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Abstract  Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease 
prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure 
model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein 
structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the 
structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence 
based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, 
many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which 
combines genetic algorithm based on matrix coding (GAMC) and tabu search (TS) algorithm, is developed to complete this 
task. Experiments are performed with Fibonacci sequences and real protein sequences. Results show that the lowest energy 
obtained by the proposed GTAMC algorithm is lower than that obtained by previous methods. Our algorithm has better 
performance in global optimization and can predict 3D protein structure more effectively. 
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1. Introduction
Protein structure prediction is defined as the prediction of 

the tertiary structure of a protein by using its primary 
structure information. It has become an important research 
topics in bioinformatics and it has important applications in 
medicine and other fields, such as drug design, prediction of 
diseases, and so on. Because of the complexity of the 
realistic protein structure, it is hard to determine the exact 
tri-dimensional structure from its sequence of amino acids 
[1]. Therefore, a lot of coarse structure models have been 
developed. The HP model is the most conventional one 
among them and has been widely used in protein structure 
prediction. Different from the complex structure models, HP 
model only assumes two types of amino acids-hydrophobic 
(H) and hydrophilic (P) and the sequence of amino acids is 
assumed to be embedded in a lattice, which is used to 
discretize the space of conformations. For simplicity, the 
only interaction considered in HP model is the interaction 
between the nonadjacent but next-neighbored hydrophobic 
monomers, which is used to force the formation of a compact 
hydrophobic core as observed in real proteins [2]. Although 
simplified models have the capability of catching nontrivial 
aspects of the folding problem, the approximations involved 
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are not really suitable [3]. 
The main reason lies in that local interactions are 

neglected in the simplified models. As is well known, local 
interactions might be important for the local structure of the 
chains [4] and no sequences with compact, well-defined 
native structures could be found if local interactions are 
neglected [3]. Therefore, many other models which consider 
local interactions have drawn a lot of attention and been 
proposed. The AB off-lattice model is the one that could 
meet the aforementioned requirement. Currently, AB 
off-lattice model has been widely applied to protein structure 
prediction and many improved models have been proposed 
based on the original model. In AB off-lattice model, two 
types of monomers are taken into consideration. The 
hydrophobic monomers are labelled by A while the 
hydrophilic ones are labelled by B. Different from HP model, 
the interactions considered in AB model include both 
sequence independent local interactions and the sequence 
dependent Lennard- Jones term that favors the formation of a 
hydrophobic core. After a structure model is adopted, an 
important issue in PSP is to develop an optimization 
technology to find the best conformation of a protein 
sequence based on the assumed structure model. However, 
protein structure prediction (PSP) is an NP-hard problem 
even when the simplest models are assumed [5, 6]. 

In order to tackle this issue, many heuristic approaches 
have been developed. In the past decades, researchers have 
developed many algorithms to solve the global optimization 
problem in protein folding structure prediction (PFSP). 
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Genetic algorithm has been used for protein structure 
prediction for long time [7, 10]. The reason why Gas are 
attractive is possibly due to their simplicity and efficiency in 
finding good solutions in large and complex search spaces. It 
is well known that the combination of GA with local search 
strategies is particularly effective in PFP [1]. For example, 
the algorithm developed in [11] which is a hybrid scheme 
combining GA with simulated annealing algorithm, has 
much higher efficiency in searching for native states with 
off-lattice AB model than other methods. However, this 
method has a limitation that the searching time is too long, 
which affects its wide applications. In this paper we propose 
a novel hybrid approach for protein structure prediction. The 
proposed algorithm will combine genetic algorithm and tabu 
search algorithm to accurately search for the ground state 
conformation of a given protein. 

