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Abstract  Sources and sinks are phenomena of interest. Biological systems have their share of the inherent benefits 

derivable from them. One of such systems is the Autorhythmic Volume Conduction System (AVCS). Autorhythmicity is 

typical of electrically active cells that demonstrate rhythmic activity without being driven by external stimulation. It is a 

unique attribute of cardiac cells. Here, specialized nodal cells act as sources and sinks, with the conduction pathways 

maintaining the integrity of ionic flow. The edge-nodal system is a network. Feasible network flow of ionic current is often 

achieved by the synergy between edge-nodal appurtenances. A veritable way of analyzing network systems is the 

mathematical graph theory. Therefore, this was done here. Much as the AVCS has its idiosyncrasy in terms of current flow 

through edge-nodal structures, the analysis of electrical flow as evinced by source and sink phenomena is a clue to a better 

understanding of the conduction system of the heart. 
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1. Introduction 

Bioelectric phenomena predate all artificial forms of 

electricity. In bioelectricity endogenous electrically 

mediated signalling regulate cell, tissue, and organ-level 

modelling and behaviour. Cells and tissues of all types, in the 

main, use ion fluxes to communicate electrically. Bioelectric 

phenomena are usually described by volume conduction 

models. Such models describe the topology and conductivity 

of tissues wherein electric current flows and also the current 

sources in the tissue. The heart is typical of an autorhythmic 

volume conduction system, and it is therefore being 

considered here. It is here named autorhythmic volume 

conduction system (AVCS). Autorhytmicity is a unique 

attribute of cardiac muscle cells. The cells can generate an 

autonomous action potential (AP) to an enormous degree. 

The passage of ionic current across the membrane of 

active excitable cells induces sources and sinks. In the 

AVCS the nodal structures, which include the sinoatrial 

node, atria, atrioventricular nodes (AVN), His bundles, 

Purkinje’s fibres act as electric sources and sinks. The heart 

is a site for the transmission of autonomous and automatic 

AP. The propagation of such APs is contingent on the 

efficient conduction of electrical current from an excited cell 

to an abutting quiescent cell. Sources and sinks are created 

when cells give charge to  abutting quiescent cells. Almost 
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every cell in the AVCS acts as a source and a sink. The 

source-sink balance is an essential issue in the cardiac 

system. In this regard, Unudurthi et al. [1] depicted the 

pivotal role of the sinoatrial node (SAN) in the integrity of 

cardiac source-sink balance.  

Nikolaidou et al. [2] showed the elegant source-sink 

relationships that reside in the SAN region. The 

consummation of the conduction system presupposes the 

generating of the quantity of current that would be sufficient 

for the local sink. This is one possible way of avoiding 

source-sink mismatch which is largely implicated in the 

deleterious cardiac events. The choice of the term feasible in 

the caption of this work implies a mismatch-free dipole.   

In this regard, Boyle and Vigmond [3], Kleber and Rudy [4] 

stressed safety needs and therefore the quantification of the 

source-sink balance.  

The question of how specialized cells prosecute, nay, 

control the conduction system given their susceptibilities 

requires great attention. For instance, how does the relatively 

small SAN cope with the electrical exigencies of the much 

larger atrial tissue? Such a source-sink mismatch is also  

seen in the Purkinje fiber–ventricular junction where a  

small Purkinje fiber (source) is coupled to a large mass of 

ventricular tissue (sink). How do the Purkinje cells satisfy 

the ventricular mass to cope with a source-sink mismatch? 

To be quite succinct, one may read what Joyner and Capelle 

[5] say as regards the earlier question, and see Morley     

et al. [6] for the latter question. We are yet to define the 

conduction network or, if you like, pathway: This is 

sequentially made up of the SAN, the atrioventricular node 

(AVN), and the His-Purkinje system. The anatomy of each 
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of the above, which is not within the scope of this      

work,  may be found in numerous Anatomy and Physiology 

works of literature including Monfredi et al. [7] and Kurian 

et al. [8]. Cardiac myocytes are connected end to end by 

intercalated disks. Adjacent to the discs is the gap junctions. 

