
Applied Mathematics 2020, 10(1): 1-6

DOI: 10.5923/j.am.20201001.01

A Technique of Discretizing Continuous Data for

Programming Adaptive Deterministic Cubature

Methods in Moderate Dimensions

Dinh Van Tiep
*
, Tran Thi Hue

Faculty of International Training, Thai Nguyen University of Technology, TNU, Thai Nguyen, Vietnam

Abstract Cubature methods has been used and well developed to approximate integrals in high dimension for a long

time. However, the number of functions evaluations increasing enormously large make a weak point for such methods. In

that situation, adaptive cubature is often preferred choice because of a high efficiency and a low cost of calculation it brings

back for the approximation problem. However, the data of the integrated regions and of values of the integrand must be

continuous due to the theory of integration. It is infeasible to store in computer memory. To deal with this, the discretization

of data for both of the region and the function values are used by constructing the net of the potential mesh points. This

technique is acceptable since the result we want to extract is only an approximation within a requisite error. The paper aims

to present that technique and some remarkable results.

Keywords Adaptive Cubature Program, Approximation Techniques, Discretization, Continuous Data

1. Introduction

1.1. Background and Problem Statement

The algorithm of the Adaptive cubature as well as other

methods of numerical integration in high dimension are

developed and have been used for a very long time. It

definitely has the advantage of accuracy, but also has the

drawback of the cost for computation such as the

consummation of time and memory since the increasing

complexity in calculation. With the help of computers, the

implementations of such algorithm in high dimension need

to be adjusted. Moreover, in the general case of high

dimension, a program for the algorithm have not been

provided yet. A primary obstacle of programming the

algorithm is the fact that the integrated domain in high

dimension with the smooth boundary are described by

hypersurfaces which are produced by continuous data of

points. Unfortunately, it is impossible to find enough

memorized space of hardware to store the data. This makes

the algorithm somewhat theoretical and impractical with a

tremendous mass of computation. The algorithm itself

amends this by a prescribed error, called the tolerance,

which requires the accepted estimate error of the

* Corresponding author:

tiepdinhvan@tnut.edu.vn (Dinh Van Tiep)

Published online at http://journal.sapub.org/am

Copyright © 2020 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International

License (CC BY). http://creativecommons.org/licenses/by/4.0/

approximation must not exceed this tolerance. This reduces

quite a lot the number of calculation, but this itself is not

enough to make the algorithm feasible to implement

because we still need a strategy to store the information we

need in the computation process about the values of the

integrand on the boundary of the integrated domain.

1.2. Background and Problem Statement

The cubature is the term introduced by Krommer and

Ueberhuber [1,2] to indicate the numerical computation of

multiple integral. It includes many techniques such as the

Monte Carlo and Quasi-Monte Carlo cubature, Bayesian

cubature, adaptive cubature. To adaptive cubature, in 2003,

Genz and Cools published an algorithm of adaptive

cubature for simplices [3] as well as CUBPACK in

FORTRAN90. We knew, in high dimensions, the Monte

Carlo cubature is the most preferable choice for a numerical

integration because of the advantage in dialing with the

curse of dimensionality. But this method only yields, in

general, a rate of convergence which is quite

slow for the number of sample points. Another

shortcoming of this method, especially in the case of no

permission for using the probability error, is that the order

of convergence is only represented in the randomized terms.

That is, the estimate error produced by the Monte Carlo

method is not deterministic [4] and it is unsuitable if the

cubature problem needs a guaranteed error. That is an

indirect reason why we still need to invoke the deterministic

cubature, especially in a moderate number of dimensions

(say, less than 7). The authors Genz and Malik, Berntsen

and Espelid and Genz, Dooren and Ridder presented in

2 Dinh Van Tiep and Tran Thi Hue: A Technique of Discretizing Continuous Data for

Programming Adaptive Deterministic Cubature Methods in Moderate Dimensions

[5,6,7] their works on the adaptive cubature, however, these

were developed on a hyper-cube, which is the simplest

region in high dimensions. A natural development for

an adaptive cubature on more general region in high

dimensions is discussed in this paper.

