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Abstract  DNA microarray technology has revolutionized  biological and medical research by enabling bio logists to 
measure expression levels of thousands of genes in a single experiment. Different computational techniques have been 
proposed to extract important biological information from the massive amount of gene expression data generated by DNA 
microarray technology. This paper presents a top down hierarchical clustering algorithm that produces a tree of genes called 
GERC tree (GERC stands for Gene Expression Recursive Clustering) along with the generated clusters. GERC tree is an 
ample resource of biolog ical information about the genes in an expression dataset. Unlike dendrogram, a GERC tree is not a 
binary tree. Genes in a leaf node of GERC t ree represent a cluster. The clustering method was used with real-life datasets and 
the proposed method has been found satisfactory in terms of homogeneity, p value and z-score. 
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1. Introduction 
DNA microarray technology enables the biologists to 

monitor expression levels of thousands of genes in a single 
microarray experiment. There is a high demand of 
computational techniques to operate on the massive amount 
of expression data generated by DNA microarray technology 
to extract important biological informat ion. Due to the large 
number of genes and complex gene regulat ion networks, 
clustering is a useful exp loratory technique for analyzing 
such data. It groups data of interest into a number of 
relatively homogeneous groups or clusters where the 
intra-group object similarity is min imized and the 
inter-group object dissimilarity is maximized. Problems of 
automatically classifying data arise in many  areas, and 
hierarchical clustering can be a very good approach in 
certain areas such as gene expression data analysis because it 
can present a hierarchical organizat ion of the clusters. 

Ext ract ing  importan t  b io log ical knowledge fro m 
biological data is a difficult task. One very useful approach 
for prov iding  ins ight into  the gene expression data is to 
organize the genes  in a hierarchy of classes, where  genes 
in a class are more similar compared to its ancestor classes in 
the hierarchy. In this paper, we present a polythetic div isive 
hierarchical clustering algorithm that operates in two distinct 
steps. The first step generates a number of init ial clusters and 
in the second step, these initial clusters are further processed 
to fo rm a set o f finer clusters . The algorithm advances  
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clustering of microarray data in following ways (a) 
Extraction of in itial clusters is faster and it does not require 
any proximity measure. (b) During discovery of final 
clusters, a proximity measure referred here as MRD(Mean 
Residue Distance) is used to find mutual distance among 
genes within a particular initial cluster instead of operating 
on the entire set. (c) The algorithm is capable of tuning the 
threshold to be used to decompose a node to its child nodes 
itself. (d) The algorithm stores the tree structure which can 
be later used in different applications. (e) The algorithm 
allows overlapping of genes among child nodes of a 
particular node. 

The rest of the paper is organized as follows. In section 2, 
we discuss related work. Section 3 presents the algorithm. 
Experimental results are reported in section 4. Finally, 
discussion and future work are reported in section 5 and 
section 6 respectively. 

2. Related Work 
Hierarchical clustering usually generates a hierarchy of 

nested clusters or, in other words, a  tree of clusters, also 
known as a dendrogram. Hierarch ical clustering methods are 
categorized into agglomerative (bottom-up) and div isive 
(top-down). A large number of clustering techniques have 
been reported for analyzing gene expression data, such as 
Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA)[1], Self Organizing Tree Algorithm (SOTA)[2], 
Div isive Correlat ion Clustering Algorithm (DCCA)[3], 
Density-Based Hierarch ical clustering method (DHC)[4] and 
Dynamically Growing Self-Organizing Tree (DGSOT)[5]. 
Unweighted Pair Group Method with Arithmetic Mean 
adopts an agglomerat ive method to graphically represent the 
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clustered dataset. The method is much favored by many 
biologists and has become one of the most widely-used tools 
in gene expression data analysis. However, it suffers from 
lack of robustness, i.e., a small perturbation of the dataset 
may great ly change the structure of the hierarchical 
dendrogram. DHC is a popular density based clustering 
algorithm. DHC is developed based on ‘density’ and 
‘attraction’ of data objects. In  the first level, an attraction t ree 
is constructed to represent the relationship between the data 
objects in the dense area which is later summarized to a 
density tree. Another approach splits the genes through a 
divisive approach, called  the Determin istic-Annealing 
Algorithm (DAA)[6]. Hierarchical clustering not only 
groups together genes with similar expression patterns but 
also provides a natural way to  graphically represent the 
dataset allowing a thorough inspection. However, like 
UPGMA, a s mall change in the dataset may greatly  affect the 
hierarchical dendrogram structure. Another drawback is its 
high computational complexity and vagueness of 
termination criteria. 

