists to
monitor expression levels of thousands of genes in a single
microarray experiment. There is a high demand of
computational techniques to operate on the massive amount
of expression data generated by DNA microarray technology
to extract important biological information. Due to the large
number of genes and complex gene regulation networks,
clustering is a useful exploratory technique for analyzing
such data. It groups data of interest into a number of
relatively homogeneous groups or clusters where the
intra-group object similarity is minimized and the
inter-group object dissimilarity is maximized. Problems of
automatically classifying data arise in many areas, and
hierarchical clustering can be a very good approach in
certain areas such as gene expression data analysis because it
can present a hierarchical organization of the clusters.

Extracting important biological knowledge from
biological data is a difficult task. One very useful approach
for providing insight into the gene expression data is to
organize the genes in a hierarchy of classes, where genes
in a class are more similar compared to its ancestor classes in
the hierarchy. In this paper, we present a polythetic divisive
hierarchical clustering algorithmthat operates in two distinct
steps. The first step generates a number of initial clusters and
in the second step, these initial clusters are further processed
to form a set of finer clusters. The algorithm advances
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clustering of microarray data in following ways (a)
Extraction of initial clusters is faster and it does not require
any proximity measure. (b) During discovery of final
clusters, a proximity measure referred here as MRD(Mean
Residue Distance) is used to find mutual distance among
genes within a particular initial cluster instead of operating
on the entire set. (c) The algorithm is capable of tuning the
threshold to be used to decompose a node to its child nodes
itself. (d) The algorithm stores the tree structure which can
be later used in different applications. (¢) The algorithm
allows overlapping of genes among child nodes of a
particular node.

The rest of the paper is organized as follows. In section 2,
we discuss related work. Section 3 presents the algorithm.
Experimental results are reported in section 4. Finally,
discussion and future work are reported in section 5 and
section 6 respectively.

2. Related Work

Hierarchical clustering usually generates a hierarchy of
nested clusters or, in other words, a tree of clusters, also
known as a dendrogram. Hierarchical clustering methods are
categorized into agglomerative (bottom-up) and divisive
(top-down). A large number of clustering techniques have
been reported for analyzing gene expression data, such as
Unweighted Pair Group Method with Arithmetic Mean
(UPGMA)[1], Self Organizing Tree Algorithm (SOTA)[2],
Divisive Correlation Clustering Algorithm (DCCA)[3],
Density-Based Hierarchical clustering method (DHC)[4] and
Dynamically Growing Self-Organizing Tree (DGSOT)[5].
Unweighted Pair Group Method with Arithmetic Mean
adopts an agglomerative method to graphically represent the
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clustered dataset. The method is much favored by many
biologists and has become one of the most widely-used tools
in gene expression data analysis. However, it suffers from
lack of robustness, i.e., a small perturbation of the dataset
may greatly change the structure of the hierarchical
dendrogram. DHC is a popular density based clustering
algorithm. DHC is developed based on ‘density’ and
‘attraction’ of data objects. In the first level, an attraction tree
is constructed to represent the relationship between the data
objects in the dense area which is later summarized to a
density tree. Another approach splits the genes through a
divisive approach, called the Deterministic-Annealing
Algorithm (DAA)[6]. Hierarchical clustering not only
groups together genes with similar expression patterns but
also provides a natural way to graphically represent the
dataset allowing a thorough inspection. However, like
UPGMA, a small change in the dataset may greatly affect the
hierarchical dendrogram structure. Another drawback is its
high computational complexity and vagueness of
termination criteria.

Table 1. Some existing hierarchical clustering techniques
Technique Approach Proximity Input
Measure Parameters
Euclidean / cut-off for
UPGMA Agglomerative Pearson's the
correlation dendrogram
Heterogeneity
Divisive threshold,
DGSOT Model-based Any Clust er
separation
threshold
Heterogeneity
SOTA Divisive Any thr'eshold,
Distance
value threshold
Radius
similarity
DHC Divisive, Pearson's threshold,
Density Based | cormrelation minimum
number of
objects

Based on ourselected survey, we have observed that most
of hierarchical algorithms focus on the final clusters.
Biologists are not only interested in the clusters of genes, but
also in the relationships (i.e. closeness) among the clusters
and their sub-clusters, and the relationship among the genes
within a cluster. A clustering algorithm, which also provides
some graphical representation of the cluster structure, is
much favored by the biologists. To address this issue, this
paper presents a hierarchical clustering algorithm GERC that
generates a tree along with the set of clusters.