2. The Proposed Method 
2.1. Off-Lattice AB Model 

The off-lattice AB model has been applied to protein 
structure prediction for decades. In off-lattice AB model, the 
monomers are linked by rigid unit-length bonds to form 
linear unoriented polymers in three-dimensional space. The 
energy functional for any n monomers chain is described as 
follows [12]: 

𝐸𝐸 = ∑ 𝐸𝐸1(𝜃𝜃𝑖𝑖)𝑛𝑛−1
𝑖𝑖=2 + ∑ ∑ 𝐸𝐸2�𝑟𝑟𝑖𝑖𝑖𝑖 , 𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑗𝑗 �𝑛𝑛

𝑗𝑗=𝑖𝑖+2
𝑛𝑛−2
𝑖𝑖=1     (1) 

Where  

𝐸𝐸1(𝜃𝜃𝑖𝑖) =
1
4

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  ) 

𝐸𝐸2�𝑟𝑟𝑖𝑖𝑖𝑖 , 𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑗𝑗 � = 4 [𝑟𝑟𝑖𝑖𝑖𝑖−12 − 𝐶𝐶(𝜉𝜉𝑗𝑗 , 𝜉𝜉𝑗𝑗 )𝑟𝑟𝑖𝑖𝑖𝑖−6] 
where θi (0≤θi≤π) is the angle between two successive 

bond vectors. rij is the distance between residues i and j with 
i <j. In three-dimensional space, rij depends on both bond 
angle θ and torsional angle β .In three-dimensional space, rij 
depends on both bond angle θ and torsional angle β. The 
constant C(ξi, ξj) is given as follows: 

C(ξi, ξj) = �

+1      𝐴𝐴𝐴𝐴
+ 1

2
    𝐵𝐵𝐵𝐵

− 1
2

    𝐴𝐴𝐴𝐴

�              (2) 

In off-lattice AB model, the shape of an n-mer is 
determined by the (n-2) bond angles θ1,…,θn-2, and the (n-3) 
torsional angles β1,…,βn-3. Therefore, the prediction of 3D 
folding structure problem of n monomers chain is equivalent 
to finding the optimal (n-2) bond angles and (n-3) torsional 
angles which minimize the energy functional E defined in 
equation (1). 

2.2. Improved Genetic Tabu Algorithm  

Genetic algorithms are adaptive heuristic search 
algorithms premised on the evolutionary ideas of natural 
selection and genetics, which select individuals by a fitness 
function. Individuals with higher fitness values have higher 
opportunity to generate the successors. Although genetic 
algorithms are widely used in optimization problems, they 

still need improvement for PSP. GA has main disadvantage 
which affect their performance for PSP. The disadvantage is 
the premature convergence and the other is the slow 
convergence rate, and the premature convergence is mainly 
caused by the small variability in mutation strategy. In order 
to overcome the disadvantages in GAs, we introduce tabu 
search (TS) [13] into the mutation operator in GAs to 
improve the local search capability. Tabu search is a local 
neighborhood search algorithm which guides the next search 
direction by using flexible memory functions to record and 
choose the optimization process. The advantage of TS is the 
short searching time and the disadvantage is the low global 
search capability. Thus, the combination of GA and TS 
results in a hybrid algorithm which combines both of the 
advantages of the GA and TS [13]. The following five 
strategies are used in the proposed algorithm for protein 
structure prediction. 

2.2.1. Chromosome Encoding 

Chromosome encoding is the way the individuals are 
represented and is very important because it affects the 
performance of a genetic algorithm. In the proposed 
algorithm, Cartesian coordinates are adopted to represent the 
individuals because of its simplicity. Let h be an individual. 
For an n-residue long chain, h can be expressed as (θ1,…,θn-2, 
β1,…,βn-3), which concatenates the (n-2) bond angles and the 
(n-3) torsional angles. Cartesian coordinates of residue i in 
hypothesis h(θ1 …,θn-2,β1,…,βn-3) is obtained as follows 

𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧

(0,0,0), i = 1
(0,1,0), i = 2

(cos(θi), sin(θi), 0) = 3
pos(i − 1)x + cos(θi−2)cos�βi−3�, pos(i − 1)y

+sin(θi−2)cos�βi−3�, pos(i − 1)z + sin(βi−3)),4 ≤ i ≤ n

�(3) 

The coordinates of the first few residues are (0,0,0), 
(0,1,0), and (cos(θ1),sin(θ1),0). Latter residues’ coordinates 
are all calculated on the base of the previous one’s 
coordinate.  