Of physiological and electrical importance are the low 

resistance gap junctions. These junctions allow APs to 

spread from one myocyte to the next. They decisively 

determine how much depolarizing current passes from 

excited to quiescent regions of the network. Thus, they 

determine the speed and safety of the conduction process  

[9]. Gap junctions are known sites for electrical coupling 

between cells. Woodbury and Crill [10] supplied a treatise  

on electrical potential at the gap junction between two 

contiguous cells way back in 1970. Writing in 

contemporaneous times with the former, Heppner and 

Plonsey [11] produced a seminal work on the electrical 

interaction of cardiac cells. In real cardiac tissue, however 

electrical conduction takes place in both the intracellular  

and extracellular space in cardiac tissue, wherein there    

are variations in conductance and anisotropic ratios.    

Heppner and Plonsey [11] considered the intracellular    

and extracellular media as passive volume conductors of 

longitudinal resistances. 

At present, mathematical treatment of the cardiac 

source-sink process is sparse in literature. A detailed 

understanding and application of graph theory [12,13,14] 

seem invaluable in the study of the AVCS. This work    

took this reasoning into account; it presents a mathematical 

approach to the understanding of the AVCS mechanism 

which is anchored on cell-to-cell source-sink 

electro-physiological flow. The issue of cell-to-cell flow 

here was treated as a network problem (see Rubido et al. 

[15,16], Wang and Lai [17], and Ahuja et al. [18]). 

2. Graph Theoretics of the Source-Sink 
Network 

Let G = (V, E) be a directed graph (digraph), where V  

and E are the node (vertex) set and segment (edge) set 

respectively. Let N = N(s, t) be a network, with two distinct 

vertices- a source s and a sink t, together with a non-negative 

real-valued function c defined on its arc set A. The vertex s 

corresponds to a production centre, or in the present case 

the impulse generating node, and the vertex t to a consumer, 

or the adjoining impulse receiving node. The function c is 

the capacity function of N and its value on a segment l is the 

capacity of l. The capacity of a segment may be seen as the 

maximum rate at which a substance can be transported 

through it. 

An (s, t)-flow in N is a real-valued function f defined on a 

set S such that 

 f +(v) = f −(v) for all v ∈ I,         (1) 

where v represents a generalized vertex, I is the set of all 

intermediate vertices. Condition (1) is known as the 

conservation condition. A feasible flow must satisfy, in 

addition, the capacity constraint: 

 0 ≤ f(l) ≤ c(l) for all l ∈ A        (2) 

The upper bound in condition (2) imposes the natural 

restriction that the rate of flow along a segment cannot 

exceed the capacity of the segment. 

Definition 1. [13] Let f be a feasible flow in a network N. 

A source-to-sink segment in a graph G is an f-augmenting 

path P such that for each l ϵ E(P): 

(a) f (l) < c (l) when P follows l in the forward direction.  

(b) f (l) > 0 when P follows l in the backward direction. (3) 

Suppose τ(l) = c (l) – f (l) when l is forward on P, and let 

τ(l) = f(l) when l is backward on P. The tolerance of P is  

 
( )

Tol(P) = min ( ).
l E P

τ l


            (4) 

Definition 2: A directed graph G = (V, E) is strongly 

connected if and only if, for each pair of nodes u, v ∈ V, there 

exists a path from u to v.  

2.1. Graph Metrics 

Graph metrics reveal the diverse characteristic of a 

defined network. Some salient ones are as follows:  

2.1.1. Integration Metric  

This estimates the relative ease with which cell regions 

communicate. If vi and vj are two adjoining nodes then the 

Shortest Path Length (SPL) between them is the shortest 

path that reaches vj beginning from vi. It is the shortest 

number of edges between vi and vj; for a weighed graph  

SPL is the sum of all the edge weights in the shortest path 

between vi and vj, calculated as 

 ,
,

s ba uij
ba u Gi j

 

 

            (5) 

where Gi⇔ j is the shortest path between vi and vj.  

In measuring functional integration global efficiency is the 

choice metric. 