Table 1.  Some existing hierarchical clustering techniques 

Technique Approach Proximity 
Measure 

Input 
Parameters 

UPGMA Agglomerative 
Euclidean / 
Pearson's 

correlation 

cut-off for 
the 

dendrogram 

DGSOT Divisive, 
Model-based Any 

Heterogeneity 
threshold, 

Cluster 
separation 
threshold 

SOTA Divisive Any 

Heterogeneity 
threshold, 
Distance 

value threshold 

DHC Divisive, 
Density Based 

Pearson's 
correlation 

Radius 
similarity 
threshold, 
minimum 
number of 

objects 

Based on our selected survey, we have observed that most 
of hierarch ical algorithms focus on the final clusters. 
Biologists are not only interested in the clusters of genes, but 
also in the relationships (i.e . closeness) among the clusters 
and their sub-clusters, and the relat ionship among the genes 
within a cluster. A clustering algorithm, which also provides 
some graphical representation of the cluster structure, is 
much favored by the biologists. To address this issue, this 
paper presents a hierarchical clustering algorithm GERC that 
generates a tree along with the set of clusters. 

3. The GERC Algorithm 

GERC is a polythetic divisive hierarchical clustering 
algorithm that operates in two  distinct steps. This is an 
extended version of the article[7] where the method was 
introduced. In the first step of the algorithm, an in itial cluster 
is formed and this init ial cluster is further processed in the 
second step to form finer clusters. The algorithm accepts four 
input parameters i.e., reference gene, step down ratio, 
preferred node volume and MRD threshold. However, the 
last three parameters can be statistically computed from the 
expression data. The technique can operate on any high 
dimensional numeric domain. 

3.1. Data Pre-processing 

Often gene data available on the web are found to contain 
missing values. The quality of clusters largely depends on 
the handling of these missing values. Apart from missing 
value handling, pre-processing also involves normalization 
and discretization. 
Handling missing values 

We used the Local Least Squares Imputation method[8] to 
compute missing values in the datasets. There are two steps 
in the local least squares imputation method. The first step is 
to select k genes by Pearson correlation coefficient. The 
second step is regression using the selected k  genes to 
estimate the missing values. 
Normalization 

The datasets are normalized using a common statistical 
method that converts each gene to a normal distribution with 
mean 0 and variance 1. This statistical method of 
normalizat ion is often termed as Z score normalization[9] or 
Mean 0 Standard Deviat ion 1 normalization. 
Discretization 

The normalized matrix is  discretized to a matrix by  
comparing a value in a column with the value in the next 
column of the same row. The normalized matrix consists of 
three discrete values 1 (if the next value is larger) , -1 (if the 
next  value is s maller) and 0 (if the next  value is equal). The 
normalized matrix G can be converted to the discretized 
matrix Gd in the fo llowing manner. 

0, if ( , ) ( , 1)
( , ) 1, if ( , ) ( , 1)

1, if ( , ) ( , 1)

G i j G i jd
G i j G i j G i j

G i j G i j

 = + 
 = < +
 − > +   

3.2. Proximity Measure 

In this paper, we introduce a simplified form of mean  
squared residue measure, i.e., Mean Residue Distance(MRD) 
to find mutual distance of two genes that aids in extracting 
the coherent patterns in the expression matrix. Like mean 
squared residue measure, MRD is a measure that works 
satisfactorily  to detect coherence of constant valued genes, 
constant row genes, constant column genes and additive 
genes. The significance of these correlations in clustering of 
gene expression data is reported in[10]. Unlike MSR, MRD 
can operate in mutual mode i.e., it can compute correlation 
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between a pair of genes. Next we d iscuss the mean squared 
residue measure and then introduce MRD measure. 
Mean S quared Residue 