2.2.2. Variable Population Size 

In genetic algorithm, with the difference between 
individuals get smaller and smaller after several rounds of 
evolution, premature convergence to poor solution will 
generally happen. Hence, the new strategy used in the 
proposed algorithm is to adopt variable population size. 
Variable population size strategy adopted by genetic 
algorithm can prevent premature convergence by increasing 
or decreasing the population size when the optimal energy is 
very close to the average value of the population. 

The proposed method starts with an initial population P0 
of size μ. This initial population is coded as a matrix of size 
μ× n called initial population matrix PM0. At every 
generation t, PMt is partitioned into v × η sub- matrices 
𝑃𝑃𝑃𝑃� 𝑡𝑡

(𝑖𝑖 ,𝑗𝑗 ) i = 1, ..., v, j = 1, ..., η , where v is the number of 
individuals on each partition and η is the number of genes on 
each partition. A crossover and mutation operators are 
applied on the partitioned sub-matrices and  𝑃𝑃𝑃𝑃� 𝑡𝑡

(𝑖𝑖 ,𝑗𝑗 )  is 
updated. The range of each gene is divided into m sub-ranges 
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in order to check the diversity of the gene values. The Gene 
Matrix GM [14] is initialized to be the n × m zero matrix in 
which each entry of the i-th row refers to a sub-range of the 
i-th gene. While the search is processing, the entries of GM 
are updated if new values for a gene are generated within the 
corresponding sub-range. After having a GM full, i.e., with 
no zero entry, the search is learned that an advanced 
exploration process has been achieved. The termination 
criteria in the GA is based on the GM presented in [14].  

2.2.3. Crossover  

Arithmetical crossover operation is used in the proposed 
algorithm to crossover operation between individuals from 
the current population into next generation. We can defined 
in the following procedure. 

Procedure Crossover(p1, p2) 
1- Choose randomly a number α from (0,1) 
2- Two offspring 𝑐𝑐1 = (𝑐𝑐1

1 … , 𝑐𝑐𝑛𝑛1) and 𝑐𝑐1 = (𝑐𝑐1
2 … , 𝑐𝑐𝑛𝑛2) are 

generated from parents 𝑝𝑝1 = (𝑝𝑝1
1 … ,𝑝𝑝𝑛𝑛1) and 𝑝𝑝1 = (𝑝𝑝1

2 … , 𝑝𝑝𝑛𝑛2) 
where 

𝑐𝑐𝑖𝑖1 = 𝛼𝛼𝑝𝑝𝑖𝑖1 + (1 − 𝛼𝛼)𝑝𝑝𝑖𝑖2, 
𝑐𝑐𝑖𝑖2 = 𝛼𝛼𝑝𝑝𝑖𝑖2 + (1 − 𝛼𝛼)𝑝𝑝𝑖𝑖1,     𝑖𝑖 = 1, … . ,𝑛𝑛). 

3- Return. 

2.2.4. Tabu Search Mutation  

In the proposed algorithm, the mutation operator adopted 
is tabu search mutation operator. Tabu search mutation 
operator is similar to the standard mutation operator except 
that TSM is a search process. With this strategy, the potential 
energy functional in equation (1) is used as the evaluation 
function to compute the offspring’s energy values, and then 
these offspring and their energy values are combined with 
the tabu list to determine the output offspring. Therefore, 
TSM can accept inferior solutions during the search process, 
and thus it has stronger hill-climbing capability than many 
other mutation operators [15]. TSM is composed of several 
steps, which can be described as follows: Firstly, disturbance 
mutation method is used to generate neighbor solutions of 
the current solutions. In this processing, two mutation 
operations are used. The first mutation operation is a 
two-point mutation operation and is used in the early stage; 
the second mutation operation is a single-point mutation 
which is adopted in the later stage to raise the convergence 
speed. Disturbance mutation implementation is presented as 
follows. Let the j th parameter selected be ℎ𝑗𝑗  and the new 
parameter be ℎ𝑗𝑗 ̀, then we have 

