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Abstract  In this paper we consider the problem of identifying a limited amount of nodes from a given graph in order to 

minimize some measure of the connectivity of the surviving graph. These nodes are commonly referred to as critical nodes. In 

particular, we look at the problem of identifying important nodes in a path graph whose removal optimizes the connectedness 

of the given path. We analyze four variants of the critical node detection problem on paths and present a closed-form solution 

for the objective function's optimality. 
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1. Introduction 

Critical node detection problems (CNDP) are a family of 

optimization problems defined on graphs, where one is 

required to select a small set of nodes to remove in order to 

make the remaining graph as disconnected as possible, 

according to some connectivity measure. In particular, the 

connectivity measure analyzed in this paper is the so-called 

pairwise connectivity, formalized in [5], which counts the 

number of node pairs that are connected to each other by    

a path. This class of problems has attracted the interest     

of many researchers in the last two decades, because of    

its relevance in a number of practical applications. The 

applications involve scenarios in which the goal is to either 

secure the most critical nodes in a network or attack the  

most critical nodes in order to have the fewest connections 

between any two nodes in the network. Below are some of 

the most important applications of critical node detection 

problems. 

The connections between pairs of nodes are minimized 

after the most critical nodes are removed from a supply chain 

network. A military supply chain network [33], for example, 

consists of battalions and support battalions as nodes and  

the connections between them as links. By attacking the  

most critical nodes in this network, the connectivity between 

supply and demand nodes will be reduced. As a result, 

solving the critical node detection problem (CNDP) is 

critical in military tactical attacks during wars. 

Terrorists can be represented as nodes in a graph using 

information obtained from a covert network, with social 

interactions between them as links. We can reduce terrorist 

communication by targeting the most critical individuals in 

the networks [18]. 
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In order to analyze the influence of epidemics in genuine 

social networks [22], people and their connections are 

represented as nodes and links in a graph. Since random 

mass vaccines are expensive [22], numerous solutions for 

targeted vaccinations were offered to reduce the spread of 

infectious illnesses in genuine social networks. However, the 

best vaccine technique is to identify and vaccinate important 

nodes in order to reduce pairwise connectivity between 

persons in a community [5], assuming that higher pairwise 

connectivity causes faster outbreaks. 

Telecommunication networks, such as the Internet, 

telephone networks, and computer networks, can be 

visualized as graphs, with each node representing a terminal 

and links representing communication between terminals. In 

telecommunication networks, we aim to stop a virus from 

spreading or discover a strategy to decrease network [6] 

communication as much as feasible. Also, with network 

vaccination [19], where a graph reflecting individuals's 

contacts is provided, only a certain number of people can be 

vaccinated, and we intend to keep the virus [10,34] from 

spreading. 

The CNDP's applications are not restricted to those listed 

above; it has a wide range of uses in a variety of fields, 

including transportation engineering [17], computational 

biology [24,32], the analysis of complex networks [8,14], 

security/vulnerability issues in networks [13,23,30,31], 

homeland security [9,15,16], energy [27], etc. 

Since problems of this type usually turn out to be NP-hard 

for general graphs, and often also for quite special classes of 

graphs [2,11,28,29,30], several heuristic approaches as well 

as methods based on integer programming formulations have 

been proposed in the literature; see, e.g., [1,3,5,12,23,25,26]. 

Polynomial algorithms are instead available only for some 

particular cases, which are usually limited to graphs with 

bounded treewidth, in particular trees and series-parallel 

graphs [2,4,7,11,20,28]. We refer the interested reader to the 

survey [21] for a detailed overview. 
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2. The Problems that We Study 

In this paper we study the Critical Node Detection Problem 

on a path which can be seen as a very special case of a tree. 

Given a path graph ( , )P V E  with V n  nodes and an 

integer K , the CNDP on a path seeks to find a set S V  of 

at most K n  nodes, the deletion of which minimizes 

pairwise connectivity in the remaining path graph ( \ )P V S . 

We will tackle the so-called Distance-based Critical Node 

Detection Problem (D-CNDP) over paths as described in [4]. 

The NP-completeness of D-CNDP over paths for some 

specific distance functions has been already established [4]. 