Mean squared residue is a measure that was used to find 
coherent objects in a data matrix by[11]. They tried to find 
out a subset of genes along with a subset of conditions which 
has mean squared residue less than a threshold δ. They 
termed such subspace clusters as δ biclusters.The measure is 
still considered a strong one to detect coherent objects if it is 
used carefully. Various subspace clustering algorithms use 
mean squared residue directly or with a bit of modificat ion. 
Mean squared residue of an element aij in gene expression 
matrix is given by, 

2

,
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Mean squared residue of a subspace cluster is computed 
as, 
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Figure 1.  Visual interpretation of Mean Squared Residueo 

Fig. 1 presents visual interpretation of MSR for two  gene 
expressions g1 and g2. From the visual interpretation, it can 
be clearly stated that the measure can be effectively used to 
find mutual d istance between two genes under a defined  set 
of conditions. The proposed MRD measure is based on this 
fact. However, considering the cost effectiveness without 
deteriorating the cluster quality we simplify this measure by 
replacing the squaring operation with a modulus or absolute 
operation. Apart from this, the proposed measure is used in 

extracting finer subspace clusters from the init ial subspace 
cluster in step 2 of the proposed algorithm. 
Mean Residue Distance 

The mean residue distance of an element ai of gene g1=( a1, 
a2,..., an) with respect to another element bi of gene g2=(b1, 
b2,..., bn) is defined as, 

1 2( , ) | |i i mean i meanMRD g g a a b b= − − +  
Where amean is the mean of all the elements of g1 and bmean 

is the mean of all the elements of g2. MRD of the gene pair g1 
and g2 with respect to a subspace of conditions λ can be 
computes as, 

1 2( , ) | |i mean i mean
i

MRD g g a a b bλ
λ∈

= − − +∑  

Following definit ions and theorems provide the 
theoretical basis and soundness of the proposed measure 
based on [12]. 

Definition 1: Coherent genes: Two genes are called  
coherent if similarity between the two genes is more than a 
given threshold in terms of a part icular proximity measure. 

Definition 2: Expression pattern: The expression pattern 
of a gene is defined as the discretized form of the gene 
expression values. Two genes are said to have similar 
expression pattern if their d iscretized values are same. 
Mathematically, two genes gi and gj have similar expression 
pattern if 

( , ) ( , ),  for 1, 2, 3, ...,
d d

G i k G j k k n= =
 

Where n is the total number of conditions. 
Definition 3: Constant valued genes: For two genes 

gi=(a1, a2,...., an) and gj=(b1, b2,..., bn) if 
a1=a2=...=an=b1=b2=...=bn, then the genes are called 
constant valued genes. 

Definition 4: Constant row genes: For two genes gi=(a1, 
a2,...., an) and gj=(b1, b2,..., bn), if a1=a2=...=an and 
b1=b2=...=bn, then the genes are called constant row genes. 

Definition 5: Constant column genes: For two  genes 
gi=(a1, a2,..., an) and gj=(b1, b2,..., bn), if a1=b1, a2=b2, ..., 
an=bn, then the genes are called constant column genes. 

Definition 6: Additive genes: For two  genes gi=(a1, 
a2,...,an) and gj=(b1, b2,...,bn) if b1=a1+d, b2=a2+d, ..., 
bn=an+d, where d is an addit ive constant, then the genes are 
called addit ive genes. 
Properties of MRD 

The MRD measure is capable of detecting four types of 
coherence (a) Coherence among constant valued genes (b) 
Coherence among constant row genes (c) Coherence among 
constant column genes (d) Coherence among additive genes. 
Next we present some of the properties of MRD. 
Theorem 1. MRD of two constant valued genes is always 
zero. 
Proof: 

Let the two genes be g1=(a1, a2,..., an) and g2=(b1,b2,..., bn). 
Since the two genes are constant valued so 

a1=a2=...=an=b1=b2=...=bn=x (say). 
Now mean of the two genes will be, amean=bmean=x. 
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Theorem 2. MRD o f two constant row genes is always zero. 
Proof: 

Let the two genes be g1=(a1, a2,..., an) and g2=(b1,b2,..., bn). 
Since these are constant row genes, so a1=a2=a3=...=an=x 
(say) and b1=b2=b3=...=bn=y (say). 
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Theorem 3. MRD of two constant column genes is always 
zero. 
Proof: 

Let the two genes be g1=(a1, a2,..., an) and g2=(b1,b2,..., bn). 
Since these are constant column genes, so a1=b1, a2=b2,..., 
an=bn. 