ℎ𝑗𝑗 ̀ = ℎ𝑗𝑗 + 2𝜋𝜋�1 − 𝑟𝑟(1−𝛼𝛼)2�𝑓𝑓(𝑟𝑟)𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔(𝑗𝑗 )      (4) 
where r is a random number between 0 and 1. α ∈ [0,1] 

in term. �1 − 𝑟𝑟(1−𝛼𝛼)2� is used to assure large disturbance 
degree in the early search procedure (a tends to 0) to keep the 
diversity of the solutions, and small disturbance degree in the 
later search procedure (α tends to 1) to increase convergence 
rate and guarantee the algorithm to converge to a global 
optimum. f (r)and g( j) are defined as follows: 

𝑓𝑓(𝑟𝑟) = �−1, 𝑟𝑟 < .05
1, 𝑟𝑟 ≥ .05

� 𝑟𝑟 ∈ [0,1]          (5) 

𝑔𝑔(𝑗𝑗) = � 𝑗𝑗, 𝑟𝑟 < .05
𝑛𝑛 − 𝑗𝑗, 𝑟𝑟 ≥ .05

� 𝑟𝑟 ∈ [0,1]           (6) 

Baseg()j is used to ensure the diversity of the neighbor 
solutions, which is similar to [16]. j donates the location of 
the j th parameter in individual h, n is the parameter length of 
h. Base∈  [0.9,0.99] is the scale factor of parameter hj. 
Secondly, the individuals in the neighbor solutions are sorted 
by the energy values in ascending order and the lower energy 
individuals will be used to generate the candidate set. Finally, 
each solution in the candidate set will be determined to be the 
output of the TSM or not. This processing is based on two 
tabu lists as in [17]. 

The first tabu list is composed of a set of solution vectors 
and the second one is composed of a set of energy values of 
the corresponding solutions. The use of two tabu lists can let 
the algorithm avoid being trapped in local optima. In order to 
determine whether a candidate solution is a tabu, we use the 
following criteria: let the energy value of the candidate 
solution h(θ1,…,θn-2, β1,…,βn-3). be E(h) computed by (1)). If 
there is a solution y(𝜃𝜃1

′ , . .𝜃𝜃𝑛𝑛−2
′ ,𝛽𝛽1

′ , …𝛽𝛽𝑛𝑛−3
′ )  in tabu list TS 

which satisfies |𝐸𝐸(𝑦𝑦) − 𝐸𝐸(ℎ)| ≤ ψ and ||y-h|| ≤ η, then the 
candidate solution h is thought as a tabu. In TSM, it is 
possible that total tabu [17] happens. When total tabu 
happens, all the solutions in the candidate set are forbidden 
and the next current solution cannot be selected from the 
candidate set. In order to handle total tabu, when total tabu 
happens, we select the global best solution to generate 
mutation and the output solution will be set as current 
solution. 

2.2.5. Tabu Search Recombination (TSR) 

Another strategy used in the proposed algorithm is tabu 
search recombination. With this strategy, TSR records the 
fitness values of individuals in a tabu list and the fitness 
values of the offspring individual after crossover operation 
will be compared with some desired level and will be 
determined to be accepted by next generation or the tabu list. 
In this paper, the average fitness value of the population is 
considered as the desired level and the crossover strategy is 
random linear combination. Let h(θ1,…,θn) be one individual 
and ℎ𝑚𝑚𝑚𝑚𝑚𝑚 (𝜃𝜃1      

𝑚𝑚𝑚𝑚𝑚𝑚 , . .𝜃𝜃𝑛𝑛       
𝑚𝑚𝑚𝑚𝑚𝑚 )  be the other individual of the 

crossover couple, ℎ′(𝜃𝜃1
′ , … ,𝜃𝜃𝑛𝑛′ ) be the offspring individual 

after crossover operation, random linear combination is 
described by [18] 

θi
′ = (rθi + (1 − r)θi

min    , (1 ≤ i ≤ n)     (7) 
Where ℎ𝑚𝑚𝑚𝑚𝑚𝑚 (𝜃𝜃1      

𝑚𝑚𝑚𝑚𝑚𝑚 , . .𝜃𝜃𝑛𝑛       
𝑚𝑚𝑚𝑚𝑚𝑚 )  is the individual with 

minimum energy so far. In order to avoid close match, 
before the crossover operation, TSR uses the following way 
to select the individuals as the crossover individual couple 
into cross pool: it will first sort the individuals by their 
energy values in ascending order, and then the individuals 
with the furthest distance are selected for crossover 
operation. After the crossover offspring ℎ′�𝜃𝜃1