1.3. Contribution

In this paper, we derive an algorithm for the numerical

integration over more general regions which are enclosed

by measurable surfaces. In some sense, the storage of data

describing the region is another challenge. We cannot store

all data of this boundary because it composes continuous

surfaces. With the need of a strategy to store the data

required for calculation in each iterated step, we establish a

net of the stored data with the mesh points become denser

on the region over which the estimate error is not less than

the corresponding tolerance distributed over this region.

The technique is the way of discretizing the continuous data

of the integrated region. The extracted phase to get the data

is organized in an adaptive way in which only the values

needed for calculation in the next iteration are invoked. The

introduction of this technique for the general domain of

dimension n is the main contribution of the paper. In

addition, the creation of data points and well organize them

in the form of a net so that we can easily access the data

also reveals another challenge to program the general

algorithm. In the paper, we propose a solution to this

problem by a simple approach using the bisection in not too

high dimensions. This approach in such dimensions is

useful to simplify the structure of the program and this

definitely contributes to speed up the computation process.

1.4. Organization of the Paper

The paper is divided into 4 section. The second section is

intended to briefly describe the basis of the adaptive

cubature for approximating the multiple integrals over the

quite general region, so called the non-rectangular

hyper-boxes. The idea is developed from two specified

methods, the Simpson’s rule and the Composite Simpson’s

rule with 4 subintervals developed for the multiple integrals.

The challenges are not only from the curse of

dimensionality, but also from the complicated of the

integrated region. For this point, as the aforementioned

discussion, the complication in depicting the general region

can be overcome in a somewhat temporarily acceptable

approach in which we store discretely a set of data points

that establish the skeleton of the region. We are not going to

use these points all at once, but with the accommodation to

fit the requirement each checking time. This does not makes

the memory of computer working without overloading.

Another benefit of this approach is the same as that of a

usual adaptive cubature with the flexibility in subdividing

the integrated region by adjusting the size of the

sub-regions for the next iteration incorporating with the

estimate of the error obtained from the use of the two

methods applied at this step.

The third section shows off the algorithm of the method

which is organized and presented generally in the style of

the Matlab language. An illustration for the proper

operation of the algorithm is also presented in the case of

the dimension 2, the approximation of double integrals.

In the last section, we briefly conclude the feature of

the algorithm discussed including its advantages and

shortcoming.

2. Adaptive Cubature

2.1. Approximation of the Multiple Integrals over

Non-rectangular Hyper-boxes

Consider the problem of approximating multiple integral I

of a function which is continuously differentiable up to

order 4 on a region a non-rectangular hyper-box

 and are continuous functions on the rectangular

hyper-box
Our aim now is to formulate an approximation for

with by using the Simpson’s rule and the

Composite Simpson’s rule with
Simpson’s rule. Firstly, the inner integral of (1) is that of

one variable, and treated as

 (2)

where

 the notation

 indicates that

depends on the fixed point
Theorem 1 (Simpson’s rule)

 (3)

where

and

for some and and some
 in the interval

 Applied Mathematics 2020, 10(1): 1-6 3

PROOF: Integrate both sides of (2) over with respect to

 with the use of Mean Value Theorem for the multiple

integral of the term over to get

 (4)

Reapply Simpson’s rule for one variable on for

terms in the sum of the first term of (4), denoting that

 to get the first term of (4) to be

where and for some

Applying Intermediate Value Theorem for (5), and then

Mean Value Theorem for the second term of (4), we obtain

for some Similarly, reapplying the Simpson’s rule

consecutively to other dimensions of we

complete the proof.

Composite Simpson’s rule with n=4.

Set

 Similar

to the above derivation of Simpson’s rule, the following

result is obtained for the Composite Simpson’s rule.