Now mean of two genes will be amean=bmean=m(say). 
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Theorem 4. MRD o f two additive genes is always zero. 
Proof: 
Let the two genes be g1=(a1, a2,..., an) and g2=(b1,b2,..., bn). 

Since the genes are additive, so bi=ai+d, for i=1,2,3,...,n. 
Here d is an additive constant. 
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Figure 2.  Structure of GERC tree 

3.3. GERC Tree 

Our algorithm results a tree called GERC tree. The leaves 
of this tree present the generated clusters of the algorithm. 
This tree can be used to derive additional biological 
informat ion from a gene expression dataset. The overall 
structure of the tree generated for more than one reference 
gene is presented in Fig. 2. 
Dendrogram versus GERC tree 

A dendrogram is binary  tree that presents the hierarchical 
structure of the clusters generated by a hierarchical algorithm. 
In divisive hierarchical algorithm, dendrogram is obtained 
by recursively splitting  a node containing a set of objects into 
two child nodes based on the similarity among the object 
pairs until all nodes have a single object. Conversely, in 
agglomerat ive approach, the nodes containing a single object 
are recursively merged until all the objects are in the root 
node. But in our algorithm, GERC tree is obtained by 
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recursively splitting a single node containing the set of all 
objects into mult iple nodes(with possibly common objects) 
until number o f objects in all the processing nodes is less 
than or equal to a user given threshold, i.e. preferred node 
volume. Unlike Dendrogram, GERC tree is not a binary t ree 
and the structure of the tree is flexib le depending on the 
values of the set of input parameter. The structural difference 
between dendrogram and GERC tree is presented in Fig. 3. 

 
(a) Dendrogram 

 
(b) GERC Tree 

Figure 3.  Dendrogram versus GERC tree 

Table 2.  Comparison of Dendrogram VS GERC Tree 

 Dendrogram GERC  tree 
Tree Structure Binary General 

Overlapped objects 
in child nodes No Yes 

Tree structure 
depends on Input 

parameters 
Usually not Yes 

Table 2 presents a general comparison of dendrogram and 
GERC tree. GERC t ree conveys a more exhaustive set of 
informat ion to the users. User can look for the nodes in the 
tree that is flourished in terms of their functional enrichment. 
Moreover, we can trace the path of a particular gene from the 
root node to the leaf nodes which may be useful to find its 
co-members in a particular functional category. This tree can 
also be useful to derive relat ionship in terms of their 
regulatory informat ion such as co-regulation.  

3.4. Proposed Algorithm: GERC  

Following definit ions, symbols and notations are used to 
describe the GERC algorithm. 

Table 3.  Symbolic representations 

SYMBOL MEANING 
Nc Total number of condtions 
Rg Reference gene 
n No of genes 
G The gene expression matrix 
Gd Discretized gene expression matrix 
gi ith gene 
T Preferred Node Volume 
C Initial Cluster 

η(i) ith node of the tree 
Nη Number of tree nodes 

dist(gi,gj) 
MRD between ith and jth genes as in the distance 

matrix 
α MRD threshold 
δ Step down ratio 

Neighbour 
β(gi) 

Neighbours of ith gene with respect to MRD 
threshold β 

Exp(gi) 
Expression pattern of ith gene presented by ith row of 

the discretized matrix 
father(η(j)) father of jth node 
degree β(gi) Degree of ith gene with respect to MRD threshold β 

η(j).threshold MRD threshold of jth tree node 

η(1) The root node of the GERC tree 
containing all the genes 

Definition 7: Neighbour: Two genes gi and gj are said to 
be neighbours of each other with respect to a threshold β if 
dist(gi,gj)≤β . 

Definition 8: Degree: The degree of a gene gj with respect 
to threshold β is defined as the number of genes which are 
within the β neighbourhood of gj. 

Definition 9: Initial Cluster: An init ial cluster is defined as 
a subset of genes S such that for any two genes gi, gj in S, 
Exp(gi) =Exp(gi) in  terms of at least (Nc/2)+1 numbers of 
conditions. 

