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Abstract  Biclustering is a vital data mining tool which is commonly employed on microarray data sets for analysis task in 
bioinformat ics research and medical applications. There has been extensive research on biclustering of gene expression data 
arising from microarray  experiment. This technique is an important analysis tool in gene expression measurement, when 
some genes have multip le functions and experimental conditions are diverse. In this paper, we introduce a new framework for 
biclustering of gene expression data. The basis of this framework is the construction of a range bipartite graph for the rep-
resentation of 2-dimensional gene expression data. We have constructed this range bipartite graph by partitioning the set of 
experimental conditions into two disjo int sets. The key benefit of this representation is that, it leads to a compact represen-
tation of all similar value ranges between experimental conditions. Based on this problem formulation, an efficient algorithm 
is proposed that searches for constrained maximal cliques in this range bipartite graph, in order to extract a  set of biclusters. 
Our technique is scalable to pract ical gene expression data and can produce different types of biclusters amid noise. The 
experimental evaluation of this technique also reveals its accuracy and effectiveness with respect to noise handling and 
execution time in comparison to other similar techniques. 
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1. Introduction 
Clustering is commonly  used to reveal biological mean-

ingful pattern in data arising from microarray experiment, 
which is called gene expression data. Further, it is the most 
common tool for interaction identification, as similar ob-
jects form a cluster. Clustering is unsupervised classifica-
tion[1], also known as cluster analysis, which  discovers 
grouping(s) of a set of patterns, objects or po ints. It  is 
prevalent in any discipline that involves interaction identi-
fication. Unfortunately, clustering is difficult  for most data 
sets due to its diverse shapes, densities, sizes and back-
ground noise. Gene expression data are usually arranged in 
a 2-d imensional matrix, where rows represent genes and 
columns represent samples or experimental cond it ions. 
Each element of this matrix represents the expression level 
of a gene under a specific condition, and is represented by a 
real number. In this case, genes that are similar may  share a 
common b iological pathway and the groupings of predic-
tivegenes can be of interest to biologist. Conventional clus  
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ter ing techniques are based on similarity between genes 
across all samples or experimental conditions. However, 
genes may be co regulated under some specific experimen-
tal conditions and shows weak similarity beyond these con-
ditions. Therefore, a group of genes forms cluster under a 
subset of conditions. This technique of two-way clustering 
referred to as biclustering, in  which both genes and condi-
tions are clustered simultaneously.  

2. Related Work 
Several biclustering algorithms have been proposed in 

different application scenarios but we concentrate on graph 
theoretic approaches. In order to extract b iclusters, these 
algorithms usually employ heuristic or probabilistic model. 
An illustrative discussion on many of these algorithms can 
be found in[4,5]. 

Cheng and Church[2] identify b iclusters with the help of 
mean squared residue score, which is a measure of the co-
herence of rows and columns in the bicluster. Here the user 
has to input a value of mean residue score δ and the number 
of biclusters to be extracted. This method involve several 
iterations and each iteration produce only a single bicluster 
while prev iously identified biclusters are masked with ran-
dom values. However they did not address the issue of noisy 
data, where as in this paper we concentrate on noisy data. 
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Tanay et al.[6] introduced SAMBA, in which the data are 
modelled as a bipartite graph with genes corresponding to 
vertices in one b ipartition and samples corresponding to 
vertices in other bipartition, where edges representing sig-
nificant changes in expression. Edges and non-edges are 
weighted by likelihood scores derived from a probabilistic 
model for the b ipartite  graph. A  bicluster is defined as a 
heavy subgraph, where the weight of the subgraph is the sum 
of the weights of the corresponding edges and non-edges. It 
repeatedly finds the maximal h ighly-connected subgraph in 
the bipartite graph and perfo rms local improvement by 
adding or deleting a single vertex until no further improve-
ment is possible. In order to avoid exponential runtime, they 
assumed that row vertices have d-bounded degree. However, 
our technique can handle graphs of arbitrary degrees. 

Ahsan and Amir[3] identify biclusters by recursively re-
moving noise with the help of crossing min imization tech-
nique. This method is based on binary representation of the 
bipartite graph corresponding to input data matrix. It is dif-
ficult to produce coherent biclusters, as this method use a 
static discretization of the input data matrix. 

Waseem and Asfaq[7] proposed cHawk, to identify b i-
clusters with the help of crossing min imization paradigm. 
This method employs the barycenter heuristic to arrange 
vertices in both layers of a bipartite graph. The similarity test 
is done based on bregman divergence. This approach is 
similar to our approach as we also employ bipartite graph for 
representation of gene expression data. The time complexity 
of this technique is 𝑂𝑂(𝑑𝑑𝑑𝑑𝑚𝑚) , where 𝑛𝑛  and 𝑚𝑚  are the 
number of rows and co lumns of the input data matrix and d  is 
the average degree of overlap among biclusters, which  is 
slower than our approach. 