Definition 3 (Bryan et al. [19]) Let Pn denote the path on 

vertices v1,v2,…,vn with edges v1v2, v2v2 …, vn−1vn. The 

distance d(vi, vj) between distinct vertices vi and vj is |i − j|. 

Hence the efficiency between different vertices vi and vj is  

1 1
( , ) .

( , )
j j

j j

E v v
d v v i j

 


 

The global efficiency of the graph is calculated as  

 
1

1

2
( )

.( 1)

n

Glob n
t

n t
E P

n n t





 
  

   
         (6) 

2.1.2. Segregation Metric  

This measures the presence of clusters or modules  

within the network. Modularity is the degree to which a 

network may be partitioned into prominently delineated and 

non-overlapping groups. We may not bother much about the 
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intricacies of this metric since the network in this study is not 

as complex as to require its use. 

2.1.3. Measure of Centrality 

Degree centrality is calculated by counting the neighbours 

of each vertex. It is given by 

 
deg( )

( )
1

D

vkc vk n



              (7) 

with vk ∈ V, V the set of nodes, n = |V| and deg(vk) the degree 

of node vk. 

Closeness centrality is calculated by summing distances 

from a vertex to each other. It is encoded as 

 
deg( )

( )
1

D

vkc vk n



              (8) 

with vk ∈ V, n = |V| and dis(vi, vj) the distance from node vi to 

node vj,. 

For a vertex v, betweenness centrality is defined as [20] 

 
( )

( ) ,B

vstc v
s v t st




 

 
            (9) 

where σst is the total number of shortest paths from node  

and σst(v) is the number of those paths that pass through v 

(not where v is an end point). 

Describing betweenness centrality of a node v in 

proportionality to the number of occurrences of itself on all 

geodesics of a graph, the evaluation is [21]: 

 
  

( )
2

( ) ,
1 2

g ijk

g jk
c iB n n




 

          (10) 

where gjk is the number of geodesics from node xj to node vk, 

gjk (i) the number of geodesics from xj to vk containing vi; the 

double sum is evaluated on all pairs (j,k) such that j ≠ i ≠ k 

and j < k. 

2.1.4. Measure of Resilience 

This is a metric of the vulnerability of the network as 

regards functional integration. 

2.2. Impulse Transmission on the Conduction Network 

The graph G = (V, E) here is treated as analogous to    

an electric network. Kirchhoff’s flow network is ideal in  

the treatment of minimal cost in transportation, including 

biological steady-state systems. We assume that the flow 

network obeys Ohm’s law. Thus, 

(  ) (  ) (  ) (  )
( )

s t s t s t s t
L V V R fijij i j ij   .   (11) 

In the above equation, the left-hand side 
(  ) (  ) (  )s t s t s t
ij i jL V V   represents voltage drop across the 

segment (i→j) connecting nodes at i and j, with a source 

situated at node s and a sink situated at node t. The segment 

(i→j) has a resistance Rij against the flux fij which is 

determined by the conductance of the segment l. By 

conservation condition (11), the net flow at any node in the 

network must vanish. Therefore, 

 
(  )

0
, 1

N s t
fij

i j



,            (12) 

except at the source s and the sink t. The net flow at node i is 

governed by the Kirchhoff law: 

 
(  ) (  )

1 1

N Ns t s t
f W Lijij ij

j j
 

 
,       (13) 

where the bandwidth Wij of the segment ij is inversely 

proportional to the resistance Rij. Wij ≈1/Rij is the matrix 

representation of the network arrangement, (see [22] in 

which such arrangement was treated). 

2.2.1. Constructing the Adjacency Matrix of the AVCS 

Definition 4. The adjacency matrix of a directed graph G 

is the number of edges that issue from vertex vi and go into 

vertex vj. Thus, if D = (dij) is the adjacency matrix of G, then 

dij = number of arcs that issue from vertex vi 

and go into vertex vj.           (14) 

The adjacency matrix of the AVCS is constructed using 

Fig. 1(b) or equation (14) as (see Nzerem and Ugorji [24]) 

1     2    3    4   5   6  

1

2

3

4

5

6

                

0 0 0 0 0 0
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 

  
 
 
  
 

         (15) 