3. The GERC Algorithm

GERC is a polythetic divisive hierarchical clustering
algorithm that operates in two distinct steps. This is an
extended version of the article[7] where the method was
introduced. In the first step of the algorithm, an initial cluster
is formed and this initial cluster is further processed in the
second step to form finer clusters. The algorithmaccepts four
input parameters i.e., reference gene, step down ratio,
preferred node volume and MRD threshold. However, the
last three parameters can be statistically computed from the
expression data. The technique can operate on any high
dimensional numeric domain.

3.1. Data Pre-processing

Often gene data available on the web are found to contain
missing values. The quality of clusters largely depends on
the handling of these missing values. Apart from missing
value handling, pre-processing also involves normalization
and discretization.

Handling missing val ues

We used the Local Least Squares Imputation method[8] to
compute missing values in the datasets. There are two steps
in the local least squares imputation method. The first step is
to select £ genes by Pearson correlation coefficient. The
second step is regression using the selected £ genes to
estimate the missing values.

Nor malizati on

The datasets are normalized using a common statistical
method that converts each gene to a normal distribution with
mean 0 and variance 1. This statistical method of
normalization is often termed as Z score normalization[9] or
Mean 0 Standard Deviation 1 normalization.

Discretization

The normalized matrix is discretized to a matrix by
comparing a value in a column with the value in the next
column of the same row. The normalized matrix consists of
three discrete values 1 (if the next value is larger) , -1 (if the
next value is smaller) and O (if the next value is equal). The
normalized matrix G can be converted to the discretized
matrix G¢ in the follo wing manner.

d 0, ifG(i,j)=G(i,j+])
G (i, j) =11, ifG(i,/)<G(i,j+)
-1, ifG(i,7)>G(i,j+])

3.2. Proximity Measure

In this paper, we introduce a simplified form of mean
squared residue measure, i.e., Mean Residue Distance(MRD)
to find mutual distance of two genes that aids in extracting
the coherent patterns in the expression matrix. Like mean
squared residue measure, MRD is a measure that works
satisfactorily to detect coherence of constant valued genes,
constant row genes, constant column genes and additive
genes. The significance of these correlations in clustering of
gene expression data is reported in[10]. Unlike MSR, MRD
can operate in mutual mode i.e., it can compute corre lation
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between a pair of genes. Next we discuss the mean squared
residue measure and then introduce MRD measure.
Mean S quared Residue

Mean squared residue is a measure that was used to find
coherent objects in a data matrix by[11]. They tried to find
out asubset of genes along with a subset of conditions which
has mean squared residue less than a threshold &. They
termed such subspace clusters as 0 biclusters.The measure is
still considered a strong one to detect coherent objects if it is
used carefully. Various subspace clustering algorithms use
mean squared residue directly or with a bit of modification.
Mean squared residue of an element a;; in gene expression
matrix is given by,
iJ

2
(al.j —a; —ay +a,;)

where,

a; ;= ] Zalj row mean of i gene,

jeJ
ap= 7 Zal] , row mean of j- J condition,
| | iel
1
a; =—— Z a;; , mean of the subspace cluster,
Yo ’

il ,jeJ
1 is the set of genes and

J is the set of conditions
Mean squared residue of a subspace cluster is computed

as,
H(T,J) = Z (a; —a, —a,+a, )2
| 1 || J | iel,jeJ U /
Represents Represenls gene

Row Mean Represents bicluster
mean

Represents column mean
of gene g1 A /
Row Mean

/ \ / uf gene
\/(Reprmgene a2

Visual interpretation of Mean Squared Residueo

Represents

Figure 1.

