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Abstract  Identification of major histocompatibility complex binding peptides is an important step in the selection of 
T-Cell epitope candidates suitable for usage in new vaccines.The binding groove of the MHC Class-II molecule is opened 
at both sides, which allows for high variability in length of the peptides that bind to this molecule and consequently com-
plicates the prediction of the binding core motif. An accurate and efficient computational approach for the prediction of 
such peptides can greatly reduce the time and cost required for the design of new vaccines for infectious diseases and can-
cers. We have developed EpiGASVM, a new approach for the in silico prediction of MHC Class-II epitopes, by combining 
two artificial intelligence techniques namely: evolutionary algorithms and support vector machines. We have applied nine 
variations of EpiGASVM to a dataset of similarity-reduced benchmark data and we have calculated the prediction accuracy 
and the area under the receiver operating characteristic curve as measures of performance.The results indicate that Epi-
GASVM is a promising new technique that could provide researchers with a new tool for the in silico selection of candidate 
peptides that can be used in rational vaccine design. 
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1. Introduction 
Major Histocompatibility Complex (MHC) molecules are 

cell membrane proteins which play a very important role in 
the immune system through the process of antigen presenta-
tion. The outer extracellular domains of these molecules 
form a cleft in which a peptide fragment is bound. These 
peptides are derived from proteins degraded inside the cell, 
including both self and foreign protein antigens. MHC 
molecules bound to peptides are carried to the cell surface 
where they present their cargo to T cells. This antigen 
presentation process is essential for the recognition of the 
antigen by T cell receptors. MHC molecules are of two 
classes: Class I and Class II. Class I is responsible for pres-
entation of peptides of intracellular origins e.g. self-antigens 
and viral peptides. These Class I molecules are present on 
all nucleated cells and present peptides to cytotoxic T cells. 
Class II is responsible for presentation of peptides of ex-
tracellular origins e.g. endocytosed and digested bacterial 
antigens. These Class II molecules are present on special-
ized immune system cells called Antigen-Presenting Cells 
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(e.g. macrophages and dendritic cells) and they present pep-
tides to helper T cells. Naïve helper T cells when exposed to 
APCs with MHC Class II loaded with an antigen start to 
proliferate and differentiate into Effector T helper cells 
(Memory T helper cells and Regulatory T helper cells) with 
their specific roles adaptive cellular and humoral immunity. 
From the above we can see the importance of having the 
ability to determine which peptides bind to MHC-II mole-
cules in the development of epitope-based vaccines and 
immunotherapeutics for infectious diseases, cancer and 
autoimmune diseases that are better tolerated and have 
fewer side effects than conventional vaccines. 

MHC Class II molecules are characterized by having a 
peptide-binding groove that is open at both ends which al-
lows peptides of great variability (typically 11 to 30 amino 
acids) in length to bind to these molecules[1]. This variabil-
ity in length complicates computational approaches for the 
prediction of the core nonamer essential for binding. How-
ever, several studies indicate that a core of nine amino acids 
is the most essential part in the binding[2,3]. 

Several computational methods for the in silico predic-
tion of MHC-II binding peptides have been proposed in-
cluding: evolutionary algorithms and artificial neural net-
works[4], particle swarm optimization[5], hidden Markov 
models[6], Gibbs sampling[7], support vector machines[8] 
and ant colony search[9]. These computational methods can 
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be used to reduce the number of candidate peptides that will 
be used in a wet-lab for further testing thus reducing time 
and cost of the development of new epitope-based vaccines. 

In this study we propose a new approach, EpiGASVM, 
based on evolutionary algorithms and support vector ma-
chines. We have used evolutionary algorithms as a tool to 
search for the core binding nonamers. We then calculated 
the similarity scores between each pair of nonamers using 
BLOSUM62 substitution matrix and we used the resulting 
similarity matrix as input to a Support Vector Machine us-
ing Radial Basis Function (RBF) Kernel to produce the fi-
nal classification results. We have tried this approach on a 
similarity-reduced dataset of known binders and 
non-binders. The dataset was originally extracted from 
IEDB and is composed of 12 allele datasets. From each 
allele dataset we selected 60 instances (30 binders and 30 
non-binders). We have split the data into training and test 
subsets of 40 and 20 balanced instances respectively. We 
calculated the prediction accuracy and area under the re-
ceiver operating characteristics curve (ROC) to measure the 
performance of each variation of EpiGASVM. 