In (15) above vi on the row indicates the initial node of an 

arc ej while each vj on the column indicates the terminal 

vertex of the arc. From (14) we have  

 
1,        if node  connects node   

0,       if  and  are disjoint
i

i j
A j

i j


 


    (16) 

Each of the nodes represents a part of the ACVS, to wit- 

Sinoatrial node (SAN), v1, atrioventricular node (AVN), v2, 

the bundle of HIS bifurcation point, v3, the left bundle of 

HIS branch v5, and the right bundle of HIS branch v6. It is 

instructive to note that 

d+(v1) ≅ 3 and d−(v1) = 0        (17) 

For any isolated node vk, 

d+(vk) = 0 and d−(v8) = 0.         (18) 

For a networked system, the total flow at any node obeys 

Kirchhoff conservation law: 

 
( )

0
1 1

N N st
F A f A W Li ij ij ij ij ij

j j
   

 
     (19) 

where A is the adjacency matrix of the network. Another 
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defining component of the network is the Laplacian matrix, 

M, of the fundamental network, which is obtainable from 

MV = F, whose elements are given by  

 
/ ,     

1

/        .

N
A R i jij ij

M iij
A R i jij ij




 
 


         (20) 

Such a matrix was detailed in [24]. 

 

Figure 1(a).  Electrical conduction system of the heart [23] 

 

Figure 1(b).  Node-edge schematic of the CCS [24] 

3. Ionic Flow and Action Potential 

Like biological fluid-structure interaction problems [25], 

the cell-to-cell flow consists of the cardiac cellular structures 

and the ionic substances in current. However, unlike the 

Eulerian formulation that characterizes fully developed fluid 

flow, the present flow is amenable to Kirchhoff’s laws. The 

treatment of general cardiac APs is somewhat herculean  

due to variations in the constitutive ions and APs of the 

various cardiac myocytes. It would seem rather plausible   

to treat conduction in cell-to-cell segmentations, thereby 

accommodating their idiosyncratic APs (see Qu et al. [26]). 

In the AVCS, the electrical impulse is generated in the  

SAN, which spreads quickly through the atria to the 

atrioventricular node (AVN). (Note that the SAN is 

electrically coupled to the atria). The impulse travels    

from the AVN to the His-Purkinje system. Eventually,    

the Purkinje fibres transmit the impulse to the ventricular 

muscles at numerous discrete locations. The problem of 

source-to-sink distribution involves triggering an AP in a 

quiescent cell by an abutting active cardiac cell. The 

architecture of a cardiac strand, with its many individual 

cells of irregular shapes, is a mathematical task. Here each 

cell is assumed cylindrical and non-tapering.  

3.1. Bidomain Electrical Flow  

Bidomain structure defines a model of the heart tissue 

comprising two interpenetrating domains representing 

cardiac cells and the surrounding space, the intracellular 

and the extracellular domain [27,28]. The continuous 

topology of the intracellular space enhances ion travel from 

the inside of one cell to another via gap junctions without 

getting into the extracellular space, nor would ion travelling 

in the extracellular region require entry to the cell. Both 

spaces have electrical autonomous properties, therefore they 

form an anisotropic medium.  

Let the associated internal and external potentials of   

the domains be i  and o . Then the transmembrane 

potential is i oV    . The current associated with the 

internal and external potentials are i i ii    and 

o o oi    respectively. By Kirchhoff law  

.( )i i m mB I               (21) 

. ( i i  + o o  ) = 0,        (22) 

where Im represents the current through the cell membrane 

dividing the two regions, Bm is the ratio of the surface area 

and the cell volume. The transmembrane current has the 

form [29] 

 m m ion
V

I C I
t


 


           (23) 

Current flows through the boundary of extracellular 

space, but this is not so at boundary of intracellular space 

[30]. The boundary conditions for the bidomain model is of 

the form  

 
.( ) 0,

.( ) ( , )

i i

o o I t x on





 

  

n

n
       (24) 

where   is the cardiac domain, n is the outer unit normal 

vector to the boundary  . Since the flow of net current 

must be zero, we have 

 ( , ) 0I t x dS


              (25) 

Thus, charge accumulation does not exist in a feasible 

flow since any entering current must be exiting.  