′ , … ,𝜃𝜃𝑛𝑛′ � is 
obtained, its fitness value is compared with the desired level. 
The comparison is as follows: if the fitness value of the 
offspring is better than the desired value, the offspring will 
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be set free, and accepted by next generation. If the fitness 
value of the offspring is worse than the desired value and is 
not in tabu list, the offspring will also be accepted. However, 
if the offspring is in the tabu list, TSR will select one parent 
with better fitness value to go into the next generation. In 
TSR, the use of tabu list keeps the diversity among 
individuals and avoids premature convergence. 

3. Genetic and Tabu Algorithm Based on 
Matrix Coding (GTAMC) 

Genetic algorithm and tabu search algorithm have their 
own advantages and disadvantages, thus the development of 
a scheme which keeps the advantages while overcomes the 
disadvantages of each algorithm can provide efficient search 
for protein structure prediction. GTAMC, a hybrid algorithm, 
satisfies this requirement. For example, GTAMC makes use 
of the advantages of multiple search points in GA and can 
overcome the poor hill-climbing capability by using the 
flexible memory functions of TS. The search algorithm starts 
with the initialization of parameters by some appropriate 
values. Then, the population P with individuals h(θ1,…,θn-2, 
β1,…,βn-3) is generated randomly, and equation (1) is used to 
obtain the energy values. After that, the individuals are 
sorted by the energy values from minimum to maximum and 
at the same time, the minimal solution and the minimal 
energy are saved as hmin and Emin respectively. During the 
search process, population P is handled by TSR and TSM by 
turns. When TSR handles the population, it will select r*n 
parents from the latter 90% locations to perform crossover 
operation with hmin, and the preceding 10% locations are 
recognized as duplicated individuals. The offspring will be 
considered whether are accepted based on the current tabu 
list. When TSM handles the population, m*n mutation 
parents will be selected probabilistically, and each parent 
uses TSM operation to generate offspring. Whenever the 
population P is updated, individuals will be rearranged to be 
from minimal to maximal by the energy values. Finally, the 
hypothesis hmin and minimum energy Emin will be used as the 
optimal values at the end of algorithm.The formal detailed 
description of GTAMC is given in the following algorithm. 

1- Initialization Set values of m, μ, v and η. Set the 
crossover and mutation probabilities pc ∈(0,1) and pm ∈ 
(0,1), respectively. Set the generation counter t:= 0. Initialize 
GM as n × m zero matrix, and generate an initial population 
P0 of size μ and code it to a matrix 𝑃𝑃𝑃𝑃0. 

2- Parent selection. Evaluate the fitness function of all 
individuals coded in 𝑃𝑃𝑃𝑃𝑡𝑡 . Select an intermediate population 
𝑃𝑃𝑃𝑃� 𝑡𝑡  from the current one 𝑃𝑃𝑃𝑃𝑡𝑡 .  

3- Partitioning and genetic operations. Partition 𝑃𝑃𝑃𝑃� 𝑡𝑡  into 
v × η sub-matrices. Apply the following for all sub-matrices 
 𝑃𝑃𝑃𝑃� (𝑖𝑖 ,𝑗𝑗 )

𝑡𝑡 , i = 1, ..., η, j = 1, ..., v. 
i. Crossover. Associate a random number from (0, 1) with 
each row in  𝑃𝑃𝑃𝑃� (𝑖𝑖 ,𝑗𝑗 )

𝑡𝑡  and add this individual to the parent 
pool if the associated number is less than pc. Apply 
Procedure crossover to all selected pairs of parents and 
update  𝑃𝑃𝑃𝑃� (𝑖𝑖 ,𝑗𝑗 )

𝑡𝑡  
ii. Mutation. Associate a random number from (0, 1) with 
each gene in each gene i  𝑃𝑃𝑃𝑃� (𝑖𝑖 ,𝑗𝑗 )

𝑡𝑡 . Mutate the gene which 
their associated number less than pm by generating a new 
random value for the selected gene within its domain. 
4- Stopping condition. If GM is full, then go to Step 7. 

