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Abstract  An updated review is presented to demonstrate the impact an expanding cosmos on three approaches to 
analyzing gravity. 1) the General Relativity based tensor method, 2) the Escape Velocity based conservation of energy 
method, and 3) the Force-Balanced based action-reaction method. The only common solution from all three methods is a flat 
space result with critical matter density ρc=3H2/8πG where H is the Hubble parameter, and G is the gravitational constant. It 
is also shown that the use of a Force-Balance based analysis for action-reaction, derived from a conservation of energy 
baseline, is analytically equivalent to that of a General Relativity tensor-based analysis for a flat space solution. Galaxy-based 
energy conservation and force-balanced solutions in an expanding cosmos also indicate that cosmic expansion is the unique 
action-based cause of a gravitational reaction at a galaxy level. Friedmann solutions from General Relativity for open and 
closed space curvature, however, add a speed of light term to H that violates galaxy-based conservation of energy and 
action-reaction force balance requirements. Thus, such curved space solutions are not physically relevant in an expanding 
cosmos. Evidence from Guth-Linde Inflationary Universe models is also cited to support the validity of a unique 
galaxy-based flat space solution. 
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1. Introduction 
Traditionally, throughout human history, gravity has been 

seen as a natural attractive force between matter-based 
objects as a function of composition, size, shape, weight, and 
position. Physically speaking though, it is the weakest of the 
known forces, with about 10-38 times less strength than the 
“strong force” that binds the nucleus of atoms together. [1] 
The first reliable mathematical description of its attractive 
strength was defined by Issac Newton' in his 1687 “Principia” 
document, [2] where its attractive force was characterized as 
a product of the mass content of the two objects times a 
gravitational “constant” G, and divided by the inverse square 
of the distance between the objects. It can be seen, however, 
that although the Newton inverse square formula does not 
provide a clear causal basis for gravity, it does imply that the 
true cause of gravity is probably something that is 
proportional to mass of the objects. An accurate solution to 
gravitational attraction between objects, however, requires 
use of a gravitational field map that can be analyzed to obtain 
potential magnitude information that defines an accurate 
force result. At Newton's time,  however, no such concept  
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was known, so the impact of such map defined information 
was largely absorbed into the gravitational “constant” G. 
Such an analytical field map method would not be developed 
until the early 20th century. [3] It is now known that the value 
of the so-called “constant G” in Newton's inverse square 
formula actually changes with distance in the formula, 
especially at very short distances, but this could not be 
accurately measured in 1687. However, note also that, at 
far-field distances between objects, the Newtonian formula 
is remarkably accurate. [4] 

The General Relativity paper by Einstein in 1915, [5, 6] 
did, however, make use of a mathematical field map analysis 
method that demonstrated how an observer's view of space 
and time was affected by a gravitational field, and gave an 
entirely new perspective on how gravity could impact the 
observed geometry of a matter object. For example, a planet 
in orbit around the sun, could actually be viewed as falling 
gravitationally. It also showed that the Newtonian formula 
was only accurate as a “far field” limit on a gravitational 
field. However, General Relativity was also matter mass 
based, and therefore also failed to define a clear causal basis 
for gravity, the same as the Newtonian formula.  

Accurate field mapping analysis techniques in general 
were first developed early in the Twentieth century. The 
initial forms were graphical, such as those developed to 
provide electromagnetic graphical field solutions to 
Maxwell's Equations to aid in the design of electrical 
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machinery in 1915 by Douglas. [7] Einstein's General 
Relativity in the same year made a giant leap forward, in that, 
in place of a graph, it actually made use of a mathematical 
model, based upon the Riemannian Geometry, that was 
equivalent to a set of ten simultaneous non-linear partial 
differential equations, which were used to obtain metric 
tensor solutions for gravity in a space-time geometry. [8] A 
similar mathematical approach to obtain the easier linear 
solutions to Maxwell's Equation set were not developed until 
almost 20 years later (around 1935), to support the design of 
RADAR systems. [9] However, as shown in the text by 
Ohanian and Ruffini, [10] it is also possible to develop a 
linear approximation of the General Relativity equation as an 
analog to Maxwell's Equations to get a simpler, more 
solvable model for some gravity problems.  