We look at some particular versions of CNDP on paths that 

fall into the D-CNDP on paths and provide closed-form 

solution for optimality of the objective function. The variants 

that we analyze in this paper are the following: 

1.  Minimizing the number of node-pairs connected by a 

path with upper bound of length at most L . 

2.  Minimizing the number of node-pairs connected by a 

path with lower bound of length at least L . 

3.  Minimizing the number of node-pairs connected by a 

path of length precisely L . 

4.  Minimizing the number of node-pairs connected by a 

path of length between 1L  and 2L  where 1L  and 

2L  are the lower and upper bound respectively.  

The term balanced solution is an important concept that 

we will utilize in the following statements. We call the 

solution balanced if the difference between the length of the 

shortest and longest components is either 0 or 1.  

Before deriving the exact solution of the objective 

function for the four variants introduced above, we first 

present the following result without any lower or upper 

bound on the length of the connecting path. 

Proposition 1. For the CNDP on a path without any lower 

or upper bound, the optimal solutions are the balanced 

solutions. 

Proof. Let ( , )P V E  be a path graph with V n  

nodes and let   be the average number of nodes of the 

sub-paths obtain after removing K  nodes, where 

1

V K

K






. 

Assume that we are given an optimal solution after 

removing K  nodes. Suppose by contradiction that in the 

given optimal solution, not all the sub-paths have length 

    or    . Since the solution is unbalanced, there are  

at least two sub-paths in this solution in which one of the 

component has length at most 1     and another 

component has length at least 1    . Let 1l  and 2l  be 

the number of nodes of the shortest and the longest 

components respectively, i.e., 1 1 l      and 

2 1 l      (see Figure 1). Now we construct a new 

solution by adding one node in the shortest component, i.e., 

1 1l   and by subtracting one node in the longest component, 

i.e., 2 1l   and the length of the other components are 

unchanged (see Figure 2). We want to show that this new 

solution is better than the given solution. 

So the claim is 

1 2 1 21 1
,

2 2 2 2

l l l l       
   

 
    

 


  


  
 where 2 1 2l l   

1 1 2 2 1 1 2 2( 1) ( 1)( 2) ( 1) ( 1)l l l l l l l l          

1 1 1 2 2 2( 1 1) ( 1)( 2)l l l l l l         

1 22 2( 1)l l    

2 1 1l l    

which is true by assumption because we are assuming 

2 1 2l l  , and we will continue this perturbation until we 

have 1K   components of size     and    , and this 

shows that every optimal solution is balanced. Observe that 

all balanced solutions have the same cost and hence they are 

equivalent. Since all balanced solutions are equivalent, this 

proves that all balanced solutions are optimal. 

We now state the result when the graph is a path and the 

problem is to remove K  nodes in order to minimize the 

number of pairs that are connected by a path of length at most 

L , for some given natural number L . 

Proposition 2. For the CNDP on a path with upper bound 
L , any solution that removes K  nodes and creates 1K   

components with cardinality at least L  is optimal. If no 

such a solution exists, then any solution that removes K  

nodes and creates balanced components is optimal. 

 

 

Figure 1.  Example of a solution after removing K = 2 nodes 

 

Figure 2.  Modification of the solution of Figure 1 
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Proof. First we prove the second part of the statement 

which means there is no way to make all the components 

with cardinality at least L  and in this case we want to prove 

that balanced solutions are optimal. 

Assume by contradiction that we are given an optimal 

solution which is not balanced. Since we are assuming that 

there is no way to make all the components with cardinality 

at least L , there is at least one sub-path with cardinality   

at most 1L  . Let A  be the shortest component and B  be 

the longest component of the solution. With a slight abuse of 

notation we will denote by A  and B  also the number of 

nodes in the component. Then 1A L   and 2B A   

because the solution is not balanced. Now we do the 

perturbation by adding one node in the shortest component 

and by subtracting one node in the longest component and by 

keeping the cardinality of all other components unchanged. 

Now if B L  and we subtract a node from B , then we 

lose L  connections, while if B L  and we subtract a node 

from B , then we lose ( 1)B  connections because we have 

to count only the paths of length L . Since 1A L  , if 

we add an extra node to A , then we have A  new 

connections. Thus we have the following two cases when we 

do the perturbation. 

Case 1: If B L , then the improvement is 0 . 

Case 2: If B L , then the improvement is 1A B   

which becomes 1   because we are assuming that 
2B A  . 