3.2. Potential Field and Current in the Gap Region 

Here we consider the potential field in the inter-gap region 

between two abutting cells. Two abutted identical cylindrical 

fibres of radius ro, one assumed active and the other assumed 

inactive, are separated by a distance δ.  

Define the potential field ϵ(r, z) in the region, 0 < z < δ;   

0 ≤ r ≤ ro. It is assumed that: the fibres are draped with 

non-excitable membranes, with specific resistance Rd 

(Ω-cm2); the end-cap resistances Rd are entirely passive and 

do not depend on voltage; the flow of current depends only 
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on the voltage drop across the gap. In the specified region, 

the potential ϵ will satisfy Laplace’s equation 2 ( , ) 0r z  . 

With the cylinder assumed axisymmetric we have 

 
2

2

1
0r

r r r z

    
  

   
            (26) 

With the membranes assumed thin and situated at z = 0 

and z = δ the associated boundary conditions are [10]: 

(i) 
0

( ,0 )
,a

d z

r

R z

  






 



 

(ii) 
,

( , )

d z

r

R z 

  







 


, 

(iii)  finite at r = 0, 

(iv)  = 0 at r = ro. 

With the rest of the present section emphasizing [10], 

conditions (iii) and (iv) are imposed to have a solution of 

equation (24) is in the form  

    0
1

, [ cosh( ) sinh( )]n n n n n
n

r z J k r A k z B k z




  , (27) 

where kn are the roots of Jo(k, r) = 0. Applying boundary 

conditions (i) and (ii) gives 

0
1 1

( ) ( )n n a d n n n
n n

A J k r R k B k r
 

 

   , 

and 

 

 

0
1

0
1

[ cosh( ) sinh( )]

[ cosh( ) sinh( )].

n n n n n
n

d n n n n n n
n

J k r A k B k

R J k r k A k B k

 

  











 





 

The coefficients An and Bn by multiplying both sides of the 

above two equations by rJ0(kmr), integrating with respect to r 

over [0,r0] and applying the orthogonality property of the 

Bessel functions. Substitute the resulting expressions into 

equation (25) and get 

 , ar z 

  

 
0

0 1 01

2
.[ cosh( ) sinh( )],

( )

n
n n n

n d n n nn

J k r
d k z k z

d R k k r J k r








 (28) 

where 

[ tanh( )] / [1 tanh( )].n d n n d n nd R k k R k k       

The gap region accommodates current density ,    

with   given by equation (28) above. Three notable 

currents come to play. They are the currents crossing the 

active and quiescent disc surfaces and the current across the 

cylindrical wall at r = r0 (0 < z < δ). Denote these currents by 

IA, IQ, and IW respectively. The total current flowing into the 

gap from IA is  

0

0
0

2 .
r

A
z

I r r dr
z







 

  

The current flowing into the quiescent cell is 

0

0
2 .

r

Q
z

I r r dr
z 







 

  

The residual current, IW, across the cylindrical gap 

boundary is 

0

0
0

2 .
r

W
r r

I r r dz
r







 

  

Substitute equation (26) into the above three equations and 

interchange the order of integration to get  

0
1

1
4 ,A a

nn

I r
e

 




                          (29) 

0
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1
4 [ sinh( ) cosh( )],Q a n n n

nn

I r d k k
e

   



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0
1

1
4 [ sinh( ) cosh( ) 1],W a n n n

nn

I r d k k
e

   




   (31) 

where 

  0 ,

tanh( )
.

1 tanh( )

n n d n n

d n n

d n n

e d R k k r

R k k
dn

R k k



 

 

 




 

 

3.3. Source-Sink Analysis 

Source-sink interaction, which is achieved through 

excitation, is a sine qua non to the proper functioning of the 

SAN and other cardiac cells. The excitability of a cell can be 

expressed loosely as the ease with which a response could be 

prompted. It is often described as the least possible current 

necessary to depolarize the membrane to the threshold 

potential [31]. Electric sources of bioelectric origin are 

generated by the passage of current across the membrane of 

active (excitable) cells. How depolarizing ‘source’ current 

generated by the SAN drives depolarization and activation of 

the contiguous atrial tissue (current ‘sink’) remains uncertain. 