The usual approach to solving a field system of partial 
differential equations generally involves defining the 
governing equation set along with boundary conditions, and 
then pursuing a “guess and check” process to obtain 
solutions. [11] In such a case, there generally is no substitute 
for a good guess. When the General Relativity equation is 
used as the governing equation set, however, such a process 
is very complex. Thus, only about a half- dozen physically 
relevant solutions have been found during the last hundred 
years. [12] The process can be much simplified, however, if 
Special Relativity is used as a constraint condition when 
doing tensor-based analysis. [13] As shown in the text by 
Ohanian and Ruffini, there is no relativity principle which is 
more general than Special Relativity. [14] Thus, Einstein's 
General Relativity is actually subservient to Special 
Relativity, in this regard.  

2. General Relativity Tensor Analysis 
Method 

Before the development of the 100” telescope on Mount 
Washington, observations in astronomy were limited to 
views inside the Milky Way galaxy, which internally 
appeared to have a near-static form. In 1929, use of the) 100” 
telescope, however, allowed astronomers to observe the 
expanding cosmos beyond the Milky Way. The question 
then is: How does the Milky Way galaxy avoid the impact of 
the cosmic expansion dynamic internally to have a local 
galaxy-based environment that seems equivalent to a 
near-static condition? The obvious response is that the mass 
of each galaxy is sufficiently large for its gravitation to 
balance the outward pull of cosmic expansion.  

Before the discovery of the expanding cosmos in 1929 by 
Hubble [15] using the Mount Washington telescope, a 
primitive General Relativity model for the cosmos had 
already been developed. In 1922-1924, a Russian living in St. 
Petersburg named Alexander Friedmann [16, 17] was able to 
solve the Einstein General Relativity field equation 
assuming a simplified model of the cosmos.  

The Friedmann model presumes a near-static form of the 
cosmos, commonly accepted at the time, and Einstein’s 

General Relativity equation, defined here in cgs units as [18]  
Rμν -gμνR/2 = (8πG/c2)Tμν +Λ        (1) 

where Rμν is the Ricci curvature tensor, gμν is the metric 
tensor, R is the Riemannian scalar curvature tensor, G is the 
gravitational constant, c is the speed of light, Tμν is the 
energy-momentum tensor of matter, and Λ is the 
cosmological constant. The cgs form of (1) is used here (as 
opposed to the Einstein convention with c=1) to enable 
evaluation of a solution's support for gravitational relevance, 
and consistency with conservation of energy and 
action-reaction force balance requirements in an expanding 
cosmos.  

The Friedmann model also assumes that the sum of the 
rest matter in the cosmos is equal to a stable non-zero 
constant in a cosmos that is uniformly homogeneous and 
isotropic at scales larger than 100 Mpc, with a cosmological 
metric of form [19] 

ds2=a(t)2ds3
2-c2dt              (2) 

where ds3
2 is a 3-dimensional metric that defines space 

curvature attributes, and a(t) defines the scale factor 
attributes in (1). For convenience, note that a 
Robertson-Walker metric is used here, rather than the 
awkward arguments given in the original Friedmann 
publications. Then, noting that the Christoffel symbols for (2) 
give a Ricci tensor coefficient R00=3(aä-ȧ2)/a2, [19] and that 
Tμν equals matter density ρ in a perfect fluid-filled cosmos as 
a function of cosmic mass and volume, the form defined in (1) 
for the Friedmann model can then be reduced to two 
independent equations, one for cosmic space expansion and 
a second for acceleration-based space changes as a function 
of the curvature attribute  