So with the property 1A L  , we have always a 

negative improvement (case 1 and 2), i.e., we reduce the 

objective function and this proves that any unbalanced 

solution is not optimal. Since all balanced solutions are 

equivalent, this proves that all balanced solutions are 

optimal. 

Now we prove the first part of the statement which means 

that it is possible to make all the sub-paths with cardinality at 

least L . In this case still it is possible that in the solution the 

shortest component is smaller than 1L   and we know by 

the above argument that this solution is not optimal.  

In the following we prove that all the solutions that creates 
1K   sub-paths with cardinality at least L  are equivalent.  

When we remove K  nodes from the path, we create 

1K   components. Suppose it  is the number of edges of 

every sub-path. Now if we take a path with 1it L   edges, 

then the contribution is given by 
1

1

( 1)
L

i
K

L t L K




    , 

because in a component of ( 1)t   nodes, we have 

( 1 )t L   nodes which gives a contribution of length L  

and the remaining L  nodes gives the contribution of 

( 1),( 2), ,1L L   , respectively, which is given by 
1

1

L

K

K




 . 

In the last component, the number of edges is given by 

1
1

1 2
K

K i
i

t n t K


    , because we have 1n  edges 

initially, then we have to discard all the edges of the 

sub-paths which is given by 

1

K

i
i

t



  and when we are 

removing K  nodes, we are deleting 2K  edges, since   

we are assuming that we are creating 1K   components 

that means we are not removing two adjacent nodes. So   

the contribution of the ( 1)K  th component is given by 

1

1 1

( 1 2 )
K L

i
i K

L n t K K


 

     . Hence the total contribution is 

1

1 1 1
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K L K

i i
i K i

L L

K K

L t L K L n t K

K K L n L K



  

 

 

      
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 

 

which is independent of it 's, that means it does not matter 

what is the length of the sub-paths as long as their cardinality 

is at least L . 

Now we show that all the solutions that create all 

components with cardinality at least L  are optimal. Define 
*S  as the set of solutions which have the property that all 

components have at least L  nodes. Since there is at least 

one solution with all the components with cardinality at  

least L , the set *S  is nonempty. Take a solution in *S . 

This solution has the property that the total number of nodes 

in  the surviving components is at least ( 1)( 1)L K   as 

after removing K  nodes we have ( 1)K   components and 

each of cardinality at least ( 1)L . Let's call again A  and 

B  be the shortest component and the longest component 

respectively in *S . Take any solution which is not in *S , 

which means that it has at least one component whose 

cardinality must be smaller than 1L  , so that 2A L  . 

We claim that the cardinality of the longest component is at 

least L , i.e., B L . If this is not true, then 1B L  . In 

this case the total number of nodes in the surviving 

components is at most ( 2) ( 1)L L K   , which is at least 

one unit smaller than ( 1)( 1)L K   and this is a 

contradiction because we know that the total number of 

nodes can not be changed as we always remove K  nodes. 

So any solution which is not in *S  has the property that 

2A L   and B L  and this means that the solution is 

not balanced. Since the solution is not balanced, we apply the 

perturbation and by the previous arguments (case 1 and case 

2) we know that when we do the perturbation we always 

improve. After the perturbation either we find a solution 

which is in *S  and we are done, or we find a solution which 

has still the property that 2A L   and B L  and we 

will continue this perturbation until the solution is balanced. 

When we get a balanced solution, we are in *S  and this 

proves that the set *S  is optimal. 

The following result holds for the case when the graph is a 

path and the problem calls for minimizing the number of 

node-pairs still connected by a path of length at least L , for 
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some given natural number L , surviving in a path after 

having removed at most K  nodes.. 

Proposition 3. For the CNDP on a path with lower bound 
L , any solution that removes K  nodes and creates 1K   

components with cardinality at most L  is optimal. If no 

such a solution exists, then any solution that removes K  

nodes and creates balanced components is optimal. 

Proof. First consider that we can make all the components 

with cardinality at most L  and in this case all the solutions 

are equivalent and hence optimal, because the objective 

value is 0  and in this incident, it does not matter whether 

the solution is balanced or not as long as all the components 

have cardinality at most L .  