Wang and Liu[8] proposed RMSBE, which can identify 
optimal square biclusters with the maximum similarity score. 
This method performs multip le scans of the data matrix in 
order to compute similarity score, reference gene identifica-
tion and bicluster identification. The t ime complexity of this 
technique is 𝑂𝑂(𝑛𝑛𝑛𝑛(𝑚𝑚 + 𝑛𝑛)2), where 𝑛𝑛 is number of rows 
and 𝑚𝑚 is number of co lumns. Due to this cubic nature of 
complexity, it is not feasible for very high dimensional data.  

Prelic et al.[9] proposed BiMax, which can identify con-
stant biclusters. This method discretize  the input expression 
matrix into a binary  matrix based on a threshold value. 
Therefore it is difficult to identify coherent biclusters. 

Bergmann et al.[10] proposed the iterative signature al-
gorithm (ISA) that uses gene signatures and condition sig-
natures in order to extract b iclusters with both up and 
down-regulated expression values. They identify several 
transcription modules (biclusters) by executing the algorithm 
on reference gene sets. The reference gene sets needs to be 
carefully selected for ext raction of good quality biclusters. 

Zhao and Zaki[11] proposed Tricluster, for min ing co-
herent clusters in 3-dimensional gene expression data sets. 
They construct a range mult igraph and then searches for 
constrained maximal cliques in this multigraph, in o rder to 
extract a  set of b iclusters. However, they do not address the 

issue of noisy data, where as our approach can effectively 
handle noisy data.  

3. Model Formulation 
Let 𝐽𝐽 = {𝑔𝑔0 , 𝑔𝑔1, ⋯ , 𝑔𝑔𝑛𝑛−1} be a set of 𝑛𝑛  genes and 

𝐶𝐶 = {𝑐𝑐0, 𝑐𝑐1,⋯ , 𝑐𝑐𝑚𝑚−1} be a set of 𝑚𝑚 experimental conditions. 
Microarray  data-set is a real valued 𝑛𝑛 ×𝑚𝑚  expression ma-
trix 𝐷𝐷 = 𝐽𝐽 × 𝐶𝐶 = �𝑑𝑑𝑖𝑖𝑖𝑖 �where 𝑖𝑖 ∈ [0, 𝑛𝑛 − 1] ,  𝑗𝑗 ∈ [0, 𝑚𝑚 − 1] 
and each entry 𝑑𝑑𝑖𝑖𝑖𝑖  corresponds to the logarithm of the rela-
tive abundance of mRNA of a gene under a specific ex-
perimental condition 𝐶𝐶𝑗𝑗. A bicluster corresponds to a sub 
matrix that exhibits some coherent tendency. Let 𝐵𝐵 be a sub 
matrix of dataset  𝐷𝐷  i.e  Bicluster 𝐵𝐵 = 𝑋𝑋 × 𝑌𝑌 = �𝑏𝑏𝑖𝑖𝑖𝑖 � 
where  𝑋𝑋 ⊆ 𝐽𝐽  and  𝑌𝑌 ⊆ 𝐶𝐶 , provided certain  conditions of 
homogeneity are satisfied. We define the volume or size of a 
bicluster 𝐵𝐵 as the number of elements 𝑑𝑑𝑖𝑖𝑖𝑖 , such that 𝑖𝑖 ∈ 𝑋𝑋 
and 𝑗𝑗 ∈ 𝑌𝑌 . Let 𝑆𝑆 be the set of all biclusters that satisfy the 
given homogeneity conditions, then 𝐵𝐵 ∈ 𝑆𝑆 is called a 
maximal b icluster iff there doesn’t exist another bicluster 
𝐵𝐵′ ∈ 𝑆𝑆 such that 𝐵𝐵 ⊂ 𝐵𝐵′.  

Let 𝐵𝐵2 ,2 = �
𝑏𝑏𝑖𝑖𝑖𝑖 𝑏𝑏𝑖𝑖𝑖𝑖
𝑏𝑏𝑗𝑗𝑗𝑗 𝑏𝑏𝑗𝑗𝑗𝑗

� be any arbitrary sub matrix of 𝐵𝐵. 