Fig. 1 presents visual interpretation of MSR for two gene
expressions gl and g2. From the visual interpretation, it can
be clearly stated that the measure can be effectively used to
find mutual distance between two genes under a defined set
of conditions. The proposed MRD measure is based on this
fact. However, considering the cost effectiveness without
deteriorating the cluster quality we simp lify this measure by
replacing the squaring operation with a modulus or absolute
operation. Apart from this, the proposed measure is used in
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extracting finer subspace clusters from the initial subspace
cluster in step 2 of the proposed algorithm.
Mean Residue Distance

The mean residue distance ofan element a; of gene g;=(a;,
as,..., a,) with respect to another element b; of gene g,=(b,,
b,,..., b,) is defined as,

MRD,(g,,g,) =] a,—a

Where a,,q,, is the mean ofall the elements of g; and b,
is the mean of all the elements of g,. MRD of the gene pair g;
and g, with respect to a subspace of conditions A can be
computes as,

MRD}, (gl9g2) = Z' ai o amean _bi +bmean |

ied

Following definitions and theorems provide the
theoretical basis and soundness of the proposed measure
based on [12].

Definition 1: Coherent genes: Two genes are called
coherent if similarity between the two genes is more than a
given threshold in terms of a particular proximity measure.

Definition 2: Expression pattern: The expression pattern
of a gene is defined as the discretized form of the gene
expression values. Two genes are said to have similar
expression pattern if their discretized values are same.
Mathematically, two genes g; and g; have similar expression
pattern if

—b +b

mean mean

d d
G (i,k)=G (jk), fork=1,2,3,

Where n is the total number of conditions.

Definition 3: Constant valued genes: For two genes
gi=(a;, a.., a,) and g=(b;, by.., b, if
aj=a;=..=a,=b;=b,=...=b,, then the genes are called
constant valued genes.

Definition 4: Constant row genes: For two genes g;=(a;,
a..., a,) and g=(b;, b,,.. by, if a;=a,=..=a, and
b;=b,=...=b,, then the genes are called constant row genes.

Definition 5: Constant column genes: For two genes
g,=(a1, ay,..., 11,1) and gj=(b1, bz,..., bn), lf a1=b1, a2=b2, veey
a,=b,, then the genes are called constant column genes.

Definition 6: Additive genes: For two genes g;=(aj,
a...a,) and g=(b;, by..b,) if b;=a;+d, b,=ar+d, ..,
b,=a,+d, where d is an additive constant, then the genes are
called additive genes.

Properties of MRD

The MRD measure is capable of detecting four types of
coherence (a) Coherence among constant valued genes (b)
Coherence among constant row genes (c) Coherence among
constant column genes (d) Coherence among additive genes.
Next we present some of the properties of MRD.

Theorem 1. MRD of two constant valued genes is always
zero.
Proof:

Let the two genes be g,=(a,, a.,..., a,) and g.:=(b.b,,..., b,).
Since the two genes are constant valued so

a,=a,=..=a,=b,=b,=..=b,=x (say).

Now mean of the two genes will be, @ yea=b yer=X.
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MRD{I,Z,...J!} (gl’gZ) = Zl| a; = Ayyean _bi + bmean |
= Z| ai _amean _bi +bmean |
i=l

n
=Z|x—x—x+x|
i=1
=0

Theorem 2. MRD oftwo constant row genes is always zero.
Proof:

Let the two genes be gj=(ay, ay,..., a,) and g2=(b1,b,..., b,).

Since these are constant row genes, S0 a;=a;=az=...=a,=x
(say) and b;=b,=b;=...=b,=y (say).

n

1
_E;x

:l(nxx)
n

Now mean of the first gene, a

mean

=X

Similarly mean of second gene b

MRD{l,Z ..... n}(g1ag2):Z|ai_a b, +b,.0 |
o1
=Z|(ai
i

mean) (b
= 1x-x)-(y-)]
i=1

mean ) |

Theorem 3. MRD of two constant column genes is always
zero.
Proof:

Let the two genes be g,=(a,, a.,..., a,) and g,=(b,b,,..., b,).
Since these are constant column genes, so a;=b;, a,=b,,...,
a,=b,.