Now we prove the second part of the statement which 

means there is no way to make all the components with 

cardinality at most L  and in this case we want to prove that 

balanced solutions are optimal.  

Assume by contradiction that we are given an optimal 

solution which is not balanced. Since we are assuming that 

there is no way to make all the components with cardinality 

at most L , there is at least one sub-path with cardinality 

greater than L . Let A  be the shortest component and B  

be the longest component of the solution. With a slight abuse 

of notation we will denote by A  and B  also the number of 

nodes in the component. Then B L  and 2A B   

because the solution is not balanced. Now we do the 

perturbation by adding one node in the shortest component 

and by subtracting one node in the longest component and by 

keeping the cardinality of all other components unchanged. 

Now if 1A L   and we add an extra node to A , then  

we have 1A L   new connections while if 1A L   and 

we add an extra node to A , in this case we create 0  

connection, because we have to count only the paths of 

length L . Since B L  and we subtract a node from B , 

we lose B L  connections. Thus we have two cases when 

we do the perturbation. 

Case 1: If 1A L  , then the improvement is 1A B   

which becomes 1   because we are assuming that 
2A B  . 

Case 2: If 1A L  , then the improvement is L B  

which becomes 1   because B L . 

So when we have at least one sub-path with cardinality at 

least L , we always get a better solution and this proves that 

any unbalanced solution is not optimal. Since all balanced 

solutions are equivalent, this proves that all balanced 

solutions are optimal. 

When the graph is a path, and we want to minimize the 

number of node-pairs still connected by a path of precise 

length L , for some given natural number L , surviving in a 

path after having removed at most K  nodes, the following 

result holds. 

Proposition 4. For the CNDP on a path of precise length 
L , any solution that removes K  nodes and creates 1K   

components with cardinality at least L  is optimal. 

Otherwise, any solution that creates 1K   components 

with cardinality at most L  is optimal. If no such a solution 

exists, then any solution that removes K  nodes and creates 

balanced components is optimal. 

Proof. Assume by contradiction that we are given an 

optimal solution which is not balanced. We are assuming that 

there is no way to make all the components with cardinality 

at least L  or all the components with cardinality at most L . 

Then there is at least one sub-path with cardinality less than 

L  and at least one sub-path with cardinality greater than L . 

Let A  be the shortest component and B  be the longest 

component of the solution. With a slight abuse of notation 

we will denote by A  and B  also the number of nodes   

in the component. Then A L , B L  and 2A B   

because the solution is not balanced. Now we do the 

perturbation by adding one node in the shortest component 

and by subtracting one node in the longest component and by 

keeping the cardinality of all other components unchanged. 

Since A L , when we add an extra node to A , we create 

0  connection, because we have to count only the paths of 

length precisely L . Again since B L , when we subtract a 

node from B , we lose 1  connection. Thus we have the 

following case when we do the perturbation. 

Case 1: If A L  and B L , then the improvement is 
1 . 

In the following we prove that all the solutions that creates 
1K   sub-paths with cardinality at least L  are equivalent.  

When we remove K  nodes from the path, we create 

1K   components. Suppose it  is the number of edges of 

every sub-path. Now if we take a path with 1it L   edges, 

then the contribution is given by ( 1)it L  , because in a 

component of ( 1)t   nodes, we have ( 1 )it L   nodes 

which gives a contribution of length exactly L . In the    

last component, the number of edges is given by 

1
1

1 2
K

K i
i

t n t K


    , because we have 1n  edges 

initially, then we have to discard all the edges of the 

sub-paths which is given by 

1

K

i
i

t



  and when we are 

removing K  nodes, we are deleting 2K  edges, since  

we are assuming that we are creating 1K   components 

that means we are not removing two adjacent nodes. So the 

contribution of the ( 1)K  th component is given by 

1

( 1 2 )
K

i
i

n t K



   . Hence the total contribution is 

1 1

( 1) ( 1 2 ) 2
K K

i i
i i

t L n t K n L K

 

           

which is independent of it 's, that means it does not matter 

what is the length of the sub-paths as long as their cardinality 

is at least L  and this proves that all the solutions that creates 

long components are all equivalent. 