𝐵𝐵 will be a valid bicluster iff it is a maximal bicluster 
satisfying the following conditions:  

Let  us consider 𝜇𝜇𝑔𝑔𝑖𝑖 = �� 𝑏𝑏𝑖𝑖𝑖𝑖

2

𝑗𝑗 =1

 be  the  geometric   mean   

between two specified column values for a given row and 
𝑤𝑤𝑖𝑖 =

𝜇𝜇𝑔𝑔𝑖𝑖
∑ 𝜇𝜇𝑔𝑔𝑖𝑖𝑖𝑖

 be the weight of the row for this specified two  

column values.  
Let us consider  𝑟𝑟𝑖𝑖 = 𝑤𝑤𝑖𝑖 × �𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑖𝑖 �  and  𝑟𝑟𝑗𝑗 = 𝑤𝑤𝑗𝑗 ×

�𝑏𝑏𝑗𝑗𝑗𝑗 − 𝑏𝑏𝑗𝑗𝑗𝑗 � be the weighted difference of two column values 
for a given row 𝑖𝑖  and 𝑗𝑗  respectively. We need that 
𝑚𝑚𝑚𝑚𝑚𝑚 �𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗 � − min�𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗 � ≤ 𝜌𝜌 ; where 𝜌𝜌 is the mult iple of 
maximum weight in the corresponding gene-set i.e  𝜀𝜀 ×
max⁡(𝑤𝑤𝑖𝑖).  

We also need that |𝑋𝑋| ≥ 𝜎𝜎𝑥𝑥  and |𝑌𝑌| ≥ 𝜎𝜎𝑦𝑦  , where 𝜎𝜎𝑥𝑥  
and 𝜎𝜎𝑦𝑦  denote minimum cardinality thresholds for each 
dimension. 

We consider an edge as valid, when the weighted differ-
ence range for a condition pair satisfies the threshold value 
so that it generates a gene-set. In order to produce large 
enough clusters, the minimum size constraints i.e 𝜎𝜎𝑥𝑥 , and 𝜎𝜎𝑦𝑦  
are imposed. 𝐵𝐵  is a  scaling b icluster if 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖  and 
𝑏𝑏𝑗𝑗𝑗𝑗 = 𝛼𝛼𝑗𝑗𝑏𝑏𝑗𝑗𝑗𝑗 ; and 𝛼𝛼𝑖𝑖−𝛼𝛼𝑗𝑗 ≤ 𝛿𝛿, where 𝛼𝛼  is a constant multi-
plicative factor. 𝐵𝐵  is a shifting bicluster iff 𝑏𝑏𝑖𝑖𝑖𝑖 =
𝛽𝛽𝑖𝑖+𝑏𝑏𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑗𝑗𝑗𝑗 = 𝛽𝛽𝑗𝑗+𝑏𝑏𝑗𝑗𝑗𝑗 ; and 𝛽𝛽𝑖𝑖 − 𝛽𝛽𝑗𝑗 ≤ 𝛿𝛿,  where 𝛽𝛽  is  
constant additive factor. 𝐵𝐵 is a constant bicluster if 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝜇𝜇 
or 𝑏𝑏𝑖𝑖𝑖𝑖 ≈ 𝜇𝜇. 𝐵𝐵 is a  constant row b icluster if 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖  or  
𝑏𝑏𝑖𝑖𝑖𝑖 = 𝜇𝜇 × 𝛼𝛼𝑖𝑖  . Similarly 𝐵𝐵 is a constant column bicluster if  
𝑏𝑏𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛽𝛽𝑗𝑗  or 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝜇𝜇 × 𝛽𝛽𝑗𝑗 , where 𝜇𝜇  is a typical value 
within the b icluster; 𝛼𝛼𝑖𝑖and 𝛽𝛽𝑗𝑗  are adjustment for row and 
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column respectively. 𝐵𝐵 is overlap bicluster if 𝑏𝑏𝑖𝑖𝑖𝑖  is the sum 
or product of the contribution of different biclusters to which 
they belong.  

Bipartite Graph: A graph 𝐺𝐺(𝑉𝑉, 𝐸𝐸) is called Bipartite if 
its vertex set 𝑉𝑉 can be decomposed into two disjoint subsets 
𝑉𝑉0  and 𝑉𝑉1  (i.e . 𝑉𝑉 = 𝑉𝑉0 ∪ 𝑉𝑉1 ) such that every edge in 𝐸𝐸 
joins a vertex in 𝑉𝑉0  with a vertex in 𝑉𝑉1  (i.e. 𝑉𝑉0 ∩ 𝑉𝑉1 = ∅). 

We consider weighted bipartite graph 𝐺𝐺(𝑉𝑉0 , 𝑉𝑉1 , 𝐸𝐸,𝑊𝑊) 
with 𝑊𝑊 = (𝑤𝑤𝑖𝑖𝑖𝑖 ), where 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0 denotes the weight of the 
edge (𝑖𝑖, 𝑗𝑗) between vertices 𝑖𝑖 and 𝑗𝑗. 