Theorem 2. (Composite Simpson’s rule) Let
 be the coefficients of the

Composite Simpson’s rule with We have,

 (7)

for some and some

2.2. Adaptive Cubature in High Dimensions

Let denote the first term in the right-hand side of

(3), (7), respectively. Assume that
 So, . Since
we have Hence,

 (8)

This means that we can use the difference between two

estimates and of to approximate the error in

the approximation revealed by (7). Therefore, we can

design the size of the error to be less than a given tolerance

 . Concretely, if then we could

believe that approximates to within Otherwise, if
 we mostly get wrong when using to

approximate with the error less than . In the latter case,

we may get a reasonable approximation by reapplying the

above-mentioned procedure on smaller regions (each of such

a sub-region has only a size of nearly of that of the

original region and the expected tolerance for

approximation of the integral over that sub-region is only

). Now in such smaller region, we search for

 Since the size of such

sub-regions becomes smaller and smaller,

 we can eventually reach

the target if continuing the procedure. Theoretically, the

procedure always succeeds in finding an approximation of
lying to within the given tolerance. However, a computer

program cannot execute the procedure in the infinite number

of times. Therefore, we set up a limitation for the search by

requiring that the level of subdivision (or the number of

times in which the procedure is repeated) does not exceed a

prior number . So, the program will reveal the status of

failure if is exceeded. Otherwise, we obtain a desired

approximation.

3. Algorithm for the Adaptive Cubature

3.1. Pseudo Matlab Code for the Implementation

We describe the algorithm for the aforementioned

procedure in the form of a pseudo-code with the use of

Matlab functions. However, the notations and the structure

of the repeat loops or the if-condition, the assignment

operator are not the same as those in Matlab. They are

changed in order to make the program familiar with the

mathematic notations, so it may be simpler to analyse.

INPUT region (including and functions

), function tolerance limited level

OUTPUT approximation of or a message

announces that the level is exceeded (that is, the

procedure fails!).

4 Dinh Van Tiep and Tran Thi Hue: A Technique of Discretizing Continuous Data for

Programming Adaptive Deterministic Cubature Methods in Moderate Dimensions

Step 1 (% Initiate the procedure.)

 (% indicates the current level of subdivision.)

 (% are coefficients of Simpson’s rule.)

(% are coefficients of Composite Simpson’s rule.)

For to do:

End do; (%These are the starting and ending indices of

mesh points on each interval)
 (%Initial region is numbered by 0.)

For to do:

(%Set up the mesh points on each dimension .)

For to do:

End do;

End do;

For to do:

(%See NOTE below.)

End do;

Step 2 While do steps 3-5.

Step 3 For to do:

 End do;

IF
 THEN

OUTPUT (“Level exceeded!”);

STOP.

ELSE For to do:

 For to 3 do:

 End do;

 End do;

 ;

 ; (%Initiate the values for Simpson’s and

Composite Simpson’s rule.)

 (%Initiate a value for the product of ’s.)
For to do:

 ;

End do;

For to do:

(%Set up data of mesh points for Simpson’s rule.)

For to do:

End do; (%End For-loop for . See the convention in

NOTE below.)

 …

End do; (%End For-loop for)
For to do:

 For to 5 do:

 End do;

End do;

For to do:

(%Set up data of mesh points for Composite Simpson’s

rule. Reference to the convention in NOTE below.)

For to do:

End do; (%End For-loop for .)

 …

End do; (%End For-loop for)
For to do: (%Save data before deleting level.)

End do;

 (%Variable is used to store the

sequence of operating level.)

 Applied Mathematics 2020, 10(1): 1-6 5

If then

While do:

 If then

 End if;

End do; (%End while-loop.)

 (%To point out which

sub-region to be operated in current level.)

End if;

Step 4 (%Delete the current level.)

Step 5 If then

 (%Variable

announces the results obtained when performing the

procedure on the current sub-region.)

 Else (%Add one level.)

 For to do:

 (%Set up data for the sub-region

 -th.)

 For to do:

 If then

 Else

 End if;

 End do;

 If then

 Else

 End if;

 End do; (%To end For-loop for)
 End If. (%To end Step 5.)

END IF. (%To end IF-condition in early of Step 3.)

Step 6 OUTPUT

 STOP.

NOTE: In the pseudo-code, we use the convention for

For-loop of the type “For to … ” to

mean that there are nested For-loops:

For to do:

 For to do:

 …

 For to do:

 Statements relate to
 End do; (%End For-loop for .)

 …

End do; (%End For-loop for .)

Figure 1. The region B and its 4 sub-regions in the first iteration step

3.2. Numerical Example

Consider the double integral ()

where the non-rectangular region

 The exact result is

 An implementation use the above

algorithm yields an approximation of
to within the given tolerance The limit level is

 The whole procedure is described in the Table 1.