Now we show that all the solutions that create all 

components with cardinality at least L  are optimal. Define 
*S  as the set of solutions which have the property that all 

components have at least L  nodes. Since there is at least 

one solution with all the components with cardinality at least 
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L , the set *S  is nonempty. Take a solution in *S . This 

solution has the property that the total number of nodes in the 

surviving components is at least ( 1)( 1)L K   as after 

removing K  nodes we have ( 1)K   components and each 

of cardinality at least ( 1)L . Let's call again A  and B  

be the shortest component and the longest component 

respectively in *S . Take any solution which is not in *S , 

which means that it has at least one component whose 

cardinality must be smaller than 1L  , so that 2A L  . 

We claim that the cardinality of the longest component is   

at least L , i.e., B L . If this is not true, then 1B L  .  

In this case the total number of nodes in the surviving 

components is at most ( 2) ( 1)L L K   , which is at   

least one unit smaller than ( 1)( 1)L K   and this is a 

contradiction because we know that the total number of 

nodes can not be changed as we always remove K  nodes. 

So any solution which is not in *S  has the property that 

2A L   and B L  and this means that the solution is 

not balanced. Since the solution is not balanced, we apply the 

perturbation and by the previous arguments (case 1) we 

know that when we do the perturbation we always improve. 

After the perturbation either we find a solution which is in 
*S  and we are done, or we find a solution which has still the 

property that 2A L   and B L  and we will continue 

this perturbation until the solution is balanced. When we  

get a balanced solution, we are in *S  and this proves that 

the set *S  is optimal. 

Similarly, if we can make component in such a way that 

the cardinality of all components is shorter than L , then all 

the solutions are equivalent and hence optimal, because the 

objective value is 0  and in this incident, it does not matter 

whether the solution is balanced or not as long as all the 

components have cardinality at most L . 

Otherwise, if we can not make solution in which all the 

components have cardinality at least L  or at most L , then 

obviously we are in case 1, because case 2 is not possible  

and in this case we always have a negative improvement, i.e., 

we reduce the objective function and this proves that any 

unbalanced solution is not optimal. Since all balanced 

solutions are equivalent, this proves that all balanced 

solutions are optimal. 

In the following we state the result when the graph is a 

path and the problem is to remove K  nodes in order to 

minimize the number of pairs that are connected by a path of 

length at least 1L  and at most 2L . 

Now we consider the case in which we have a lower  

bound 1L  and an upper bound 2L  and we consider the 

connections which are between 1L  and 2L . 

Proposition 5. For the CNDP on a path with lower bound 

1L  and upper bound 2L , any solution that removes K  

nodes and creates 1K   components with cardinality at 

least 2L  is optimal. Otherwise, any solution that creates 

1K   components with cardinality at most 1L  is optimal.  

If no such a solution exists, then any solution that removes 

K  nodes and creates balanced components is optimal. 

Proof. Assume by contradiction that we are given an 

optimal solution which is not balanced. We are assuming that 

there is no way to make all the components with cardinality 

at least 2L  or all the components with cardinality at most 

1L . Let A  be the shortest component and B  be the 

longest component of the solution. With a slight abuse of 

notation we will denote by A  and B  also the number   

of nodes in the component. Then 2A L , 1B L  and 

2A B   because the solution is not balanced. Now we do 

the perturbation by adding one node in the shortest 

component and by subtracting one node in the longest 

component and by keeping the cardinality of all other 

components unchanged. Since we want to count the paths of 

length between 1L  and 2L , if 1 1A L   and we add an 

extra node to A , then we have 0  new connection while if 

1 21L A L    and we add an extra node to A , in this case 

we create 1 1A L   connections. Again if 1 2L B L   

and we subtract a node from B , then we lose 1B L  

connections while if 2B L  and we subtract a node from 

B , then we lose 2 1L L  connections. Thus we have the 

following cases when we do the perturbation. 

Case 1: If 1 1A L   and 1 2L B L  , then the 

improvement is 1L B  which becomes 1   because 

1L B . 

Case 2: If 1 1A L   and 2B L , then the improvement 

is 1 2L L  which becomes 1   since 1 2L L . 

Case 3: If 1 21L A L    and 1 2L B L  , then the 

improvement is 1A B   which becomes 1   because 

we are assuming that 2A B  . 

Case 4: If 1 21L A L    and 2B L , then the 

improvement is 2 1A L   which becomes 1   because 

2A L . 