Now mean of two genes will be ayeun=bmen=m(say).

n
MRD{I,Z ..... n}(gUgZ) = Z| ai _amean _bi +bmean |
i=l1
n
= Z| ai _amean _bi +bmean |

i=l

=1 (@, ~b)~(m-m)
=0

Theorem 4. MRD oftwo additive genes is always zero.
Proof:
Let the two genes be g,=(a,, a.,..., a,) and g,=(b,b,,..., b,).
Since the genes are additive, so b;=a;+d, for i=1,2,3,...n
Here d is an additive constant.

n
Now mean of the first gene a

mean ~

Mean of the second gene b

mean= —_ __

—b+b,. |

mean mean

RD{I,Z,...,n} (g1,8,))= ZI:| a;,—a

mean) |

= z’ (at' _bi)_(amean -b
i=1

:i|(ai—ai—d)—(m—m—d)|

Fonit a0de
G ostaming all gnes
D il duster
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Figure 2. Structure of GERCtree

3.3. GERC Tree

Our algorithm results a tree called GERC tree. The leaves
of this tree present the generated clusters of the algorithm.
This tree can be used to derive additional biological
information from a gene expression dataset. The overall
structure of the tree generated for more than one reference
gene is presented in Fig. 2.

Dendrogram versus GERC tree

A dendrogram is binary tree that presents the hierarchical
structure ofthe clusters generated by a hierarchicalalgorithm.
In divisive hierarchical algorithm, dendrogram is obtained
by recursively splitting anode containing a set of objects into
two child nodes based on the similarity among the object
pairs until all nodes have a single object. Conversely, in
agglomerative approach, the nodes containing a single object
are recursively merged until all the objects are in the root
node. But in our algorithm, GERC tree is obtained by
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recursively splitting a single node containing the set of all
objects into multiple nodes(with possibly common objects)
until number of objects in all the processing nodes is less
than or equal to a user given threshold, i.e. preferred node
volume. Unlike Dendrogram, GERC tree is not a binary tree
and the structure of the tree is flexible depending on the
values of the set of input parameter. The structural difference
between dendrogram and GERC tree is presented in Fig. 3.

-'"r . Il'I "I I,'II IIIII'.l III:. I.'I Iulll l:'"
O 0000 OO0
(a) Dendrogram
g A
-~ ) .,

J | L |I ] | k!
clioNeoleleleNoRolle
(b) GERC Tree
Figure 3. Dendrogram versus GERC tree

Table 2. Comparison of Dendrogram VS GERC Tree

Dendrogram GERC tree
Tree Structure Binary General
Overlapped objects
in childnodes No Yes
Tree structure
depends on Input Usually not Yes
parameters

Table 2 presents a general comparison of dendrogram and
GERC tree. GERC tree conveys a more exhaustive set of
information to the users. User can look for the nodes in the
tree that is flourished in terms of their functional enrichment.
Moreover, we can trace the path of a particular gene from the
root node to the leaf nodes which may be useful to find its
co-members in a particular functional category. This tree can
also be useful to derive relationship in terms of their
regulatory information such as co-regulation.

3.4. Proposed Algorithm: GERC

Following definitions, symbols and notations are used to
describe the GERC algorithm.
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Table 3. Symbolic representations

SYMBOL MEANING
N, Total nunber of condtions
R, Reference gene
n No of genes
G The gene expression matrix
G Discretized gene expression matrix
g i™ gene
T Preferred Node Volume
C Initial Cluster
n@) i"node of thetree
N, Number oftree nodes
dist(2,g) MRD between i and j® genes as inthe distance
’ matrix
o MRD threshold
) Step down ratio
Neighbour Neighbours of i gene with respect to MRD
p(g) threshold B
Exp(g) Expression pattem o.f i gfznepresept edby i" rowof
the discretized matrix
father(n(j)) father of j" node
degreepg Degree of i" gene with respectto MRD threshold p
n(j)threshold MRD threshold of j® tree node
The root node of the GERC tree
() containingall the genes

Definition 7: Neighbour: Two genes g;and g; are said to
be neighbours of each other with respect to a threshold g if
dist(g.g)<p.

Definition 8: Degree: The degree of a gene g; with respect
to threshold f is defined as the number of genes which are
within the fneighbourhood of g;.

Definition 9: Initial Cluster: An initial cluster is defined as
a subset of genes S such that for any two genes g;, g; in S,
Exp(gi) =Exp(gi) in terms of at least (Nc/2)+1 numbers of
conditions.