2. Methods 
2.1. Datasets and Data Preparation 

In a study by El-Manzalawy et al.[10] it was demon-
strated that the predictive performance of algorithms ap-
plied to the MHC Class-II prediction problem is affected by 
the peptide similarity in the training and test data.We have 
utilized similarity-reduced datasets available from the Re-
pository of Epitope Datasets (RED)[11] to provide more 
accurate performance results of EpiGASVM. 

The dataset was originally extracted from IEDB (identi-
fied by IEDB-SRDS2 in[10]) and we refer to it as the IEDB 
dataset from this point forward. In[10] the author details the 
methodology that was used for the similarity reduction in 3 
sequential steps namely: filtering to select unique peptides 
followed by filtering to ensure no pair of peptides shares a 
9-mer subsequence then finally filtering to ensure that the 
sequence identity between any 2 pairs is less than 80%. 

We prepared the datasets by randomly selecting 30 
unique binders and 30 unique non-binders from the RED 
datasets to produce a 60 instance balanced dataset for each 
allele (12 alleles for the IEDB data). Each of these datasets 
was used with the 9 variations of EpiGASVM to produce 
the results reported in this work. 

2.2. Idea 

As a result of the great variability in length of MHC 
Class-II binding peptides and the fact that a 9-mer core is 
critical for binding and since typically we try to test several 
peptides at a time, an exhaustive search methodology would 
be impractical. We have utilized several variations of evo-
lutionary algorithms to search for the core nonamer by lo-
cating the most similar nonamers in all of the sequences 

under test. Similarity between nonamers is calculated by 
using pairwise scores between each participating nonamer. 
The higher the score the more similar the nonamers and 
consequently the more probable that these selected nonam-
ers are the core nonamers that binds in the MHC-II 
groove.The similarity score is calculated based on the val-
ues of the BLOSUM62 substitution matrix. Each individual 
that’s progressively developed in the EA is a representation 
of a list of nonamers and the fitness value of this individual 
is the sum of all pairs of similarity scores of all participating 
sequences. As the generations of the EA progress, the indi-
viduals of population are developed and the selected 
nonamers change with the hope of finding more fit individ-
ual which represents a more similar set of nonamers. 

We run our variations of EA against known binders to 
produce a list of most similar nonamers that represent our 
positive instances. We then select randomly one nonamer 
from each non-binder to complement the dataset with nega-
tive instances. The list of positive and negative nonamers 
(binders and non-binders) is vectorized by calculating the 
pairwise similarity score for each nonamer against the rest 
of the nonamers in the list. The output from this step is a list 
of vectorized nonamers which are split into training data 
and test data for the support vector machine. The SVM is 
trained using the training data to produce a prediction 
model and then the prediction model is tested using the test 
data to calculate the final prediction accuracy. The process 
is illustrated in “Figure. 1”. 

2.3. Evolutionary Algorithms 

Evolutionary algorithms (EAs) are a group of metaheu-
ristic optimization algorithms which are designed to opti-
mize an objective function through providing a set of solu-
tions (individuals) that are iteratively developed and im-
proved over time using operators that are biologically in-
spired e.g. selection, recombination, mutation, etc. The it-
eration in an EA is usually called a generation and each 
generation, with the exception of the first one which is ran-
domly generated, is developed from members of the previ-
ous generation by applying the genetic operators on mem-
bers of the previous generation. This is motivated by a hope 
that the new population will present better solutions to the 
objective function. 

2.4. Population Structure 

Evolutionary algorithms can be classified based on the 
structure of the population into: structured EAs and 
non-structured (panmictic) EAs. In panmictic EAs there 
exists a single population that includes all the individuals 
(solutions) under evaluation and consequently genetic op-
erators are applied to all members of the population as a 
whole e.g. recombination can occur between any two 
members of the population. On the other hand, structured 
evolutionary algorithms present multiple sub-populations 
where genetic operators are applied within the sub- popula-
tion. The structuring of the population provides some bene-
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fits like better sampling of the search space and the ability 
to balance the exploration/exploitation power of the algo-
rithm. 

Since the fitness landscape for our problem is unknown, 
we experimented with structured EAs as well as panmictic 
EA. Experimentation with structured EAs gave us the abil-
ity to control the trade-off between exploration and exploi-
tation[12]. This allowed us to tailor the algorithm to thena-
ture of the problem by giving it more explorative power to 
escape local maxima/minima or by giving it more exploita-
tive power to converge quickly to a global maximum/ 
minimum. 