Definition 10: Finer Cluster: A finer cluster is defined as a 
set of genes S such that for any two genes gi, gj in S  
ⅰ Exp(gi) = Exp(gi) in terms of (Nc/2)+1 numbers of 

conditions. 
ⅱ dist(gi,gi)<= δl xα, where l is greater than or equal to 

the level of the node to which the finer cluster is associated. 
The GERC algorithm consists of two steps. In the first step 

of GERC, all genes which have expression pattern similar to 
the reference gene in terms  of (Nc/2)+1 number of conditions 
are put in an init ial cluster. In the second step of the 
algorithm, the init ial clusters are processed to produce finer 
clusters. While processing an initial cluster, all genes are put 
in the root node. Then iterative clustering is performed using 
a tuned MRD threshold on genes of each node to produce its 
child nodes. The process is repeated till all nodes in the tree 
contain a number of genes greater than user specified 
preferred node volume. The tuning of MRD threshold is 
governed by the user defined parameter step down ratio. The 
leaves of the tree represent the generated clusters. The 
algorithm can be used to produce a wide range of clusters by 
considering more than one reference gene. The detail of the 
algorithm is presented next. 
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In GERC, the reference gene is used as an input parameter. 
The algorithm tries to find the initial cluster to which this 
gene potentially belongs to. While finding this init ial cluster 
it tries to locate all genes which have similar expression 
pattern with the reference gene in terms of at least (Nc/2)+1 
number o f conditions. If we want to  explore the entire dataset 
we can use each of the available genes or a set of 
stochastically selected genes as reference genes. Once we 
discover the init ial clusters we move to step 2 of the 
algorithm. In the second step, we create a single node first  
with all genes of the initial cluster in it and then iteratively 

cluster each node(having genes more than preferred volume 
umber of genes) of the tree until all the processing nodes in 
the tree have less than  or equal to preferred volume number 
of genes. The input parameter step down ratio is actually 
used to reduce the value of MRD threshold as towards leaf 
nodes of the tree the similarity among genes increases and 
require a s maller value of MRD threshold. e.g. if the MRD 
threshold provided by user is 1 and step down ratio is .5, then 
the first node will use 1 as its MRD threshold while 
clustering. On successful division of the node to its children, 
the successive level nodes will use 
thresholds .5(1*.5),.25(.5*.5) …. and so on. Finally the 
sub-trees (one sub-tree in case of single reference gene) 
generated from the initial clusters are combined to form the 
GERC tree. The roots of these subtrees are made children  
of a single node that contains the set of entire genes and this 
node becomes the root of generated GERC tree. 

3.5. Complexi ty Analysis 

Since GERC involves two  distinct steps, hence the total 
complexity is the sum of the complexities of these two steps. 
Let a  dataset contains n number of genes. In the first step of 
the algorithm, the total number o f comparisons done to put 
all n  number of genes in the init ial cluster is n-1. In the 
second step, if the number of genes in the init ial cluster is p, 
the computation of distance matrix involves px(p-1)/2 
operations. If the average number of genes in the non leaf 
nodes is m and the total number of non leaf nodes is l, 
creating the child nodes and hence the entire tree requires 
l*m operations. So complexity of the second step is O 
(px(p-1)/2+ l*m). 

4. Experimental Results 
We implemented the GERC algorithm in MATLAB and 

tested it on four publicly availab le benchmark microarray 
datasets mentioned in Tab le 4. The test platform was a 
desktop PC with Intel Core 2 Duo 2.00 GHz processor and 
512 MB memory running Windows XP operating system. 
Fig. 5, 6 and 7 present a part of the tree generated from an 
initial cluster for Dataset 2, Dataset 3 and Dataset 4 
respectively. 

4.1. Cluster Quality 

The GERC algorithm was compared with various 
clustering algorithms and the results were validated using 
average homogeneity score[18], p value[19] and z score[20]. 

Cluster Homogeneity: Homogeneity measures the quality 
of clusters on the basis of the defin ition of a cluster i.e., 
Objects within a cluster are similar while objects in different 
clusters are dissimilar. It is calcu lated as follows. 

(a) Compute average value of similarity between each 
gene gi and the centroid of the cluster to which it has been 
assigned. 