Definition 10: Finer Cluster: A finer cluster is defined as a
set of genes S such that for any two genes gi, gjin S

i Exp(gi) = Exp(gi) in terms of (Nc¢/2)+1 numbers of
conditions.

i dist(gigi)<= o xa, where [ is greater than or equal to
the level of the node to which the finer cluster is associated.

The GERC algorithmconsists oftwo steps. In the first step
of GERC, all genes which have expression pattern similar to
the reference gene in terms of (N¢/2)+ 1 number of conditions
are put in an initial cluster. In the second step of the
algorithm, the initial clusters are processed to produce finer
clusters. While processing an initial cluster, all genes are put
in the root node. Then iterative clustering is performed using
a tuned MRD threshold on genes of each node to produce its
child nodes. The process is repeated till all nodes in the tree
contain a number of genes greater than user specified
preferred node volume. The tuning of MRD threshold is
governed by the user defined parameter step down ratio. The
leaves of the tree represent the generated clusters. The
algorithm can be used to produce a wide range of clusters by
considering more than one reference gene. The detail of the
algorithm is presented next.
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STEP 1:

Place R, in C.

Add all genes g, in C such that

Exp(g,) = Exp(R,) in terms of N, conditions.
STEP 2:

Place all the genes g, such that g, € C in 7(1).

Initialize NV, to 1.
n(l).threshold = <.
o
j=L
Whilej < N, and number of genes in 7(j) 2T do

Compute distance matrix for all genes g, such
that g, € 7(j)using MRD.

Compute degree”(j)_t,1resholdX§(gk) and

neighbor, ) o5 (&4) for each g e ().
Place all genes g, €7(j) in L.
While L is not empty do
Find g, € L such that degree, (g, ) is highest.
Increment N, .
Create a new node 7(N, ).

Place neighbort, ;) jeinotaxs (8n) and g, in
7,(N,).
n(N, ).threshold =n(j).threshold x 5.
father(7(N,)=n())-
Remove g, and neighbor, ) ..co1axs (g.)
from L.
end while
if n(N,)) is the only child of father(77(N,)) then
Decrement N,,.
n(j).threshold =n(j).threshold x 6.
Decrement j.
else
Increment j.
end if
end while

father(7(1)) = 1(0).

In GERC, the reference gene is used as an input parameter.
The algorithm tries to find the initial cluster to which this
gene potentially belongs to. While finding this initial cluster
it tries to locate all genes which have similar expression
pattern with the reference gene in terms of at least (Nc/2)+1
number o fconditions. If we want to explore the entire dataset
we can use each of the available genes or a set of
stochastically selected genes as reference genes. Once we
discover the initial clusters we move to step 2 of the
algorithm. In the second step, we create a single node first
with all genes of the initial cluster in it and then iteratively

cluster each node(having genes more than preferred volume
umber of genes) of the tree until all the processing nodes in
the tree have less than or equal to preferred volume number
of genes. The input parameter step down ratio is actually
used to reduce the value of MRD threshold as towards leaf
nodes of the tree the similarity among genes increases and
require a smaller value of MRD threshold. e.g. if the MRD
threshold provided by user is 1 and step down ratio is .5, then
the first node will use 1 as its MRD threshold while
clustering. On successful division of the node to its children,
the successive level nodes will use
thresholds .5(1*%.5),.25(.5*.5) .... and so on. Finally the
sub-trees (one sub-tree in case of single reference gene)
generated from the initial clusters are combined to form the
GERC tree. The roots of these subtrees are made children
of a single node that contains the set of entire genes and this
node becomes the root of generated GERC tree.

3.5. Complexity Analysis

Since GERC involves two distinct steps, hence the total
complexity is the sum of the comp lexities of these two steps.
Let a dataset contains » number of genes. In the first step of
the algorithm, the total number of comparisons done to put
all n number of genes in the initial cluster is n-1. In the
second step, if the number of genes in the initial cluster is p,
the computation of distance matrix involves px(p-1)/2
operations. If the average number of genes in the non leaf
nodes is m and the total number of non leaf nodes is /,
creating the child nodes and hence the entire tree requires
I*m operations. So complexity of the second step is O

(px(p-1)/2+ 1*m).