(ȧ2+kc2)/a2=(8πGρ+Λc2)/3, and         (3) 
ä/a=(-4πG/3)(ρ+3p/c2)+Λc2/3          (4) 

where k is interpreted as a space attribute parameter (+1, 0, 
-1) for respectively open, flat, or closed space, ρ is the rest 
matter density of the cosmos, and pressure p=0. The form of 
(3) and (4) for the Friedmann model, respectively, when Λ=0, 
and ȧ2/a2=H2 is the Hubble parameter squared (only in use 
after the Hubble discovery of an expanding cosmos in 1929), 
then reduce to 

(H2+kc2/a2)=(8πGρ)/3, and         (5) 
Ḣ+H2 =ä/a=(-4πG/3)(ρ+3p/c2).       (6) 

With the cosmological constant Λ=0 and the curvature 
parameter k=0, the unique critical matter density solution for 
flat space in (5) then further reduces to 

ρ=ρc=3H2/8πG,             (7) 
which is a later mathematical result not presented in the two 
Friedmann papers. In fact, the Friedmann solution results 
were more like those given in (3) and (4) with k=+1, and 
k=-1 for the open and closed space solutions. It can be seen 
then that the term 8πGρ in (3) and (5) indicates that total 
cosmic rest mass is a constant, and uniformly distributed, 
implying that the cosmos in the Friedmann model can be 
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interpreted as having only one galaxy (eg; the Milky Way) in 
which matter is presumed to always have existed.  

It can be seen that the term kc/a≈(3x108m/s per million 
light-yrs) in (3) and (5) is equivalent to adding a speed of 
light change to the value of H, which is questionable even in 
a near static model of the cosmos because of Special 
Relativity constraints. In this regard, however, note that 
current measurements for H show that a reasonable value in 
an expanding cosmos is approximately 17 km/s per million 
light-years. [20, 21] Theoretically, such a speed of light 
change to H in an expanding cosmos can only occur during 
an ideal radiation dominated phase when there is no gravity. 
It will be shown in the following that such curved space 
solutions also violate galaxy-based conservation of energy 
and action-reaction force balance requirements in an 
expanding cosmos.  

3. A Conservation of Energy based 
Escape Velocity Analysis Method  

Alternatively, a simpler energy-based solution for the 
relation between cosmic expansion and gravity in an 
expanding cosmos can be found in the texts by Beiser. [20, 
21], and Tipler and Llewellen [22]. The method makes use of 
a galaxy-based escape velocity analysis approach that can be 
associated with cosmic expansion rate. Within the context of 
an expanding cosmos, the interaction between such 
expansion and gravity at each galaxy, therefore, is presumed 
to have an energy balanced form. Mathematically then, the 
energy balance for the interaction of cosmic expansion with 
gravity at a galaxy can be defined as 

½mv2=½m(HR)2= GmM/R=(Gm/R)(4πR3ρc//3)   (8) 
where ½mv2 is the kinetic energy of the galaxy due to cosmic 
expansion with v as red-shift focused outward velocity, m is 
the mass of the galaxy, M is the total rest mass of the cosmos 
modeled as a spherical volume with radius R external to the 
galaxy, G is the gravitational constant, H=ȧ/a is the Hubble 
parameter where v=HR, and ρ=ρc is the critical matter 
density of the cosmos where expansion and gravitation are 
balanced. This then also yields an energy based critical 
matter density solution like that given in (7) that satisfies 
galaxy-based conservation of energy. [21] 

As mentioned above, it is well known that current 
observations indicate that a reasonable value for H in an 
expanding cosmos is approximately 17 km/s per million 
light-years. [20, 21] In this regard, note that the formula in (8) 
can be viewed as defining a cosmic model with galaxies that 
satisfy cosmic conservation of energy uniquely with a flat 
space solution. [21] Quantitatively, the Friedmann curved 
space solutions for the General Relativity in an expanding 
cosmos, however, would imply that M≈0 as in an ideal 
radiation dominated phase, that in turn causes the form of (8) 
to become a null state. Thereby Friedmann curved space 

solutions fail to satisfy the galaxy-based conservation of 
energy relationship defined in (8) and must be viewed as 
physically irrelevant.  