Bioelectric sources can refer to surface/volume distributions 

of two types of source elements, that is, the monopole and/or 

dipole. The dipole is a combination of a source and sink of 

equal strength. In the conduction system, the self-excitatory 

SAN is the leading source of action potential. (Note: From 

Fig. 1(b) or using (17) we have) 

d+(v1) ≅ 3 and d−(v1) = 0. 

The zero indegree indicates the inherent self-excitatory 

property Of the SAN. The SAN and the AVN constitute a 

dipole. In a similar mode, the AVN and the HIS bundle 

constitute a dipole. In effect, every activated sink becomes a 

source. Suppose f is a feasible flow and [S, T] is a source/sink 

cut, then the net flow out of S and net flow into T equal val(f). 

Assume flow from SAN to HIS bundle is feasible (as in a 
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physiological flow), we have 

 ( ) ( ) ( ) ( )
v

f U f U f U f U   


   
    (32) 

with U as a set of nodes in the section of the network being 

considered [13]. 

Assume a cylindrical conducting medium wherein a point 

source (the SAN) is located.  In this regard, we may require 

the equation of the field of the point source inside the 

medium, with co-ordinates  , , z  . Thus, the potential 

of a unit source located at some point  0 0 0, , z   inside 

the tube, which is bounded above and below by the planes z 

= −L and z = L and on the sides by the cylinder  = a may 

be sought. As L approaches infinity the field of the point 

source inside the conducting cylinder is given by [32] 

    

   

 

0, , ( )cos 0
0 0

2 2 0 0
,

2 2
1

k z znrV z A J k n enr n nr
n r

J kn nrn
Anr

a k J k anr nrn

    

 

   
  

 




  

 (33) 

The modified equation of SAN membrane current is given 

by [23] 

I = CM
1

M

dV

dt C
 ( , , [Ca L Ca T Kr Ks Nai i i i i     Na(A)]+ito+ 

{ Nagf [δNa(A)] ( ) (Na K Ky V E f y V E   )}+isus),  (34) 

 ( )

1,     if 

0,    otherwise
Na A

Na A
δ


 


          (35) 

where:  

A be the intra-cellular region consisting of the SAN 

iCa,L, iCaT are L- and T-type Ca2+ currents; 

iK,r, iK,s are rapid and slow delayed rectifying K+ currents; 

if (the funny current) is the hyperpolarization-activated 

current given by 

{ Nagf [δNa (A)] ( ) (Na K Ky V E f y V E   )}; 

Na+ is the sodium ion; 

ist is the sustained current; 

ito is the transient outward current. 

Cm is the membrane capacitance. 

The canonical form of the equation of transmembrane 

current is (23) 

m ion
V

I C I
t


 


 

Considering equations (29) and (23) and taking the SAN 

as the active cell (source), the transiting current, which 

would drive depolarization and activation of the contiguous 

cell is 

 0
1

1
4 a m ion

nn

V
r C I

e t
 






 


 ,        (36) 

where Iion is the total ionic currents exiting the SAN.  

Equation (36) holds well for the SAN as a source,   

which recruits excitation through the atria to the adjoining 

AVN cells. The time-dependent membrane voltage     

may be furnished by the non-linear two-dimensional 

Fitzhugh-Nagumo equations, which describe the behaviour 

of an excitable cell. The equations read: 

 
21

( , )
3

V V
V W η V W

t ε

        
 
 

    (37) 

   ( , ),
W

ε V γW β η V W
t

     


      (38) 

where V* encodes the membrane voltage, W is a quantity 

associated with the recovery of the cell after it fires, ϵ, γ, 
and β are non-negative dimensionless parameters. Equation 

(38) may be seen as the current equation; the capacitive 

charging term, proportional to dV*/dt, on the left and the 

nonlinear channel currents on the right. The form of 

equation (37) shows that the recovery of the cell is denoted 

as a gate opening equation with voltage-dependent rates. 