If we can make all the components with cardinality at most 

1L , then all the solutions are equivalent and hence optimal, 

because the objective value is 0 . 

In the following first we prove that all the solutions that 

creates 1K   sub-paths with cardinality at least 2L  are 

equivalent.  

When we remove K  nodes from the path, we create 

1K   components. Suppose it  is the number of edges of 

every sub-path. Now if we take a path with 2 1it L   

edges, then the contribution is given by 

2 1

2 1 2
1

( 1)( 1)

L L

i
K

L L t L K





      , because in a component 

of ( 1)it   nodes, we have 2( 1 )it L   nodes which gives  

a contribution of 2 1( 1)L L   and the remaining 2 1L   

nodes gives the contribution of 2 1 2 1( ),( 1), ,1L L L L    , 
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respectively, which is given by 
2 1

1

L L

K

K





 . In the last 

component, the number of edges is given by 

1
1

1 2
K

K i
i

t n t K


    , because we have 1n  edges 

initially, then we have to discard all the edges of the 

sub-paths which is given by 

1

K

i
i

t



  and when we are 

removing K  nodes, we are deleting 2K  edges, since we 

are assuming that we are creating 1K   components that 

means we are not removing two adjacent nodes. So the 

contribution of the ( 1)K  th component is given by 

2 1

2 1
1 1

( 1)( 1 2 )

L LK

i
i K

L L n t K K



 

       . Hence the total 

contribution is 

2 1

2 1 2
1 1

2 1

2 1
1 1

( 1)( 1)

( 1)( 1 2 )

L LK

i
i K

L LK

i
i K

L L t L K

L L n t K K



 



 

    

      

 

 

 

2 1

2 1 2
1

2 ( 1)( 2 )

L L

K

K L L n L K





       

which is independent of it 's, that means it does not matter 

what is the length of the sub-paths as long as their cardinality 

is at least 2L  and this proves that all the solutions that 

creates long components are all equivalent. 

Now we show that all the solutions that create all 

components with cardinality at least 2L  are optimal. Define 

*S  is the set of solutions which has the property that all 

components have at least 2L  nodes. Since there is at    

least one solution with all the components with cardinality at 

least 2L , the set *S  is nonempty. Take a solution in *S . 

This solution has the property that the total number of nodes 

in the surviving components is at least 2( 1)( 1)L K   as 

after removing K  nodes we have ( 1)K   components and 

each of cardinality at least 2( 1)L  . Let's call again A  and 

B  be the shortest component and the longest component 

respectively in *S . Take any solution which is not in *S , 

which means that it has at least one component whose 

cardinality must be smaller than 2 1L  , so that 2 2A L  . 

We claim that the cardinality of the longest component is   

at least 2L , i.e., 2B L . If this is not true, then 2 1B L  . 

In this case the total number of nodes in the surviving 

components is at most 2 2( 2) ( 1)L L K   , which is at  

least one unit smaller than 2( 1)( 1)L K   and this is a 

contradiction because we know that the total number of 

nodes can not be changed as we always remove K  nodes. 

So any solution which is not in *S  has the property that 

2 2A L   and 2B L  and this means that the solution is 

not balanced. Since the solution is not balanced, we apply the 

perturbation and by the previous arguments (case 2 and case 

4) we know that when we do the perturbation we always 

improve. After the perturbation either we find a solution 

which is in *S  and we are done, or we find a solution which 

has still the property that 2 2A L   and 2B L  and we 

will continue this perturbation until the solution is balanced. 

When we get a balanced solution, we are in *S  and this 

proves that the set *S  is optimal. 

Otherwise, if we can not make solution in which all the 

components have cardinality at least 2L  or at most 1L , then 

we are in one of the four cases and in every case we always 

have a negative improvement, i.e., we reduce the objective 

function and this proves that any unbalanced solution is not 

optimal. Since all balanced solutions are equivalent, this 

proves that all balanced solutions are optimal. 

3. Conclusions 

In this paper we focused our study on identifying critical 

nodes from a graph, whose deletion results in the minimum 

pairwise connectivity among the remaining nodes. We 

studied a particular case of the critical node detection 

problem, namely the Distance-based Critical Node Detection 

Problem (D-CNDP) over paths. We considered four versions 

of the D-CNDP on paths and provided closed-form solution 

to solve the problems. 
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