4. Newton's Third Law of 
Action-Reaction 

Since energy can be represented as a force through a 
distance, the implied force on the galaxy due to cosmic 
expansion and the force of gravity implied by energy 
equation (8) then can be defined as 

½m(HR)2/R=GmM/R2=(Gm/R2)(4πR3ρc//3)    (9) 
which converts the galaxy-based energy balanced form in (8) 
to a force-based form where Newton's gravity formula, 
GmM/R2 serves as a measure of the far-field gravitation seen 
at a galaxy. It can also be seen from (8) that a gravity-based 
interaction (with ρ=ρc) between m and M, provides the only 
equal and opposite force reaction that opposes the causally 
based action force of cosmic expansion. This indicates then 
that the negative energy gravitational reaction process does 
not have to have the same process form as the positive action 
term, as is common in most cases, to fulfill the force 
requirements of Newton's Third law for action-reaction. 
Equation (9) then, due to red-shift expansion dynamic, can 
only reach null value when [20]  

lim (½mv2)=0.                (10) 
R─>∞ 

Note that the energy and force balanced solutions in both 
(8) and (9) both imply the validity of the flat space solution 
in (7) [21] which thereby satisfies a galaxy-based 
conservation of energy and action-reaction force-balance 
requirement. Friedmann curved space solutions, however, 
add a speed of light kc/a term to the Hubble parameter, 
implying that M≈0, and cause (9) to have a null state. Such 
curved space solutions therefore can be seen as failing to 
satisfy the galaxy-based conservation of energy and 
action-reaction force balance requirements defined in (8) and 
(9).  

It can also be shown that the action-reaction formula in (9) 
is analytically equivalent to that defined above in (5) when 
k=0. To see this, first note that the term m in (9) is common in 
all expressions separated by an equal sign, and therefore can 
be eliminated. Multiplying the first and last expressions 
defined in (9) then by a factor of 2 then yields the form 

 (H2R)=(G/R2)(8πR3ρc/3).          (11) 
Now, since the resulting term in R is also the same on both 

sides of the equation in (11), the term R can also be 
eliminated, thereby yielding the same General Relativity 
expression in (5) with k=0, and a flat space solution. Thus, 
the General Relativity analysis that defines (5) is analytically 
equivalent to that for an action-reaction gravitational basis 
defined in (9).  
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5. An Inflation based Evolutionary 
Scenario  

The scenario described here begins with an 
electromagnetic energy focused process described in another 
paper published by the Alpha Omega group. [23] Such an 
inflation-like event is natural and needs no artificially 
defined form, but still yields the same inflationary impact as 
those found in the Guth and Linde Inflationary models. [24]  

Initial conditions for the event assume that radiation 
wavelength at start is proportional to Planck Time (eg; 
λ∝10-45s), and initiates a radiation dominated phase that has 
no matter and thereby expands at light speed. At time 
proportional to ~1013 seconds, the radiation dominated phase 
ends with radiation wavelength of λ∝10-15s, thereby 
completing the Inflation-like process, and is followed by a 
three-stage decoupling event that initiates a matter 
dominated phase that is in accord with observed data from 
particle collision experiments.  

It should be noted that this decoupling time event at ~1013 

seconds at this point is also consistent with that found in 
Inflationary models. The start of the matter dominated phase 
then sets the stage for the balanced condition between the 
positive energy cosmic expansion process and the negative 
energy gravitation process described in (8) and the force 
balanced activity defined by (9). Cosmic expansion 
continues until the conditions define in (10) are satisfied 
when both cosmic expansion and gravitation no longer exist.  