3.1. Preprocessing 

Gene expression data is usually noisy and may contain 
missing values. Illustrative discussion on prediction of 
missing value can be found in[12, 13]. Therefore it is essen-
tial to condition the data before applying the clustering al-
gorithm. In order to handle missing values, we have adopted 
the approach used in[14] i.e. replacing all missing values by 
zero. Before normalizing the dataset, data beyond a threshold 
value (three standard deviation), has been temporarily  re-
moved to reduce the effect of outliers in the data. Then, the 
gene expression data is transformed using z-score stan-
dardizat ion, where the transformed variables have a mean of 
0 and variance of 1. Finally, the temporarily  removed out-
liers that are below the mean value are replaced by the 
minimum value, where as the outliers above the mean values 
are replaced by the maximum value of the final normalized 
data. In order to handle outlier efficiently, we have parti-
tioned the normalized condition data into unequal length 
intervals based on mean value. The motivation of consider-
ing unequal length intervals is due to the ineffectiveness of 
equal length intervals for extreme outlier values. Also the 
decision of number of intervals may lead to inappropriate 
interval boundaries, as it does not depend on the properties of 
data[15]. In this approach, we partition the condition column 
data into two halves with the mean  value. Then, recursively 
each half is part itioned again  into two  halves with its own 
mean. Th is process proceeds until each condition column has 
been partitioned into required number of intervals. The 
number o f intervals  𝑟𝑟 for each condition depends on the 
data size 𝑛𝑛. Further, to have balanced partition, it is assumed 
that 𝑟𝑟 = 2𝑘𝑘 , where 𝑘𝑘 is a positive integer and 𝑟𝑟2 × 35 ≤ 𝑛𝑛, 
where 35 is the minimum sample size for large sample pro-
cedures[16]. The values within the intervals are then 
smoothed by interval means. We found that this way of 
partitioning is very effective and can deal with outliers effi-
ciently.  

3.2. Constructing Weighted Range Biparti te Graph 

For a given dataset 𝐷𝐷 , the minimum size threshold, 𝜎𝜎𝑥𝑥  
and 𝜎𝜎𝑦𝑦 , and the maximum weighted difference threshold 𝜌𝜌, 
let 𝑐𝑐𝑢𝑢  and 𝑐𝑐𝑣𝑣  be any two condition columns of 𝐷𝐷  and let 
𝑟𝑟𝑥𝑥𝑢𝑢𝑢𝑢 = 𝑤𝑤𝑥𝑥 × |𝑑𝑑𝑥𝑥𝑥𝑥 − 𝑑𝑑𝑥𝑥𝑥𝑥 | be the weighted difference of the 
expression values of gene 𝑔𝑔𝑥𝑥  in  columns 𝑐𝑐𝑢𝑢  and 𝑐𝑐𝑣𝑣  such 
that 𝑢𝑢 < 𝑣𝑣, where 𝑥𝑥 ∈ [0, 𝑛𝑛 − 1]. In o rder to  incorporate the 
idea of mutual importance between two  columns, we have 

computed the weight of all rows for specified co lumn pairs. 
A difference range is defined as an interval of d ifference 
values [𝑟𝑟𝑙𝑙 , 𝑟𝑟ℎ ] , with 𝑟𝑟𝑙𝑙 < 𝑟𝑟ℎ . Let  𝐽𝐽([𝑟𝑟𝑙𝑙 , 𝑟𝑟ℎ ]) = {𝑔𝑔𝑥𝑥 :𝑟𝑟𝑥𝑥𝑢𝑢𝑢𝑢 ∈
[𝑟𝑟𝑙𝑙 , 𝑟𝑟ℎ ]} be the set of genes, whose difference w.r.t. co lumns 
𝑐𝑐𝑢𝑢  and 𝑐𝑐𝑣𝑣  lie in the given weighted difference range. A 
difference range is called valid  iff max(𝑟𝑟ℎ , 𝑟𝑟𝑙𝑙 )  −
min⁡(𝑟𝑟ℎ , 𝑟𝑟𝑙𝑙 ) ≤ 𝜌𝜌, where  𝜌𝜌 is the multip le o f maximum row 
weight in  the corresponding gene set. Normally, fo r mi-
croarray experiment data, genes and conditions are repre-
sented by 𝑉𝑉1  and 𝑉𝑉2  vertex sets respectively, and the edge 
weight 𝑤𝑤𝑖𝑖𝑖𝑖  represents the response of 𝑖𝑖𝑡𝑡ℎ  gene to 𝑗𝑗 𝑡𝑡ℎ  con-
dition. However, in order to have a very compact represen-
tation, in this paper, we construct the weighted undirected 
bipartite graph by partitioning the condition set into two 
disjoint sets called upper layer (𝑉𝑉1 ) and lower layer (𝑉𝑉2). 
The conditions that do not have any data values are not 
considered in the formation of disjo int sets. Here, each edge 
in the range bipartite  graph has associated with  it  the rank 
and gene-set corresponding to the weighted difference range 
on that edge. Different bipartite graphs emerged for different 
threshold value, which is the mult iple of maximum weight 
value in the corresponding gene-set. Consequently, we will 
have different types of biclusters. We have given priority to 
all valid edges that have large number of genes in the 
gene-set, by assigning rank (𝑅𝑅𝑒𝑒) to these edges. Ranks have 
been assigned on the basis of total number of genes in the 
gene-set i.e. |𝐽𝐽([𝑟𝑟𝑙𝑙 , 𝑟𝑟ℎ ])|. The gene-sets having highest car-
dinality have been assigned rank 1, the second highest rank 2, 
the third highest rank 3 and so on. The inclusion and deletion 
of edges depends upon the value of 𝑅𝑅𝑒𝑒  and order in  which 
we process these ranks and conditions. Let 𝐸𝐸′ and 𝐽𝐽′ be the 
set all valid  edges and gene-sets respectively, in ascending 
order of rank values. 