We have developed nine variations of EpiGASVM that 
differ in the implemented EA (two panmictic algorithms: 
Steady-State GA and Generational GA, and seven struc-
tured algorithms: distributed GA, cellular GA, adaptive 
cellular GA, hierarchical cellular GA, and three memetic 
algorithms). We have utilized Simulated Annealing (SA) as 
a local search strategy in the 3 memetic algorithms which 
differ in the way the locality of the neighbourhood is de-
fined as follows: 

Neighbourhood: the candidate solutions are randomly 
selected from the same cell of the individual under consid-
eration. 

Population: the candidate solutions are randomly selected 
from the whole population. 

Random: the candidate solutions are randomly generated 
by assigning arbitrary values to all genes of the individual. 

More detailed information about the various EAs dis-
cussed in this section can be found in[12]. We have utilized 
the JCell Framework[13] for the implementation of the 
various evolutionary algorithms discussed in this paper. The 
information about the nine evolutionary algorithms used 
inthis paper and their configuration is summarized in Table 
1. 

2.5. Genetic Representation 

Each individual in the population is a solution to our 
problem; basically it is a representation of a multiple 
alignment of the participating sequences. A chromosome 
(individual) is formed of several genes and each gene is an 
integer representing an offset into the sequence in the range 
of[0, n-9] where n is the length of the sequence. This offset 
is used to calculate the start point of the core nonamer in the 
respective sequence. “Figure. 2” illustrates the genetic rep-
resentation. 

 
Figure 1.  Process Overview 
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Table 1.  Evolutionary Algorithms Summary 

 Genera-
tional GA 

Steady-Stat
e GA 

Distributed 
GA Cellular GA 

Hierarchi-
cal Cellular 

GA 

Adaptive 
Cellular GA 

Memetic 
Algorithm 
(Random) 

Memetic 
Algorithm 
(Popula-

tion) 

Memetic 
Algorithm 
(Neighbor-

hood) 
Type Panmictic Panmictic Structured Structured Structured Structured Structured Structured Structured 

Short Name genGA ssGA dGA cGA hcGA acGA maRnd maPop maNeigh 
Population 400 400 400 400 400 400 400 400 400 
Generations 400 400 400 400 400 400 400 400 400 
Evaluations 1000000 1000000 1000000 1000000 1000000 1000000 2000000 2000000 2000000 
Crossover 
Operator 

Two points 
crossover 

Two points 
crossover 

Two points 
crossover 

Two points 
crossover 

Two points 
crossover 

Two points 
crossover 

Two points 
crossover 

Two points 
crossover 

Two points 
crossover 

Mutation 
Operator 

Integer 
mutation 

Integer 
mutation 

Integer 
mutation 

Integer 
mutation 

Integer 
mutation 

Integer 
mutation 

Integer 
mutation 

Integer 
mutation 

Integer 
mutation 

Local 
Search N/A N/A N/A N/A N/A N/A Simulated 

Annealing 
Simulated 
Annealing 

Simulated 
Annealing 

Mutation 
Probability 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Crossover 
Probability 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Local 
Search 

Probability 
N/A N/A N/A N/A N/A N/A 0.05 0.05 0.05 

 
Figure 2.  Genetic Representation 

2.6. Objective Function 

We utilized a sum-of-pairs objective function (1) to be 
maximized by the evolutionary algorithm. The scores are 
calculated using the BLOSUM62 substitution matrix. For 
each individual in the population the value of the genes are 
used as an offset into the sequences to obtain a list of 
nonamers. For each possible pair of nonamers a score is 
calculated and the summation of all scores is the overall 
fitness of individual. 

The function sub() calculates the pairwise substitution 
scores between each residue in the nonamers Si, Sj: 

i j
i j

sub(s ,s )
<
∑                  (1) 

2.7. Termination Criteria 

We have set the termination criteria to 400 generations or 
1000,000 evaluations of the objective function for all of our 
evolutionary algorithms whichever is reached first with the 
exception of memetic algorithms which are given 2000,000 
evaluations due to the local search step which adds to the 
number of evaluations done. 

2.8. Vectorization and Normalization of Nonamer 
Instances 

The output from the EA techniques mentioned above is a 
list of nonamers that are known binders. This list is com-
bined with a list of randomly selected nonamers from 
known non-binders. The vectorization is done by calculat-
ing the pairwise score between each pair of nonamers in the 
combined list using the BLOSUM62 substitution matrix, a 
technique similar to the technique of Liao et al.[14]. This is 
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followed by normalization of each vector in the range[-1,1]. 