The amplitude of ϵ corresponding to the inverse of a time 

constant determines the rate with which W changes relative 

to V. The analysis of the system of equations (37) and (38 is 

by the method of phase plane, which may be found in [33]. 

3.4. Node-Edge Capacity and Maximal Flow 

A source-sink mismatch is a deleterious liability to 

numerous impulsive systems. Some biological systems 

manage to overcome source-sink imbroglio through some 

anatomical topology. Bartos et al. [34] noted that the ability 

of SAN to overcome the source-sink mismatch to activate 

the surrounding atrial myocardium stem from the distinctive 

anatomy of gap junction proteins. The capacity of an edge cij 

may be expressed as the bandwidth of the edge, being the 

maximum flux that the edge can deliver devoid of cramming 

or damage. Thus, the capacity bandwidth of an edge is 

inversely proportional to the edge resistance, we write 

λ ,c / Rij ij               (39) 

where λ is a capacity parameter.  

Assume for convenience first that the AVCS network has 

n nodes that consist of a single source SAN and a single sink 

AVN. We tag the source node 1 and the sink node n. Let cij 

denote the capacity of arc (i,j). For a flow in this network, let 

xij denote the quantity flowing from node i to node j along an 

arc (i,j). Then xij must satisfy 

 0 ,      , 1,2,..., .ij ijx c i j n          (40) 

One finds that 

 0,        2, 3,..., 1
1 1

n n
x x k nik jk

i j
    

 
   (41) 

A formulation of the maximal flow problem is 

1

Maximize 
n

k

f x



 1k             (42) 
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Subject to 

 0,        2, 3,..., 1
1 1

n n
x x k nik jk

i j
    

 
   (43) 

0 ,      , 1,2,..., .x c i j nij ij    

The maximal flow problem furnishes a linear 

programming problem, which may be solved using some 

programming methods (see Kolman and Beck [35]).  

The cost implication of the flow may be required. The 

work by Hung and Chien [36] may be employed to find such 

cost. In this regard, let E be the path from vertex u to vertex v 

through edges ej, j=1, 2, ..., (r+1), and vertices uj, j=1, 2, ..., h. 

Thus, 

 E = [u, e1, u1, e2, u2, ... eh, uh, eh+1, v]     (44) 

The cost of passing a unit of service of kind l (in this case, 

current), l = 1, 2,…,w, through the path P, encoded by Jel(P), 

is given by 

 
1

( ) ( ) ( , , )1
1 1

r r
J P Je e Jv u e ej j j jl l l

j j


   

 
  (45) 

where Jel(e) is the edge cost function, Jvl the node switch 

cost function. An issue of great importance is how to 

maximize flow at the least cost. This however is not within 

the purview of the present work. If Jel(e) = ∞, it is illegal to 

pass service on a path e. If Jvi = ∞, it is an illegal edge to pass 

a service from ei through vi to edge ej (i ≠ j). In the AVCS 

segment, where d+(v1) ≅ 3 and d−(v1)= 0, the edge cost    

of SAN-AVN transmission involves maintaining three (3) 

transmission lines to ensure that the individual (and by 

extension the total) capacity cij of the edges is not 

compromised. 

3.4.1. AVCS Global Efficiency 

The question of AVCS global efficiency may be difficult 

to furnish from the standard equation (6). This arises from 

the fact that for each of the expressed nodes vk, other than the 

SAN, d−(vk) = 1. It is of note that, by Definition 2, the AVCS 

graph is not strongly connected. 

The centrality concept measures the importance of nodes 

in a graph network. Here the graph is the GAVCS whose 

nodes are not interconnected. Centrality may be from the 

standpoint of the impact of a node on other nodes. Following 

[37], let v* be the node with the highest degree centrality in 

G. Let : ( , )X Y Z  be the |Y| node connected graph that 

maximizes the quantity (with y* being the node with highest 

degree centrality in X): 

 

1

( *) ( )

Y

D D j
j

H C y C y



    ,        (46) 

where CD(.) is the centrality degree of a given node. 