Table 1.  Example of Microarray Dataset 

 c0 c1 c2 c3 c4 

g0 1 2 3 0 0 

g1 0 0 0 4 5 

g2 1 2 3 0 0 

g3 0 0 0 4 5 

g4 1 2 3 0 0 

Figure 1. illustrates the steps for computing the weighted 
difference range for columns 𝑐𝑐0  and 𝑐𝑐1  in Table 1. Let 
𝜌𝜌 = 0.33, which is the maximum row weight in the gene-set, 
and considering 𝜎𝜎𝑥𝑥 = 3, 𝜎𝜎𝑦𝑦 = 2, then there is only one valid  
weighted difference range[0.33,0.33] and the correspond-
ing gene-set in sorted order is 𝐽𝐽𝑐𝑐0,𝑐𝑐1

([0.33, 0.33]) =
{𝑔𝑔0 , 𝑔𝑔2, 𝑔𝑔4 } . Similarly, we compute weighted difference 
range for other experimental conditions. In this case, the 
number o f valid  ranges depends on the value of 𝜌𝜌. For the 
sorted difference values, we find all valid  weighted differ-
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ence ranges for all pair of columns 𝑐𝑐𝑢𝑢 , 𝑐𝑐𝑣𝑣 ∈ 𝐶𝐶. Further, for 
simplicity, we have not considered rows with weight 0. 

𝜇𝜇𝑔𝑔(𝑐𝑐0, 𝑐𝑐1) 1.414 1.414 1.414 
Row g0 g2 g4 

(a) Geometric Mean between c0 and c1 

𝑤𝑤𝑖𝑖 (𝑐𝑐0, 𝑐𝑐1) 0.33 0.33 0.33 
Row g0 g2 g4 

(b) Weight of Row 𝑖𝑖 between c0 and c1 

𝑐𝑐0 − 𝑐𝑐1  1 1 1 
Row g0 g2 g4 

(c) Difference between c0 and c1 

𝑤𝑤𝑖𝑖 × |𝑐𝑐0 − 𝑐𝑐1| 0.33 0.33 0.33 
Row g0 g2 g4 

(d) Weighted Difference between c0 and c1 

Figure 1.  Weighted difference range for c0 and c1 

Here we may have overlapping of different ranges. The 
algorithm for partit ioning condition set into 𝑉𝑉1  and 𝑉𝑉2 , for 
construction of bipartite graph is given in Algorithm I. From 
Table 1, a maximal weighted range bipartite graph is con-
structed (Figure 2). Let 𝐶𝐶′  be the set of columns with 
missing value in each row. Let 𝐶𝐶′′ be the set of conditions 
such that 𝐶𝐶 ′′ = 𝐶𝐶 − 𝐶𝐶′. We have taken weight of the edge as 
rank for the corresponding gene-set. This algorithm g ives 
priority to the edges having large rank in  order to  compensate 
the deletion of few valid edges, while part itioning the con-
dition set into two disjoint sets. If there is a tie among rank 
values, then we randomly select  an edge and start con-
structing the bipartite graph. As we deal with noisy data, 
additive and multip licat ive methods of finding clusters may 
not always lead to good results. Therefore, instead of com-
paring two  column values independently[11], we have 
computed weight of each  row for any two  specified co lumn 
values. We build  bipartite  graph model of data, after properly 
conditioning the input data.  

 

Figure 2.  Weighted Range Bipartite Graph G′ 

Algorithm I: Partitioning of Condition Set 𝑪𝑪′′ 
Input: 𝐸𝐸 ′ ,𝐶𝐶 ′′ 
Output: Creation of two d isjoint sets 𝑉𝑉1  and 𝑉𝑉2  