Otherwise, go to Step 5. 
5- Survivor selection. Evaluate the fitness function of all 

corresponding children in 𝑃𝑃𝑃𝑃� 𝑡𝑡 , and choose the μ best 
individuals from the parent and children populations to form 
the next generation 𝑃𝑃𝑃𝑃𝑡𝑡+1. 

6- Mutagenesis. 
7- For (loopCounter:=0, loopCounter ++<GA Maxloop) 

applying {TSRTSM}and go to Step 2. 
8- Intensification. Apply a local search method starting 

from each solution from the Nelite elite ones obtained in the 
previous search stage. 

4. Results and Discussion 
4.1. Results for Fibonacci Sequences 

In this section, we describe our experiments by using 
Fibonacci sequences to test the efficiency of the proposed 
GTAMC. A Fibonacci sequence is defined recursively by 

𝑆𝑆0 = 𝐴𝐴,  𝑆𝑆1 = 𝐵𝐵,  𝑆𝑆𝑖𝑖+1 = 𝑆𝑆𝑖𝑖−1 ∗ 𝑆𝑆𝑖𝑖        (8) 
Where * is the concatenation operator. Some examples of 

Fibonacci sequences are S2 = AB, S3 = BAB, S4 =ABBAB, 
etc. For comparison, we used the same Fibonacci sequences 
as those used in [16, 19-21]. GTAMC was implemented by 
Matlab program in Windows XP. The parameters in the 
algorithm were obtained by experiments and they were set as 
follows: self-adjustable population scale was set to be in the 
range of 100~500, the crossover rate was set to be 0.88, the 
mutation rate was set to be in the range of 0.012~0.025, 
self-adjustable tabu list length was set to be in the range of 
7~14, neighborhood set length was set to be in the range of 
30~50, candidate set length was set to be in the range of 5~6. 
The minimal energy values (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ) obtained by GTAMC 
on the three-dimensional off-lattice AB model are listed in 
Table 1. For comparison, we also list the minimal energy 
values obtained by the Simulated Annealing (SA) [21].

Table 1.  Lowest energies for Fibonacci sequences obtained by the previous algorithms and the proposed GTAMC algorithm 

N Sequences 𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺  𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎𝑬𝑬𝑬𝑬𝑬𝑬 𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎𝑪𝑪𝑪𝑪𝑪𝑪  𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎𝑻𝑻𝑻𝑻  𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

13 ABBABBABABBAB -4.9746 -4.967 -4.97461 -6.5687 -6.95739 

21 BABABBABABBABBABABBAB -12.0617 -12.316 -12.3266 -13.4151 -14.2984 

34 ABBABBABABBABBABABBABABBABBABABBAB -23.0441 -25.476 -25.5113 -27.9903 -28.6376 

55 BABABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBAB -38.1977 -42.428 -42.3418 -41.5098 -42.5936 
 

 



22 R. F. Mansour:  Applying an Evolutionary Algorithm for Protein Structure Prediction 
  

The energy landscape paving minimize (ELP) [19], the 
conformational space annealing (CSA) [19], and the tabu 
search algorithm (TS) respectively. From table 1, we can 
find that the lowest energy value 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  obtained by the 
proposed GTAMC is smaller than those obtained by SA, 
ELP and CSA for all the four Fibonacci sequences, and 
smaller than that obtained by TS for the sequences with 
lengths 13, 21, 55. Although the lowest energy value 
obtained by GTAMC is not as low as that obtained by TS for 
the sequence with length 34, it is smaller than that obtained 
by TS for the sequences with lengths 55, which shows that 
GTAMC has better performance for long sequence. The 
lowest-energy ground configurations of Fibonacci sequences 
listed in Table 1 are presented in Figure 3. Shows that all the 
conformations form single compact hydrophobic cores 
surrounded by hydrophilic residues, which is observed in 
real proteins. The results verify that it is reasonable to use 
AB model with Fibonacci sequences in three dimensions to 
mimic the real protein. In Figure 3 shows the initial random 
conformation, which generated by GTAMC at n = 13, 21, 34 
and 55. The red balls represent hydrophobic A monomers, 
and the gray balls represent hydrophilic B monomers. Figure 
3 shows that the results are unstable. 