4. Experimental Results

We implemented the GERC algorithm in MATLAB and
tested it on four publicly available benchmark microarray
datasets mentioned in Table 4. The test platform was a
desktop PC with Intel Core 2 Duo 2.00 GHz processor and
512 MB memory running Windows XP operating system.
Fig. 5, 6 and 7 present a part of the tree generated from an
initial cluster for Dataset 2, Dataset 3 and Dataset 4
respectively.

4.1. Cluster Quality

The GERC algorithm was compared with various
clustering algorithms and the results were validated using
average homogeneity score[18], p value[19] and zscore[20].

Cluster Homogeneity: Homogeneity measures the quality
of clusters on the basis of the definition of a cluster i.e.,
Objects within a cluster are similar while objects in different
clusters are dissimilar. It is calculated as follows.

(a) Compute average value of similarity between each
gene g; and the centroid of the cluster to which it has been
assigned.

(b) Calculate average homogeneity for the clustering C
weighted according to the size of the clusters.



Hasin Afzal Ahmed et al.:

Autotuned Multilevel Clustering of Gene Expression Data 74

Table 4. Datasets used for experimental results

Name Source Instances Attributes
Subset of Yeast Cell .
Dataset 1 Cycle[13] http:/faculty. washingt on.edw/ 384 17
Dataset 2 Yeast Diauxic http:/www.ncbi.nlm.nih.gov/geo/quer 6089 7
Shift [14] P-/WWW-NCOL I I EOV/BE0/query
Dataset 3 Yeast Cellcycle [15] Sample mput files in expander [17] 698 72
Yeast . .
Dataset 4 Sporulation [16] http:/cmgm.standford.edw/pbrown/sporulation 474 7

The homogeneity values for the GERC algorithm and

some other algorithms are reported in Table 5. It can be
observed that the homogeneity value for GERC is highest
from which we can conclude that the coherence of the
clusters produced by GERC are better than those produced
by competing algorithms.
p value:The biological relevance of a cluster can be verified
based on the gene ontology (GO)
annotation databasehttp://db.yeastgenome.org/cgi-bin/ GO/-
goTermFinder. It is used to test the functional enrichment of
a group of genes in terms of three structured controlled
ontologies, viz., associated biological processes, molecular
functions and biological components. The functional
enrichment of each GO category in each of the clusters
obtained is calculated by its p-value.

The p-value is computed using a cumulative hyper
geometric distribution. It measures the probability of finding
the number of genes involved in a given GO term (i.e.,
function, process and component) within a cluster. The genes
in a cluster are evaluated for the statistical significance by
computing the p-value for each GO category. This signifies
how well the genes in the cluster match with different GO
categories. The p-value represents the probability of
observing the number of genes froma specific GO functional
category within each cluster. A low p-value indicates the
genes belonging to the enriched functional categories are
biologically significant in the corresponding clusters.

To compute p-value, we used the software
FuncAssociate[19].  FuncAssociate  computes  hyper
geometric functional enrichment score based on Molecular
Function and Biological Process annotations. The enriched
functional categories for some of the clusters obtained by
GERC on Datasets 1, 2 and 4 are listed in Tables 6, 7 and 8
respectively. The functional enrichment ofeach GO category
in each of the clusters is calculated by its p-value. To restrict
the size of the article we have reported p-values of only three
clusters. The clusters contain the highly enriched cellular
components of DNA metabolic process, DNA replication,
chromosome, chromosomal part, cell cycle, sporulation, cell
differentiation, developmental process, meiosis cellular
component assembly involved in morphogenesis, catalytic
activity, carbohydrate metabolic process etc with p-values of
1.67x 10~-11, 2.34 x 10"-12 , 1.49x 10"-5, 1.98 x10*-12,
1.12x107-10, 1.00x 10*-13 , 1.00 x 10*-13, 1.42 x 10*-11,
1.54x107-16,8.31x 10*-12, 1.35x10"-14 and 4.09 x107-09 ,

respectively. From the Tables, we can conclude that GERC
shows a good enrichment of functional categories and
therefore projects a good biological significance.