Initialization: 𝑉𝑉1 = ∅, 
𝑉𝑉2 = ∅ 

1. while 𝑉𝑉1 ∪ 𝑉𝑉2 ≠ 𝐶𝐶 ′′ 
2. for each valid edge (𝑐𝑐𝑢𝑢 ,𝑐𝑐𝑣𝑣) ∈ 𝐸𝐸′ do 
3. if 𝑐𝑐𝑢𝑢  and 𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑣𝑣) ∉ 𝑉𝑉1  then 
4. insert 𝑐𝑐𝑢𝑢  and  𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑣𝑣) in  𝑉𝑉1  
5. endif 
6.if 𝑐𝑐𝑣𝑣  and 𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑢𝑢 ) ∉ 𝑉𝑉2  then 
7. insert 𝑐𝑐𝑣𝑣  and  𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑢𝑢 ) in  𝑉𝑉2  
8. endif 
9. endfor 
10. endwhile 

3.3. Experimental Setup 

We have implemented our proposed algorithm in C++ 
under windows environment on a computer with configura-
tion of Core 2 Duo 2.2 GHz of CPU and 3 GB RAM. The 
accuracy and performance of this algorithm is evaluated 
using synthetically generated dataset and real dataset. For 
synthetic data generation, a technique parallel to a method-
ology proposed in[9] is adopted whereas for real dataset, the 
model organis m Yeast Saccharomyces Cerevisiae dataset is 
considered, since the yeast GO annotations are more exten-
sive compared to other organisms. This dataset is provided 
by Gasch et al.[17], which  contains 2,993 genes and 173 
different stress conditions.  

4. Bicluster Extraction and Evaluation 
4.1 Bicluster Extraction 

The weighted range bipartite  graph is constructed by par-
titioning the set of experimental conditions 𝑪𝑪′′  into two 
disjoint sets 𝑽𝑽𝟏𝟏  and 𝑽𝑽𝟐𝟐 . Each edge of this graph is associ-
ated with a rank value and the corresponding gene-set. The 
algorithm for ext raction of b iclusters from this graph by 
employing depth first search technique is given in Algorithm 
II. This algorithm requires the value of 𝝈𝝈𝒙𝒙 , 𝝈𝝈𝒚𝒚  and the 
weighted bipartite graph 𝑮𝑮′  as its input parameter. The 
output of this algorithm is a set of biclusters  𝑺𝑺  and the 
number of such biclusters depends upon the dataset. 

For example, let us consider the value of input parameters 
𝝈𝝈𝒙𝒙=3 and 𝝈𝝈𝒚𝒚=2. The algorithm starts searching the graph 𝑮𝑮′ 
at a valid edge having highest rank value. In  this case, it 
starts with the valid edge (𝒄𝒄𝟎𝟎, 𝒄𝒄𝟏𝟏) and get the corresponding 
reference cluster {𝒈𝒈𝟎𝟎, 𝒈𝒈𝟐𝟐, 𝒈𝒈𝟒𝟒} × {𝒄𝒄𝟎𝟎, 𝒄𝒄𝟏𝟏}. Then, other adja-
cent valid edges are exp lored that leads to the format ion of 
final b icluster {𝒈𝒈𝟎𝟎, 𝒈𝒈𝟐𝟐, 𝒈𝒈𝟒𝟒} × {𝒄𝒄𝟎𝟎, 𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐}. If a  new edge does 
not have the sufficient number of genes and conditions, the 
reference b icluster is declared  as the final bicluster, since this 
is maximal and satisfies all required condit ions. Further, 
other valid  edges are searched that leads to the formation of 
final b icluster {𝒈𝒈𝟏𝟏, 𝒈𝒈𝟑𝟑} × {𝒄𝒄𝟑𝟑, 𝒄𝒄𝟒𝟒}. Here both the biclusters 
satisfies the minimum threshold value. 
Algorithm II: Bicluster Extraction 
Input: 𝐺𝐺 ′ , 𝜎𝜎𝑥𝑥 , 𝜎𝜎𝑦𝑦 ,  𝐶𝐶 ′′, 𝐽𝐽, 𝐽𝐽 ′ , 𝐸𝐸′ 
Output: 𝑆𝑆 
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Initialization: 𝑆𝑆 = ∅, 
Call 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝐵𝐵 = 𝐽𝐽 × ∅) 
1. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵 = 𝑃𝑃 × 𝑄𝑄) 
2. if |𝐵𝐵 ∙ 𝑄𝑄| ≥ 𝜎𝜎𝑦𝑦  then 
3. if 𝐵𝐵′ ∉ 𝑆𝑆 such that 𝐵𝐵 ⊂ 𝐵𝐵′ then 
4. if 𝐵𝐵′′ ⊂ 𝐵𝐵 then 
5. remove 𝐵𝐵′′ 
6. 𝑆𝑆 ← 𝑆𝑆 + 𝐵𝐵 
7. endif 
8. endif 
9. endif 
10. fo reach 𝑐𝑐𝑢𝑢 ∈ 𝐶𝐶′′ do 
11. 𝐵𝐵𝑅𝑅 ← 𝐵𝐵  
12. 𝐵𝐵𝑅𝑅 ← 𝐵𝐵𝑅𝑅 ∙ 𝑄𝑄 + 𝑐𝑐𝑢𝑢 
13. fo rall edges (𝑐𝑐𝑢𝑢 ,𝑐𝑐𝑣𝑣) ∈ 𝐸𝐸′ do 
14. if |𝐽𝐽′(𝑐𝑐𝑢𝑢 ,𝑐𝑐𝑣𝑣) ∩ 𝐵𝐵 ∙ 𝑃𝑃| ≥ 𝜎𝜎𝑥𝑥  then 
15. 𝐵𝐵𝑅𝑅 ∙ 𝑃𝑃 = 𝐽𝐽′(𝑐𝑐𝑢𝑢 ,𝑐𝑐𝑣𝑣) ∩ 𝐵𝐵 ∙ 𝑃𝑃 
16. endif 
17. if |𝐵𝐵𝑅𝑅 ∙ 𝑃𝑃| ≥ 𝜎𝜎𝑥𝑥  then 
18. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝐵𝐵𝑅𝑅) 
19. endif 
20. endfor 
21. endfor 
22. Return 𝑆𝑆 