 
Figure 3.  The initial conformations obtained by GTAMC algorithm 

 
Figure 4.  The lowest energy conformations for the four Fibonacci 
sequences obtained by GTAMC algorithm 

However Figure 4 shows that the lowest energy 
conformations in the 3D off-lattice model obtained by 
GTAMC algorithm, corresponding to the energies shown in 
Table 1. This indicates that the AB model in three 
dimensions with Fibonacci sequences displays the important 
feature when it is used to simulate the real proteins. 

4.2. Results for Real Protein Sequences 

In this section, we describe the experimental results using 
real protein sequences. The real protein sequences used in 
our experiments were downloaded from the website: 
http://pdbbeta.rcsb.org/pdb/Welcome.do. For comparison, 
we used the same three protein sequences as those used in 
[22]. The PDB ID of the three protein sequences are 1BXL, 
1EDP and 1AGT, respectively. In the experiments, the same 
K-D method used in [22, 23] were adopted to distinguish the 
hydrophobic monomers from the hydrophilic ones, where I, 
V, L, P, C, M, A, G are considered to be hydrophobic while 
D, E, F, H, K, N,Q, R, S, T, W, Y are hydrophilic. Because 
there are few papers dealing with the real protein structure 
prediction issue using off-lattice AB model, we only 
compared our experimental results with the results in [22]. 

Table 2.  Minimum energies for three real proteins obtained by TS and 
GTAMC algorithm using off-lattice AB model in three dimensions 

PDB ID Sequences 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇  𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  

1BXL GQVGRQLAIIGDDINR -15.7164 -15.9857 
1EDP CSCSSLMDKECVYFCHL -12.8392 -13.8969 

1AGT 
GVPINVSCTGSPQCIKPCKDQ

GMRFGKCMNRKCHCTPK 
-44.2656 -46.0002 

The PDB ID is unique identifier of a protein in the database, representing 
its amino acid sequences 

 
Figure 5.  Shows the initial conformation of the real proteins, which 
generated by GTAMC 

The experimental results for the real proteins are presented 
in Table 2 and the corresponding lowest protein landscapes 
obtained by our GTAMC are shown in Figure 5 and 6. Table 
2 shows that the minimal energy values obtained by the 
proposed GTAMC are lower than those obtained by TS in 
[22], especially for long sequences. The results demonstrate 
that GTAMC is much more efficient than TS in protein 
folding structure prediction using AB off-lattice model. 
Figure 5 shows the initial conformation of the real proteins, 
which generated by GTAMC at n = 16, 17 and 38. 

 
Figure 6.  The lowest energy conformations for the three real protein sequences obtained by GATS algorithm Solid dots indicate hydrophobic monomers I, 
V, L, P, C, M, A, G, and open dots indicate hydrophilic monomers D, E, F, H, K, N, Q, R, S, T, W, Y
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From Figure 6, we find that all the configurations have 
also formed a hydrophobic core, surrounded by hydrophilic 
residues. However, the hydrophobic core of 1AGT, which is 
the longest among the three real proteins, seems not to be 
compact enough. This may indicate that the performance of 
the coarse simplified AB off-lattice model is not effective 
enough for the prediction of the structure for long protein 
sequences. 

5. Conclusions 
A hybrid algorithm that combines genetic algorithm and 

tabu search algorithm is developed for 3-D protein structure 
prediction using off-lattice AB model. The proposed 
algorithm can deal with multi-parameter problems. In the 
proposed algorithm, different strategies are adopted to make 
the proposed algorithm have different advantages. For 
examples, the variable population size strategy can keep the 
diversity of the population, and TSM strategy makes it 
possible to accept poor solution as the current solution and 
thus makes the algorithm have better hill-climbing capability 
and stronger local searching capability than many other 
mutation operators. In addition, TSR strategy can limit the 
frequency that the offsprings with the same fitness appear, 
and thus can also keep the diversity of the population and 
avoid premature convergence of the algorithm. Compared 
with the previous algorithms, GTAMC has stronger 
capability of global searching. In the future work, we will 
improve the algorithm and make it more effective for long 
protein sequence prediction using multi-core computing 
platforms [24]. 
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