2.9. Support Vector Machines 

Support vector machine (SVM) is a well-established su-
pervised learning technique that has been used extensively 
in many fields including bioinformatics. The SVM provides 
binary classification for linearly non-separable data by 
mapping this data to a higher dimensional space where the 
data is likely to be separable and then finding the hyper-
plane with the largest margin in this high dimensional space 
that can be used for differentiating positive from negative 
samples. The SVM classification is done in two steps: a 
training step where the SVM is trained on a sample of the 
data with known class labels to produce a classification 
model and test step where the constructed model is applied 
to the rest of the data to produce the classification result. 

We have utilized SVM with the Radial Basis Function 
(RBF) Gaussian Kernel. The data of each allele is com-
posed of 60 instances, 40 of which were used as training 
samples and 20 for test. The RBF kernel hyper parameters 
(C, γ) were determined by using 5-fold cross validation and 
grid search on all the data (60 instances)[15]. We have util-
ized LibSVM library for our SVM work[16]. 

3. Results and Discussion 

3.1. Algorithm Performance 

We have plotted the fitness value of the best individual 
against the number of generations performed by each EA 
for all sets of data to demonstrate the convergence speed of 
each algorithm. In terms of speed, the steady-state genetic 
algorithm has achieved the apparent optimum fitness on 4 
of 12 datasets faster than the other 8 algorithms we used. 
This is followed in ranking by adaptive cellular genetic al-
gorithm (achieving optimum in 3 out 12 sets faster than the 
other algorithms). Table 2 shows fastest converging algo-
rithm variant for each allele. 

On the other end of the scale, the memetic algorithm with 
the local search restricted to the neighborhood (maNeigh) 
shows the worst performance, failing to achieve the appar-
ent optimum on 11 out of 12 datasets within the bounds of 
the stopping criteria. This is followed in ranking by genera-
tional genetic algorithm (failing 10 out 12 datasets). Table 3 
shows the algorithms failing to reach the apparent optimum 
on each allele. 

Table 2.  Best Convergence Speed for each Allele 

Dataset Algorithm 
DRB1-0101 acGA 

DRB1-0301 ssGA 
DRB1-0401 ssGA 
DRB1-0404 cGA 

DRB1-0405 hcGA 
DRB1-0701 genGA 

DRB1-0802 acGA 
DRB1-1101 dGA 
DRB1-1302 ssGA 

DRB1-1501 ssGA 
DRB4-0101 dGA 

DRB5-0101 acGA 

3.2. Prediction Accuracy and Area under ROC Curve 
We have split each dataset into 40 instances used for 

training and 20 instances used for test and we have calcu-
lated the prediction accuracy and area under the receiver 
operating characteristic curve. On the IEDB dataset we 
have achieved an average accuracy of 90.46% and an aver-
age area under the curve of 0.9654. Table 4 lists the accu-
racy values and the Table 5 lists the ROC values achieved. 

In terms of prediction accuracy the steady-state genetic 
algorithm shows the best performance on the IEDB dataset 
with average prediction accuracy of 93.75% but in terms of 
AUC the cellular genetic algorithm shows the best per-
formance with an average AUC of 0.9808 on the same 
dataset. 

3.3. Performance Comparison to State-of-the-Art 
Techniques 

We compared our work to the techniques included in a 
recent study by Wang et al.[17] in which the authors com-
pared the performance of 7 approaches for the prediction of 
MHC Class-II epitopes on similarity-reduced data. In their 
paper Wang et al. compared the performance of Average 
Relative Binding matrix (ARB)[18], PROPRED[19], SMM- 
Align[20], combinatorial library, NN-Align[21], a consensus 
of all previous 5 methods and a consensus of 3 methods 
(NN-Align, SMM-Align, Combinatorial Library or PRO-
PRED). Table 6 shows a comparison of these methods 
against our 9 approaches using the AUC. 