Table 5. Homogeneity values for GERC and other comparable algorithms

Datasets | Method Applied [ No. of clusters Homogeneity
K-Means™ 16 0.671
som* 16 0.710
Datasetl Click 3 0.549
DCCA 15 0818
GERC 10 0.878
K-Means 5 0.577
SOM 6 0514
Dataset3 Click 5 0.501
DCCA” 43 0.699
GERC 11 0.805
Table 6. P-value of some ofthe finer clusters for Dataset 1
Cluster p-value GO number GO category
Cl 1.09E-05 | GO:0000731 | DNA synthesis involved in
DNA repair
307E-06 | GO:0005657 replication fork
457E-06 | GO:0007064 mitotic sister chromatid
cohesion
1.08E-05 [ GO:0007062 sister chromatid cohesion
6.63E-05 | GO:0006302 | double-strand break repair
1.67E-05 | GO:0006260 DNA replication
9.68E-06 | GO:0006281 DNA repair
224E-05 | GO:0006974 response to DNA damage
stimulus
9.84E-06 | GO:0006259 DNA metabolic process
8.55E-05 | GO:0033554 cellular response to stress
C2 5.67E-05 | GO:0043596 nuclear replication fork
2.79E-08 | GO:0005657 replication fork
649E-08 [ GO:0007064 mitotic sister chromatid
cohesion
384E-07 | GO:0007062 | sister chromatid cohesion
2.34E-12 | GO:0006260 DNA replication
523E-05 | GO:0000781 chromosome, telomeric
region
198E-12 | GO:0044427 chromosomal part
1.67E-11 | GO:0006259 DNA metabolic process
3.68E-08 | GO:0022402 cell cycle process
2.02E-07 | GO:0005634 nucleus
7.58E-06 | GO:0048519 negative regulation of
biological process
1.35E-09 | GO:0044454 nuclear chromosome part
C3 581E-05 | GO:0005856 cytoskeleton
475E-05 | GO:0051301 cell division
439E-05 | GO:0016458 gene silencing
495E-05 | GO:0040029 regulation of gene
expression, epigenetic
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Table 7. p-value of some of the finer clusters for Dataset 2
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Table 8. p-value of some of the finer clusters for Dataset 4

Clust | pvalue GO number GO category Clus p-value GO number GO category
er ter
Cl 929507 | GO-0006486 protein amino acid Cl 1.00E-13 GO:0030154 cell differentiation
929E-07 | GO:0043413 elycosylation oo | comans Shorulation
929E-07 | GO:0070085 biopolymer glycosylation e ’ P smetru 1ofn resuu11ng n
4.09E-09 | GO:0005975 cosylation Ortaion o1 ce At Spote
135E-14 | GO-0003824 carb(z)g}l;drast}; metabolic 142E-11 G0:0032502 developmental process
7.48E—08 GO:001 6740 process 6.63E-05 [ GO:0007131 reciprocal meiotic
’ L recombination
II9E-07 | GO:0006914 t;ﬁ;‘fmﬁe"‘fzﬁ 412E-09 | GO:0035825 | reciprocal DNA recombination
autophagy Y 7.76E-08 | GO:0051445 | regulation of meiotic cell cycle
C2 1.78E-06 GO:0006646 phosphatidylethanolamine
biosynthetic process - —
178E-06 | GO:0046335 | cthanolamine biosynthetic C2 | 768E-08 | GO:0070192 Chmm"“’;’gzl‘fe%m‘m‘m
process . .. L
. . 6.11E-08 [ GO:0007131 | reciprocal eiotic recombination
297E- : hanol. li . L
2oTE06 | GO00ss | cthanolamine mctabolic 6.11E-08 | GO:0035825 | reciprocal DNA recombination
: : ethanolamine i derivative 1.54E-16 | GO:0007126 meiosis
. 121E-08 | GO:0030154 cell differentiation
2 97EA :004 1 . .
9TE-06 G0:0046337 phoglft;ﬁ:yiztﬁzzf;;me 121E08 [ GO:0030435 sporulation resulting
977608 | GO:0051123 metabolic process information ofa cellular spore
transeriptional preinitiation 121E-08 | GO:0043934 sporulation
1 08E-06 GO:0005669 complex assembly 1.67E-16 | GO:0022402 cell cycle process
’ ’ transcription factor T FIID 368E-08 | GO:0022402 | anatomical structure formation
. 2.02E-07 [ GO:0005634 involved in morphogenesis
1.25E-06 | GO:0000124 complex 435E09 | GO:0048646 negative regulation of
1.71E-08 | GO:0000114 SAGA complex bg o ig”
regulation oftranscription ,10 ogical process
during G1 phase of miotic 1.35E-09 | GO:0010564 | regulation of cell cycle process
1 43E-06 GO:0070461 cell eycle C3 343E-11 [ GO:0030476 ascospore wall assembly
1.63E-06 | GO:0045859 SAGA-type complex 343E-11 | GO:0042244 spore wall assembly
regulation of protein kinase 343E-11 GO:0071940 | fungal-type cell wall assembly
189606 | Go:0043549 ativity 424E-11 | GO:0070726 cell wall assembly
251E06 | GO:0051338 | regulation ofkinase activity 831E-12 [ GO:0010927 | cellular component assembly
1.13E-09 GO:0051726 regulation oftransferase involved n morphogenesm
activity 6.19E-09 [ GO:0030154 cell differentiation
regulation of cell cycle 6.19E-09 [ GO:0030435 sporulation resulting in
proteasome complex formation of a cellular spore
6.19E-09 [ GO:0043934 sporulation
1.07E07 [ GO:0048869 | cellular developmental process
641E-07 [ GO:0003006 developmental process
z-score: Weused Gibbons ClusterJudge[20]tool to calculate involved in reproduction
the z-score. A highervalue of z-score indicates that genes are 3.73E-09 | GO:0032502 developmental process
better clustered by function, indicating a more biologically
relevant clustering result. Table 10 presents generated £
average z-score of GERC along with some other clustering r