4.2. Evaluation 

For evaluation purpose, we need to compare our algorithm 
with other biclustering algorithms. As different biclustering 
algorithms deals with different problem formulat ions and 
clustering criteria, it is difficult to have a comparative study 
among such algorithms. Therefore, these algorithms work 
efficiently in certain situation and perform poorly in others. 
In view of this problem, we need to provide a common set-
ting for such algorithms so that we can perform a fair com-
parative study. Our main focus lies on validating our pro-
posed algorithm for extraction o f constant, coherent and 
overlapped biclusters from noisy gene expression data with 
high accuracy in comparison to other similar algorithms. In 
view comparison, similar algorithms like CC[2], ISA[10], 
cHawk[7], SAMBA[6], RMSBE[8] and BiMax[9] are con-
sidered. We have used the Bicluster Analysis Toolbox 
(BicAT) developed by Prelic et al.[18] for implementation 
of BiMax, CC and ISA. Further, for implementation of 
SAMBA, EXPANDER developed by Maron-Katz et al.[19] 
is used and RMSBE implementation was downloaded 
from[20]. 

4.2.1. Complexity Analysis 

Since we require to evaluate all pair of conditions, 
compute the weight of each gene, and find the weighted 
difference range to get the corresponding gene-set, the 
range bipartite graph construction step would take time 
𝑂𝑂(𝑛𝑛𝑚𝑚2). Here, we have considered the experimental condi-
tions as vertices for the bipartite graph. These vertices are 
partitioned into two disjoint sets on the basis of rank of va-
lid edges. This way of constructing bipartite graph leads to 

deletion of some valid edges and as a result, fewer edges 
need to be processed in comparison to other graph approach 
for solving the same problem. Therefore, the running time 
can be significantly reduced for this representation of gene 
expression data using a bipartite  graph. The bicluster ex-
traction step depends on the value of input parameters and 
datasets. This step is most expensive as there can be expo-
nential number of clusters. Since the experimental condi-
tions are only considered as vertices, and some uninterest-
ing edges may be pruned, the depth of the search in 
weighted range bipartite graph to extract biclusters is likely 
to be small in comparison to multigraph representation[11]. 
4.2.2. Synthetic Dataset 

In order to evaluate implanted constant, coherent and 
overlap biclusters in synthetic data, we have used the tech-
nique proposed by Zimmermann et al.[9]. For constant bi-
cluster generation, we adopt the following steps: 

a. Generate a 100 × 100 matrix A with all elements 0 
b. Generate ten biclusters (modules) of size 10 × 10 with 

all elements 1 
c. Replace elements of biclusters with random noise 

val-ues from uniform d istribution (-σ,σ) 
d. Implant the ten biclusters into A without overlap 

For all experimentation, we set the noise level range from 
0.0 to 0.25. In case of overlapping biclusters, we used 10 
degrees of overlap (𝑜𝑜𝑑𝑑 = 0,1,2,3,4,5,6,7,8,9) , where the 
size o f matrix and bicluster vary from 100 × 100 to 110 × 110 
and from 10 × 10 to 20 × 20, respectively. The steps for 
evaluation of coherent biclusters are same as that of constant 
bicluster, but rows and columns in a bicluster have a 0.02 
increasing trend. The parameter setting for different algo-
rithms is shown in Tab le 2. In order to validate the accuracies 
of different algorithms, we apply the gene match score 
proposed by Zimmermann et al.[9]. Let 𝑀𝑀1  and 𝑀𝑀2  be two 
sets of biclusters. The match score of 𝑀𝑀1   with respect to 
𝑀𝑀2  is given by: 