Table 3.  Algorithms Failing to Reach Global Optimum 

Dataset Algorithm 
DRB1-0101 ssGA, genGA, hcGA, dGA, cGA, maPop, maNeigh 
DRB1-0301 genGA, acGA, hcGA, dGA, cGA, maRnd, maPop, maNeigh 
DRB1-0401 genGA, hcGA, dGA, maNeigh 
DRB1-0404 ssGA, genGA, hcGA, dGA, maPop, maNeigh 
DRB1-0405 ssGA, genGA, acGA, dGA, cGA, maRnd, maPop, maNeigh 
DRB1-0701 ssGA 
DRB1-0802 ssGA, genGA, hcGA, dGA, maRnd, maPop, maNeigh 
DRB1-1101 ssGA, genGA, acGA, hcGA, cGA, maRnd, maPop, maNeigh 
DRB1-1302 dGA, maPop, maNeigh 
DRB1-1501 genGA, acGA, dGA, cGA, maRnd, maNeigh 
DRB4-0101 ssGA, genGA, maPop, maNeigh 
DRB5-0101 ssGA, genGA, hcGA, dGA, cGA, maRnd, maPop, maNeigh 
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Table 4.  Prediction Accuracy 

Family genGA ssGA acGA hcGA dGA cGA maRnd maPop maNeigh Min Max Avg 
DRB1-0101 85.00 90.00 80.00 80.00 75.00 85.00 80.00 85.00 85.00 75.00 90.00 82.78 

DRB1-0301 95.00 100.00 95.00 90.00 85.00 90.00 95.00 90.00 95.00 85.00 100.00 92.78 
DRB1-0401 80.00 90.00 85.00 90.00 85.00 90.00 90.00 90.00 90.00 80.00 90.00 87.78 

DRB1-0404 90.00 85.00 90.00 90.00 85.00 100.00 95.00 90.00 85.00 85.00 100.00 90.00 
DRB1-0405 95.00 100.00 85.00 95.00 85.00 100.00 85.00 90.00 90.00 85.00 100.00 91.67 

DRB1-0701 90.00 100.00 85.00 90.00 90.00 95.00 95.00 95.00 95.00 85.00 100.00 92.78 
DRB1-0802 90.00 100.00 90.00 90.00 95.00 95.00 85.00 90.00 90.00 85.00 100.00 91.67 
DRB1-1101 100.00 95.00 90.00 75.00 100.00 80.00 95.00 95.00 85.00 75.00 100.00 90.56 

DRB1-1302 95.00 85.00 85.00 95.00 95.00 100.00 100.00 85.00 85.00 85.00 100.00 91.67 
DRB1-1501 95.00 100.00 85.00 90.00 95.00 95.00 85.00 90.00 90.00 85.00 100.00 91.67 

DRB4-0101 100.00 85.00 95.00 95.00 90.00 85.00 90.00 95.00 90.00 85.00 100.00 91.67 
DRB5-0101 95.00 95.00 90.00 85.00 95.00 95.00 85.00 80.00 95.00 80.00 95.00 90.56 

             

Min 80.00 85.00 80.00 75.00 75.00 80.00 80.00 80.00 85.00 75.00 85.00 80.00 
Max 100.00 100.00 95.00 95.00 100.00 100.00 100.00 95.00 95.00 95.00 100.00 97.78 

Avg 92.50 93.75 87.92 88.75 89.58 92.50 90.00 89.58 89.58 87.92 93.75 90.46 

Table 5.  Area under ROC 

Family genGA ssGA acGA hcGA dGA cGA maRnd maPop maNeigh Min Max Avg 
DRB1-0101 0.9800 1.0000 0.9300 0.9100 0.8800 0.9200 0.9600 0.9100 0.9600 0.8800 1.0000 0.9389 
DRB1-0301 1.0000 1.0000 0.9700 0.9700 0.9700 0.9900 0.9900 0.9700 1.0000 0.9700 1.0000 0.9844 
DRB1-0401 0.8900 0.8900 0.9300 0.9600 0.9600 0.9800 0.9900 1.0000 0.9900 0.8900 1.0000 0.9544 
DRB1-0404 0.9500 0.9400 0.9500 0.9000 0.9400 1.0000 0.9800 0.9600 0.9400 0.9000 1.0000 0.9511 
DRB1-0405 0.9700 1.0000 0.9700 0.9500 0.9200 1.0000 0.9200 0.9000 0.9300 0.9000 1.0000 0.9511 
DRB1-0701 0.9000 1.0000 0.9100 0.9900 0.9500 0.9900 0.9800 1.0000 0.9900 0.9000 1.0000 0.9678 
DRB1-0802 1.0000 1.0000 1.0000 0.9100 0.9900 0.9800 1.0000 0.9900 0.9600 0.9100 1.0000 0.9811 
DRB1-1101 1.0000 0.9400 0.9700 0.8700 1.0000 0.9400 1.0000 1.0000 0.9600 0.8700 1.0000 0.9644 
DRB1-1302 0.9800 0.9900 0.9600 0.9900 0.9300 1.0000 1.0000 0.8500 0.9800 0.8500 1.0000 0.9644 
DRB1-1501 1.0000 1.0000 0.9900 0.9600 1.0000 1.0000 0.9500 1.0000 0.9200 0.9200 1.0000 0.9800 
DRB4-0101 1.0000 0.9200 1.0000 1.0000 0.9500 0.9700 0.9800 0.9500 0.9900 0.9200 1.0000 0.9733 
DRB5-0101 1.0000 1.0000 1.0000 0.9800 0.9700 1.0000 0.9900 0.8200 1.0000 0.8200 1.0000 0.9733 