If Newton's Third law must always be true during the 
matter dominated phase in order to conserve energy, the 
processes in (8) and (9) involving cosmic expansion and 
gravitation continue until satisfying the condition defined in 
(10). Thus, cosmic expansion and gravitation can therefore 
only reach a null condition simultaneously. The open space 
(eg; with k=+1, ρ<ρc) and closed space (eg; with k=-1, ρ>ρc) 
solutions to (3) and (5) developed by Friedmann, however, 
add a speed of light term to H, and thereby fail to satisfy both 
action-reaction force as well as conservation of energy 
requirements.  

What happens when cosmic expansion stops and gravity 
fails? Stars, planets, galaxies, black holes, and other material 
objects come completely apart, and solar-like system 
structures no longer exist. According to Equation (10), this 
occurs well after star, galaxy, and solar system formation 
have long ceased to exist. All stars have long ago reached old 
age and emit no radiation. Only a dark and cold cosmos 
remains full of primitive matter. Newton's Third law may 
still remain, but without serious impact.  

6. Conclusions 
It is shown in the foregoing that the force balance between 

cosmic expansion and gravitation, though different in 
process form, uniquely satisfies Newton's Third law with a 
flat space density solution of ρ=ρc=3H2/8πG. Such a flat 
space geometry expands forever with an expansion rate that 

continues to become ever smaller. Indeed, in the vast 
majority of cases, both the action and reaction components 
involving Newton's Third law do have the same energy 
process form, but, note that the important part of the law is 
the requirement that forces be balanced. It also can be seen 
then, in the case of cosmic expansion as an action-based 
force, there is no equal and opposite balancing reaction force 
other than that from gravitation.  

It is also shown that a galaxy-based action-reaction 
force-balanced analysis is equivalent to a General Relativity 
analysis procedure with k=0 for a flat space solution. When 
using a Friedmann based open space-time k=+1 (with ρ<ρc ) 
solution, or the closed space-time k=-1 (with ρ>ρc ) solution, 
however, a speed of light term is added to the Hubble 
parameter H that violates galaxy-based requirements for 
conservation of energy and action-reaction force balance in 
an expanding cosmos.  

It should also be noted that cosmic expansion is a positive 
energy action form and that gravitation is a negative energy 
reaction form. Thus, the sum of both together, per Newton's 
Third law, yields a net null energy condition. Both together 
then also constitute a necessary condition set for the 
existence of gravity. A corollary result to the irrelevance of a 
closed space solution during cosmic expansion is that a BIG 
CRUNCH cosmic collapse is unlikely. If ρ=ρc uniquely, a 
reversal of outward cosmic expansion can never occur.  

It should be noted the results given here are also consistent 
with those from cosmic Inflationary models. [24, 25] As 
long as Inflation continues long enough, the state of 
space-time in the cosmos, viewed as an expanding 3-sphere 
in 4-sapce, is driven toward a flat space-time condition. [25] 
Similarly, in terms of a 2-sphere balloon model, as the 
balloon continues to be inflated, the flatter its surface 
becomes. Thus, Inflationary models generally lead to a ρ=ρc 
flat space solution.  

As an alternative to the Guth and Linde Inflationary 
models, a more natural, Inflation-like model discussed above, 
is one which begins with initial photon wavelength 
proportional to Planck Time (λ∝10-45s). This initial surge of 
energy is followed by a matter free radiation dominated 
phase expanding at the speed of light for ~1013 seconds that 
ends with λ∝10-15s at the beginning of a matter dominated 
phase, same as in the Guth and Linde models. Thereby, the 
overall inflationary impact (eg; 1030) is also the same as that 
found in traditional Inflationary models.  

It should be noted that some observations on type 1a 
supernovae [26] appear to give evidence of late era 
acceleration in the cosmic expansion rate, following the 
matter dominated era discussed here. There is currently 
ongoing study to learn more about a possible interaction.  
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