Table 1. The result produced by the implementation

Leveli Sub-region Ri Statusi Leveli Sub-region Ri Statusi

1 0 Fail 2 2 Fail

2 4 Fail 3 4 Pass

3 4 Pass 3 3 Pass

3 3 Pass 3 2 Pass

3 2 Pass 3 1 Pass

3 1 Pass 2 1 Fail

2 3 Fail 3 4 Pass

3 4 Pass 3 3 Pass

3 3 Pass 3 2 Pass

3 2 Pass 3 1 Pass

3 1 Pass Procedure is Successful

4. Conclusions

The algorithm discussed in the paper dials with a basis

problem of numerical analysis with a technique which

enables to optimize the implementation of the science

computers even when the setting of the multiple integration

is quite general, a general iterated regions with a continuous

multivariable function refer to as the integrand.

There are the repeat loops presented in the implementation

which are nested loops. To realize each such loop in the

program we need to makes the verification with respect to

the dimension of the multiple integral. That means, each

6 Dinh Van Tiep and Tran Thi Hue: A Technique of Discretizing Continuous Data for

Programming Adaptive Deterministic Cubature Methods in Moderate Dimensions

dimension has a particular program to the corresponding

algorithm. Therefore, it is preferable to use the

implementation for not too high dimension, say less than 7.

For these sizes of dimension, the algorithm take much more

advantages of a high speed of convergence comparing to the

Monte Carlo and Quasi-Monte Carlo cubature which are

preferable choices in very high dimensions.

ACKNOWLEGEMENTS

The authors are working in Thai Nguyen University of

Technology. This work are supported by the university. We

are very grateful for this help and other assistance in reaching

the references we need to complete this work.

REFERENCES

[1] Krommer, A. R. and Ueberhuber, C. W. (1998).
“Construction of Cubature Formulas”, Computational
Integration. Philadelphia, PA: SIAM, pp. 155-165.

[2] Ueberhuber, C. W. (1997). Numerical Computation 2:
Methods, Software, and Analysis. Berlin: Springer-Verlag.

[3] Genz, A. C., Cools, R. (2003), “An Adaptive Cubature
Algorithm for Simplices”, ACM Trans. Math. Soft., Vol. 26,
No. 3, pp. 297-308.

[4] Atanassov, E., Dimov, I. T. (2008). “What Monte Carlo
models can do and cannot do efficiently?”, Applied
Mathematical Modelling, Vol. 32, pp. 1477-1500.

[5] Genz, A. C. and Malik, A. A. (1980). “An adaptive
for numeric integration over an N-dimensional rectangular
region,” J. Comput. Appl. Math., Vol. 6, No. 4, pp. 295-302.

[6] Berntsen, J., Espelid, T. O., Genz, A. (1991). “An adaptive
algorithm for the approximate calculation of multiple
integrals,” ACM Trans. Math. Soft., Vol. 17, No. 4, pp.
437-451.

[7] Dooren, P., Ridder, L. (1976). “An adaptive algorithm for
numerical integration over an n-dimensional cube”, J.
Comput. Appl. Math., Vol. 2, No. 3, pp. 207-217.

[8] Burden, R. L., Faires, J. D. (2000). Numerical Analysis. (9th
Ed.). Brook/Cole, Cengage Learning, Boston (2000).

[9] Chapra, S. C. (2012). Applied Numerical Methods with
MATLAB. (3rd Ed.), McGraw-Hill, New York.

[10] Radon, J. (1948). “Zur mechanische Kubatur”. Monatsh.
Math. Vol. 42, pp. 286-300.

[11] Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo
methods. Acta Numerica, Vol. 7, pp. 1-49.

[12] Sobol, I. M. (1990). “Quasi-Monte Carlo methods”. Progress
in Nuclear Energy. Vol. 24, Iss.: 1-3, pp. 55-61.

[13] Pierre, l’E., Randomized Quasi-Monte Carlo: An
Introduction for Practitioners. 12th International Conference
on Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing (MCQMC 2016), Stanford, U.S. hal-01561550.

[14] Cools, R. (2003). “An Encyclopaedia of Cubature Formulas”.
J. Complexity, Vol. 19, pp. 445-453.