(b) Calculate average homogeneity for the clustering C 
weighted according to the size of the clusters. 
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Table 4.  Datasets used for experimental results 

 Name Source Instances Attributes 

Dataset 1 Subset of Yeast Cell 
Cycle [13] http://faculty.washington.edu/ 384 17 

Dataset 2 Yeast Diauxic 
Shift [14] http://www.ncbi.nlm.nih.gov/geo/query 6089 7 

Dataset 3 Yeast Cell cycle [15] Sample input files in expander [17] 698 72 

Dataset 4 Yeast 
Sporulation [16] http://cmgm.standford.edu/pbrown/sporulation 474 7 

 

The homogeneity values for the GERC algorithm and 
some other algorithms are reported in Table 5. It can be 
observed that the homogeneity value for GERC is highest 
from which we can conclude that the coherence of the 
clusters produced by GERC are better than those produced 
by competing algorithms. 
p value:The b iological relevance of a cluster can be verified 
based on the gene ontology (GO) 
annotation databasehttp://db.yeastgenome.org/cgi-bin/GO/-
goTermFinder. It is used to test the functional enrichment of 
a group of genes in terms of three structured controlled 
ontologies, viz., associated biological processes, molecular 
functions and biological components. The functional 
enrichment of each GO category in each of the clusters 
obtained is calculated by its p-value.  

The p-value is computed using a cumulative hyper 
geometric d istribution. It measures the probability of finding 
the number of genes involved in a given GO term (i.e., 
function, process and component) within a cluster. The genes 
in a cluster are evaluated for the statistical significance by 
computing the p-value for each GO category. This signifies 
how well the genes in the cluster match with different GO 
categories. The p-value represents the probability of 
observing the number of genes from a specific GO functional 
category within each  cluster. A  low p-value indicates the 
genes belonging to the enriched functional categories are 
biologically significant in the corresponding clusters. 

To compute p-value, we used the software 
FuncAssociate[19]. FuncAssociate computes hyper 
geometric functional enrichment score based on Molecular 
Function and Biological Process annotations. The enriched 
functional categories for some of the clusters obtained by 
GERC on Datasets 1, 2 and 4 are listed in Tables 6, 7 and 8 
respectively. The functional enrichment o f each GO category 
in each of the clusters is calculated by its p-value. To restrict 
the size of the article we have reported p-values of only three 
clusters. The clusters contain the highly enriched cellular 
components of DNA metabolic process, DNA rep licat ion, 
chromosome, chromosomal part, cell cycle, sporulation, cell 
differentiation, developmental process, meiosis cellular 
component assembly involved in morphogenesis, catalytic 
activity, carbohydrate metabolic process etc with p-values of 
1.67x 10^-11 , 2.34 x 10^-12 , 1.49x 10^-5 , 1.98 x10^-12 , 
1.12x10^-10 , 1.00x 10^-13 , 1.00 x 10^-13 , 1.42 x 10^-11 , 
1.54x10^-16 , 8.31x 10^-12 , 1.35x10^-14 and 4.09 x10^-09 , 

respectively. From the Tables, we can conclude that GERC 
shows a good enrichment of functional categories and 
therefore projects a good biological significance. 

Table  5.  Homogeneity values for GERC and other comparable algorithms 
Datasets Method Applied No. of clusters Homogeneity 