  𝑆𝑆𝐽𝐽 (𝑀𝑀1 ,𝑀𝑀2) = 1
|𝑀𝑀1 |

∑ max(𝐽𝐽2 ,𝑆𝑆2)∈𝑀𝑀2

|𝐽𝐽1 ∩𝐽𝐽2 |
|𝐽𝐽1  ∪𝐽𝐽2 |(𝐽𝐽1 , 𝑆𝑆1)∈𝑀𝑀1    (1) 

where 𝐽𝐽 and 𝑆𝑆 are set of genes and a set of conditions in a 
bicluster respectively. Let  𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜  represent the set of im-
planted biclusters and 𝑀𝑀 be the set of output biclusters of an 
algorithm. The score 𝑆𝑆(𝑀𝑀,𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 ) represents the degree of 
similarity between extracted biclusters and the implanted 
biclusters, where as the score 𝑆𝑆(𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑀𝑀) represents how 
well each of the true biclusters extracted by the bicluster 
algorithm. 

Figure 3 illustrates the experimental results with respect to 
the accuracy evaluation of constant biclusters. As per the 
experimental results, in case of high noise level for extrac-
tion of constant biclusters; BiRange along with cHawk, ISA 
and RMSBE shows high accuracies; BiMax and SAMBA 
perform moderately, and CC perform poorly. Figure 4 illus-
trates the experimental results with respect to the accuracy 
evaluation of coherent biclusters. For coherent biclusters, 
BiRange has a comparable accuracy with RMSBE and 
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cHawk. Figure 5 illustrates the experimental results with 
respect to the accuracy evaluation of overlapped biclusters. 
In case of overlapped biclusters, BiRange is marg inally 
affected by the overlap degree of the implanted biclusters. 

Table 2.  Parameter Settings for Different Biclustering Techniques 

S. N. Algorithm Setting 
1 BiRange 𝜌𝜌 ≤ 0.5, 𝐼𝐼 = 5 

2 SAMBA 𝐷𝐷 = 40,𝑁𝑁1 = 6,𝑁𝑁2 = 6, 
𝑘𝑘 = 20, 𝐿𝐿 = 30 

3 CC 𝛿𝛿 ≤ 0.5, 𝛼𝛼 = 1.2 
4 cHawk 𝛿𝛿 = 0.5, 𝐼𝐼 = 5 

5 BiMax 𝑀𝑀𝑀𝑀𝑀𝑀.  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔= 12 

6 RMSBE 𝛼𝛼 = 0.4,𝛽𝛽 = 0.5, 𝛾𝛾 = 𝛾𝛾𝑐𝑐 = 1.2 
7 ISA 𝑡𝑡𝑔𝑔 = 2.0, 𝑡𝑡𝑐𝑐 = 2, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 500 

 
Figure 3.  Accuracy of Constant Biclusters 

 
Figure 4.  Accuracy of Coherent Biclusters 

 

Figure 5.  Accuracy of Overlapped Biclusters  

4.2.3. Real Dataset 

For real gene expression dataset, provided by Gasch et 
al.[17], the performance of the proposed technique BiRange 
is evaluated with respect to other similar algorithms based 
on the methodology used by Zimmermann et al.[9]. In order 
to evaluate extracted biclusters for their enrichment level 
based on Gene Ontology (GO) annotations[21], a web tool 
called FuncAssociate[22] is also used. The adjusted signi-
ficance scores (α) were computed using FuncAssociate and 
is shown in Figure 6. The experimental results for BiRange 
is compared with other algorithms like BiMax, RMSBE, 
cHawk, SAMBA, ISA and CC based on this significance 
score.  

 
Figure 6.  Proportion of GO Based Enriched Biclusters  

4.2.4. Performance of BiRange 

In this section the performance of the proposed BiRange 
algorithm is analyzed. We have synthetically  generated 
datasets with sizes ranging from 2000 × 100 to 100000 × 500 
and implant constant biclusters in this matrix. Figure 7 il-
lustrates the performance of BiRange, cHawk and RMSBE 
with respect to execution t ime for different size o f dataset. 
As per our complexity analysis, the execution time of Bi-
Range increases approximately linearly with the number of 
genes in a cluster, while execution time for RMSBE in-
creases at a much higher rate. Th is confirms the practical 
applicability of our proposed algorithm. 

 
Figure 7.  Performance of BiRange, cHawk and RMSBE  
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5. Conclusions 
We have represented the gene expression data using a 

weighted range bipartite graph, by computing the weight of 
each gene for a specified condition pair. For the construction 
of bipartite graph, the set of experimental conditions are 
partitioned into two disjoint sets based on the rank of valid 
edges. The rank value is computed from the cardinality of the 
corresponding gene-set, which is associated with the valid 
edge. The motivation of considering conditions as vertices of 
the bipartite graph is due to large number of genes in real 
gene expression data. The proposed algorithm has been 
evaluated for synthetic as well as real microarray data. The 
experimental results reveal the effectiveness of our approach 
over other biclustering approaches with respect to time.  
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