Therefore, the degree centralization of the graph G is  

 

( *) ( )
1( )

V
C v C viD D

iC GD H

   
        (47) 

H is maximized when graph X contains one central node to 

which all other nodes are connected. For any graph G, 

 

( *) ( )
1( )

2
3 2

V
C v C viD D

iC GD
V V

   
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 
       (48) 

Degree centrality is the most widely used measure of 

centrality. Since it measures the number of direct 

neighbours of a node, it explains the importance of the node 

in a given network. In the brain network, it measures the 

influence of a brain region on adjacent brain regions [35]. 

In the AVCS network analysis, the degree centrality of a 

cardiac nodal cell shall measure the influence of a nodal cell 

on other nodal cells. In the AVCS we have,  

SAN: 

d+(v1) = 0   and   d−(v1) = 3, 

AVN: 

2 2( ) 3 and ( ) 1d v d v   .       (49) 

HIS Bundle:  

3 3( ) 1 and ( ) 2d v d v   .       (50) 

It may matter to consider the system based on weighted 

degree centrality on the out-degree of the neighbours. Thus, 

the Katz centrality measure  

 
1

λ
x A x βji ij j              (51) 

holds, A is the adjacency matrix of the graph G with 

eigenvalues lambda, β is a constant initial weight given    

to each vertex so that vertices with zero in-degree (or 

out-degree) are included in calculations (see Gera [38]).  

4. Summary and Conclusions 

Sources and sinks are typical of flow phenomena. A 

source is a place/point of inception of flow whereas a sink  

is a place/point of accumulation of flow. Thus, a sink is a 

negative source. In nature, there is no presupposition of 

all-time source and sink of equal strength (dipole). In the 

bioelectric flow considered, sources and sink mismatch  

exist without prejudice to the physiological vivacity of the 

immediate and remote cells involved in the mechanism of 

flow. The bioelectric conductor considered here is the AVCS. 

As a rule, the driver of cell-to-cell AP is ionic current. 

Although the heart is both functionally and anatomically 

complex, humans, and perhaps animated life with cardiac 

structures, are compensated by the non-strongly connected 

nature of its electric flow network. A strongly connected 

network system is more or less a culprit in the event of 

deleterious cascading failures. In the event of SAN failure, 

the AVN is a known surrogate pacemaker, which can initiate 

the firing of AP to the contiguous cell, the His bundle. In  

the absence of autonomic nervous stimulation, the rate of 

ventricular contraction is set at 40–60 bpm by the AVN. It is 

https://www.sciencedirect.com/topics/computer-science/linear-programming-problem
https://www.sciencedirect.com/topics/computer-science/linear-programming-problem
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instructive to note that the serial surrogate responsibility of 

the AVCS cells is largely compensatory and as well averting.  

Source and sink system is a network issue. This work 

employed the benefits of graph theory in analyzing the 

AVCS. An essential requirement of a network is the 

efficiency of the edge and nodal structures. Global efficiency 

is a measure of cumulative effect of the edge-nodal system, 

especially concerning strongly a connected weighted graph. 

Given the nature of connectedness of the AVCS, cardiac 

efficiency is often defined in terms of the mechanics of the 

heart rather than the electrical system (see for instance [39]). 

Some interesting points are worthy of note/ emphasis:  

(i).  The AVCS consists of pairs of sources and sinks of 

unequal strength. 

(ii).  Source and sink mismatch of the AVCS is 

anatomical, but it may be implicated in 

pathophysiological conditions. (However, in an 

anatomical state, it would not be an independent 

marker of a cardiac event.)  

(iii).  The non-strongly connected nature of the AVCS is 

an ethereal blessing, as it slows down the rate of 

cascading failures following any segmental/nodal 

disorder. This accounts for the relative enduring life 

of the critical organs in the event of mild to serious 

AVCS disorder.  

(iv).  The cost of achieving maximal flow is not of 

necessity an economic one; it requires maintaining 

the node-edge vivacity.  

Since autochthonous electrical excitation resides in the 

SAN, which is the source of AP transmission, and since   

the other conduction nodes are surrogate pace-makers, it is 

reasonable to believe that the resolution of conduction 

anomaly can be found by in-depth analysis of source and 

sink system associated with the AVCS. 
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