Dataset1 

K-Means21 
SOM22 
Click 

DCCA 
GERC 

16 
16 
3 

15 
10 

0.671 
0.710 
0.549 
0.818 
0.878 

Dataset3 

K-Means 
SOM 
Click 

DCCA23 
GERC 

5 
6 
5 

43 
11 

0.577 
0.514 
0.501 
0.699 
0.805 

Table  6.  P-value of some of the finer clusters for Dataset 1 

Cluster p-value GO number GO category 
C1 1.09E-05 

 
3.07E-06 
4.57E-06 

 
1.08E-05 
6.63E-05 
1.67E-05 
9.68E-06 
2.24E-05 

 
9.84E-06 
8.55E-05 

GO:0000731 
 

GO:0005657 
GO:0007064 

 
GO:0007062 
GO:0006302 
GO:0006260 
GO:0006281 
GO:0006974 

 
GO:0006259 
GO:0033554 

DNA synthesis involved in 
DNA repair 

replication fork 
mitotic sister chromatid 

cohesion 
sister chromatid cohesion 
double-strand break repair 

DNA replication 
DNA repair 

response to DNA damage 
stimulus 

DNA metabolic process 
cellular response to stress 

C2 5.67E-05 
2.79E-08 
6.49E-08 

 
3.84E-07 
2.34E-12 
5.23E-05 

 
1.98E-12 
1.67E-11 
3.68E-08 
2.02E-07 
7.58E-06 

 
1.35E-09 

GO:0043596 
GO:0005657 
GO:0007064 

 
GO:0007062 
GO:0006260 
GO:0000781 

 
GO:0044427 
GO:0006259 
GO:0022402 
GO:0005634 
GO:0048519 

 
GO:0044454 

nuclear replication fork 
replication fork 

mitotic sister chromatid 
cohesion 

sister chromatid cohesion 
DNA replication 

chromosome, telomeric 
region 

chromosomal part 
DNA metabolic process 

cell cycle process 
nucleus 

negative regulation of 
biological process 

nuclear chromosome part 
C3 5.81E-05 

4.75E-05 
4.39E-05 
4.95E-05 

 

GO:0005856 
GO:0051301 
GO:0016458 
GO:0040029 

cytoskeleton 
cell division 

gene silencing 
regulation of gene 

expression, epigenetic 
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Table 7.  p-value of some of the finer clusters for Dataset 2 
Clust 

er 
p value GO number GO category 

C1 9.29E-07 
9.29E-07 
9.29E-07 
4.09E-09 
1.35E-14 
7.48E-08 
1.19E-07 

 

GO:0006486 
GO:0043413 
GO:0070085 
GO:0005975 
GO:0003824 
GO:0016740 
GO:0006914 

protein amino acid 
glycosylation 

biopolymer glycosylation 
glycosylation 

carbohydrate metabolic 
process 

catalytic activity 
transferase activity 

autophagy 
C2 1.78E-06 

 
1.78E-06 

 
2.97E-06 
2.97E-06 

 
2.97E-06 

 
9.77E-08 

 
1.08E-06 

 
1.25E-06 
1.71E-08 

 
 

1.43E-06 
1.63E-06 

 
1.89E-06 
2.51E-06 
1.13E-09 

GO:0006646 
 

GO:0046335 
 

GO:0006580 
GO:0042439 

 
GO:0046337 

 
GO:0051123 

 
GO:0005669 

 
GO:0000124 
GO:0000114 

 
 

GO:0070461 
GO:0045859 

 
GO:0043549 
GO:0051338 
GO:0051726 

 

phosphatidylethanolamine 
biosynthetic process 

ethanolamine biosynthetic 
process 

ethanolamine metabolic 
process 

ethanolamine and derivative 
metabolic process 

phosphatidylethanolamine 
metabolic process 

transcriptional preinitiation 
complex assembly 

transcription factor TFIID 
complex 

SAGA complex 
regulation of transcription 
during G1 phase of mitotic 

cell cycle 
SAGA-type complex 

regulation of protein kinase 
activity 

regulation of kinase activity 
regulation of transferase 

activity 
regulation of cell cycle 
proteasome complex 

z-score: We used Gibbons ClusterJudge[20] tool to calculate 
the z-score. A h igher value of z-score indicates that genes are 
better clustered by function, indicating a more biologically 
relevant clustering result. Table 10 presents generated 
average z-score of GERC along with some other clustering 
algorithm. From the results it can be observed that GERC 
performed satisfactorily compared to the other algorithms in 
terms of z-score. 

5. Discussion 
We have presented here a clustering algorithm that 

generates a tree where the children of a node represent the 
clusters that are formed from the genes in that node. The leaf 
nodes of the tree will represent the desired clusters. We keep 
on reducing the threshold used in the clustering process as 
we move on to deeper levels. The structure of the generated 
tree is d riven by the input parameters. The input parameters 
T and δ controls the height/depth of the tree. If we set the 
value of T large the genes in the root node will split to the 
leaf nodes in a few numbers of levels.  