algorithm. From the results it can be observed that GERC
performed satisfactorily compared to the other algorithms in
terms of z-score.

5. Discussion

We have presented here a clustering algorithm that
generates a tree where the children of a node represent the
clusters that are formed fromthe genes in that node. The leaf
nodes of the tree will represent the desired clusters. We keep
on reducing the threshold used in the clustering process as
we move on to deeper levels. The structure of the generated
tree is driven by the input parameters. The input parameters
T and & controls the height/depth of the tree. If we set the
value of T large the genes in the root node will split to the
leafnodes in a few numbers of levels.
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| Depth af the tree o ‘,—‘ ~ﬁ/
g--a--"""" "a"

D 1 1 1 1 1 1
0 0.1 02z 03 04 05 06 07 08 089 1
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Figure 4. Tuningthe value of 3 for Dataset 3
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If we set the value of 6 small, it will lead to fewer levels as
the difference between the thresholds used in the subsequent
levels will become larger. a (MRD threshold) should be
carefully chosen. A small value of o may leave out some
upper levels of the hierarchical tree. The effect of these
parameters on the tree structure is presented in Table 9. To
decide the value of &, we drew two graphs (Fig. 4), one for
number of nodes and another one for depth of the sub tree
generated froman initial cluster against different values of 6.

We used a trade off between these two graphs and decided to
use 0.7 as the value of § for yeast cell cycle dataset.

Table 9. Effect of Input Parameters

0 o T No of nodes Depth
04 2 10 11 3
09 2 10 16 7
0.7 2 3 33 5
0.7 2 12 7 2

6. Conclusions and Future Work
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generated clusters. The algorithm can be used to generate a
wide range of clusters by considering multiple reference
genes. Clustering performed in the nodes at different levels
of GERC tree adaptively chooses the values of threshold
parameters. The complexity of our approach can be
improved by using an appropriate heuristic method for
estimating an effective set of parameter values which will
guarantee for quality cluster results. The value of o and R can
also be calculated statistically from the set of input genes.
Work is underway for integrating prior biological
information to the clustering process to improve the results.

Table 10. z-scores for AMC and some counterparts for Dataset 2

Methiod Applied Z-score
K means[16] 5.57
SOM[17] 5.78
DCCA[3] -0.78
GenClus[18] 7.39
AMC 7.35

In this paper, we present a top down hierarchical clustering
algorithmthat produces a tree of genes in the neighbourhood
of a reference gene called GERC tree along with the
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Figure 5. Tree generated from an initial cluster for yeast Dataset 2
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Figure 6. Tree generated from an initial cluster for yeast Dataset 3

Figure 7. Tree generated from an initial cluster for yeast Dataset 4
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