             
Min 0.8900 0.8900 0.9100 0.8700 0.8800 0.9200 0.9200 0.8200 0.9200 0.8200 0.9200 0.8911 
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Avg 0.9725 0.9733 0.9650 0.9492 0.9550 0.9808 0.9783 0.9458 0.9683 0.9458 0.9808 0.9654 

Table 6.  Comparative AUC data for ARB, PROPRED, Combinatorial Libraries, SMM-Align, NN-Align, Consensus, Consensus3 and the variations of 
EpiGASVM 

Allele ARB 
SMM
-Alig

n 

PROP 
RED 

Com-
binato-

rial 
Library 

NN-Al
ign 

Con-
sen-
sus 

Con-
sen-
sus-b
est3 

genG
A ssGA acGA hcGA dGA cGA maRn

d 
maPo

p 
maNe

igh 

DRB1-0101 0.710 0.756 0.692 0.697 0.763 0.759 0.769 0.980 1.000 0.930 0.910 0.880 0.920 0.960 0.910 0.960 
DRB1-0301 0.728 0.808 0.669 - 0.829 0.823 0.835 1.000 1.000 0.970 0.970 0.970 0.990 0.990 0.970 1.000 
DRB1-0401 0.668 0.721 0.711 - 0.734 0.735 0.738 0.890 0.890 0.930 0.960 0.960 0.980 0.990 1.000 0.990 
DRB1-0404 0.681 0.789 0.753 - 0.803 0.800 0.809 0.950 0.940 0.950 0.900 0.940 1.000 0.980 0.960 0.940 
DRB1-0405 0.716 0.767 0.742 - 0.794 0.797 0.797 0.970 1.000 0.970 0.950 0.920 1.000 0.920 0.900 0.930 
DRB1-0701 0.736 0.796 0.750 0.729 0.811 0.806 0.808 0.900 1.000 0.910 0.900 0.950 0.990 0.980 1.000 0.990 
DRB1-0802 0.649 0.689 0.641 - 0.698 0.708 0.710 1.000 1.000 1.000 0.910 0.990 0.980 1.000 0.990 0.960 
DRB1-1101 0.777 0.829 0.779 - 0.847 0.850 0.854 1.000 0.940 0.970 0.870 1.000 0.940 1.000 1.000 0.960 
DRB1-1302 0.667 0.754 0.577 - 0.732 0.742 0.757 0.980 0.990 0.960 0.990 0.930 1.000 1.000 0.850 0.980 
DRB1-1501 0.696 0.741 0.703 - 0.756 0.756 0.758 1.000 1.000 0.990 0.990 1.000 1.000 0.950 1.000 0.920 
DRB4-0101 0.747 0.762 - 0.691 0.789 0.791 0.784 1.000 0.920 1.000 1.000 0.950 0.970 0.980 0.950 0.990 
DRB5-0101 0.697 0.776 0.711 - 0.795 0.786 0.798 1.000 1.000 1.000 0.980 0.970 1.000 0.990 0.820 1.000 

Source code, data used, additional performance data is available via emailing the author at mostafa.omara@gmail.com. 
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4. Conclusions 
We have developed a new technique, EpiGASVM, for the 

MHC-II epitope prediction problem. The prediction accu-
racy and AUC achieved on 12 similarity-reduced datasets 
shows that EpiGASVM is reliable and accurate. According 
to our knowledge, the accuracy and AUC achieved with 
EpiGASVM is the best in the field for the MHC-II prediction 
problem and it’s our hope that this new technique will be an 
addition to the arsenal of tools available for researches for 
the rational design of new epitope based vaccines and im-
munotherapeutics. 
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