Table  8.  p-value of some of the finer clusters for Dataset 4 

Clus
ter 

p-value GO number GO category 

C1 1.00E-13 
1.00E-13 
1.00E-13 

 
1.42E-11 
6.63E-05 

 
4.12E-09 
7.76E-08 

GO:0030154 
GO:0043934
GO:0030435 

 
GO:0032502
GO:0007131 

 
GO:0035825
GO:0051445 

 

cell differentiation 
sporulation 

sporulation resulting in 
formation of a cellular spore 

developmental process 
reciprocal meiotic 

recombination 
reciprocal DNA recombination 
regulation of meiotic cell cycle 

 
 

C2 7.68E-08 
 

6.11E-08 
6.11E-08 
1.54E-16 
1.21E-08 
1.21E-08 

 
1.21E-08 
1.67E-16 
3.68E-08 
2.02E-07 
4.35E-09 

 
1.35E-09 

GO:0070192 
 

GO:0007131
GO:0035825 
GO:0007126
GO:0030154 
GO:0030435 

 
GO:0043934
GO:0022402 
GO:0022402 
GO:0005634 
GO:0048646 

 
GO:0010564 

chromosome organization 
involved 

reciprocal eiotic recombination 
reciprocal DNA recombination 

meiosis 
cell differentiation 

sporulation resulting 
information of a cellular spore 

sporulation 
cell cycle process 

anatomical structure formation 
involved in morphogenesis 

negative regulation of 
biological process 

regulation of cell cycle process 
C3 3.43E-11 

3.43E-11 
3.43E-11 
4.24E-11 
8.31E-12 

 
6.19E-09 
6.19E-09 

 
6.19E-09 
1.07E-07 
6.41E-07 

 
3.73E-09 

GO:0030476
GO:0042244 
GO:0071940
GO:0070726 
GO:0010927 

 
GO:0030154 
GO:0030435 

 
GO:0043934 
GO:0048869 
GO:0003006 

 
GO:0032502 

ascospore wall assembly 
spore wall assembly 

fungal-type cell wall assembly 
cell wall assembly 

cellular component assembly 
involved in morphogenesis 

cell differentiation 
sporulation resulting in 

formation of a cellular spore 
sporulation 

cellular developmental process 
developmental process 

involved in reproduction 
developmental process 

 
Figure 4.  Tuning the value of δ for Dataset 3 
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If we set the value of δ small, it will lead to fewer levels as 
the difference between the thresholds used in the subsequent 
levels will become larger. α (MRD threshold) should be 
carefully chosen. A small value of α may leave out some 
upper levels of the hierarchical tree. The effect o f these 
parameters on the tree structure is presented in Table 9. To 
decide the value of δ, we drew two graphs (Fig. 4), one for 
number of nodes and another one for depth of the sub tree 
generated from an init ial cluster against different values of δ. 
We used a trade off between these two graphs and decided to 
use 0.7 as the value of δ for yeast cell cycle dataset. 

Table 9.  Effect of Input Parameters 

∂ α T No of nodes Depth 

0.4 2 10 11 3 
0.9 2 10 16 7 
0.7 2 3 33 5 
0.7 2 12 7 2 

6. Conclusions and Future Work 

In this paper, we present a top down hierarchical clustering 
algorithm that produces a tree of genes in the neighbourhood 
of a reference gene called GERC tree along with the 

generated clusters. The algorithm can be used to generate a 
wide range of clusters by considering multiple reference 
genes. Clustering performed in the nodes at different levels 
of GERC tree adaptively chooses the values of threshold 
parameters. The complexity of our approach can be 
improved by using an appropriate heuristic method for 
estimating an effective set of parameter values which will 
guarantee for quality cluster results. The value of α and R  can 
also be calculated statistically from the set of input genes. 
Work is underway for integrating prior bio logical 
informat ion to the clustering process to improve the results. 

Table 10.  z-scores for AMC and some counterparts for Dataset 2 

Methiod Applied z-score 

K means[16] 5.57 

SOM[17] 5.78 

DCCA[3] -0.78 

GenClus[18] 7.39 

AMC 7.35 

 

 
Figure 5.  T ree generated from an initial cluster for yeast Dataset 2 
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Figure 6.  T ree generated from an initial cluster for yeast Dataset 3 

 
Figure 7.  T ree generated from an initial cluster for yeast Dataset 4 
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