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Abstract  Cubature methods has been used and well developed to approximate integrals in high dimension for a long 

time. However, the number of functions evaluations increasing enormously large make a weak point for such methods. In 

that situation, adaptive cubature is often preferred choice because of a high efficiency and a low cost of calculation it brings 

back for the approximation problem. However, the data of the integrated regions and of values of the integrand must be 

continuous due to the theory of integration. It is infeasible to store in computer memory. To deal with this, the discretization 

of data for both of the region and the function values are used by constructing the net of the potential mesh points. This 

technique is acceptable since the result we want to extract is only an approximation within a requisite error. The paper aims 

to present that technique and some remarkable results. 
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1. Introduction 

1.1. Background and Problem Statement 

The algorithm of the Adaptive cubature as well as other 

methods of numerical integration in high dimension are 

developed and have been used for a very long time. It 

definitely has the advantage of accuracy, but also has the 

drawback of the cost for computation such as the 

consummation of time and memory since the increasing 

complexity in calculation. With the help of computers, the 

implementations of such algorithm in high dimension need 

to be adjusted. Moreover, in the general case of high 

dimension, a program for the algorithm have not been 

provided yet. A primary obstacle of programming the 

algorithm is the fact that the integrated domain in high 

dimension with the smooth boundary are described by 

hypersurfaces which are produced by continuous data of 

points. Unfortunately, it is impossible to find enough 

memorized space of hardware to store the data. This makes 

the algorithm somewhat theoretical and impractical with a 

tremendous mass of computation. The algorithm itself 

amends this by a prescribed error, called the tolerance, 

which requires the accepted estimate error of the  
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approximation must not exceed this tolerance. This reduces 

quite a lot the number of calculation, but this itself is not 

enough to make the algorithm feasible to implement 

because we still need a strategy to store the information we 

need in the computation process about the values of the 

integrand on the boundary of the integrated domain.  

1.2. Background and Problem Statement 

The cubature is the term introduced by Krommer and 

Ueberhuber [1,2] to indicate the numerical computation of 

multiple integral. It includes many techniques such as the 

Monte Carlo and Quasi-Monte Carlo cubature, Bayesian 

cubature, adaptive cubature. To adaptive cubature, in 2003, 

Genz and Cools published an algorithm of adaptive 

cubature for simplices [3] as well as CUBPACK in 

FORTRAN90. We knew, in high dimensions, the Monte 

Carlo cubature is the most preferable choice for a numerical 

integration because of the advantage in dialing with the 

curse of dimensionality. But this method only yields, in 

general, a rate of convergence         which is quite 

slow for the number of   sample points. Another 

shortcoming of this method, especially in the case of no 

permission for using the probability error, is that the order 

of convergence is only represented in the randomized terms. 

That is, the estimate error produced by the Monte Carlo 

method is not deterministic [4] and it is unsuitable if the 

cubature problem needs a guaranteed error. That is an 

indirect reason why we still need to invoke the deterministic 

cubature, especially in a moderate number of dimensions 

(say, less than 7). The authors Genz and Malik, Berntsen 

and Espelid and Genz, Dooren and Ridder presented in 
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[5,6,7] their works on the adaptive cubature, however, these 

were developed on a hyper-cube, which is the simplest 

region in high dimensions. A natural development for    

an adaptive cubature on more general region in high 

dimensions is discussed in this paper. 

1.3. Contribution 

In this paper, we derive an algorithm for the numerical 

integration over more general regions which are enclosed 

by measurable surfaces. In some sense, the storage of data 

describing the region is another challenge. We cannot store 

all data of this boundary because it composes continuous 

surfaces. With the need of a strategy to store the data 

required for calculation in each iterated step, we establish a 

net of the stored data with the mesh points become denser 

on the region over which the estimate error is not less than 

the corresponding tolerance distributed over this region. 

The technique is the way of discretizing the continuous data 

of the integrated region. The extracted phase to get the data 

is organized in an adaptive way in which only the values 

needed for calculation in the next iteration are invoked. The 

introduction of this technique for the general domain of 

dimension n is the main contribution of the paper. In 

addition, the creation of data points and well organize them 

in the form of a net so that we can easily access the data 

also reveals another challenge to program the general 

algorithm. In the paper, we propose a solution to this 

problem by a simple approach using the bisection in not too 

high dimensions. This approach in such dimensions is 

useful to simplify the structure of the program and this 

definitely contributes to speed up the computation process.  

1.4. Organization of the Paper 

The paper is divided into 4 section. The second section is 

intended to briefly describe the basis of the adaptive 

cubature for approximating the multiple integrals over the 

quite general region, so called the non-rectangular 

hyper-boxes. The idea is developed from two specified 

methods, the Simpson’s rule and the Composite Simpson’s 

rule with 4 subintervals developed for the multiple integrals. 

The challenges are not only from the curse of 

dimensionality, but also from the complicated of the 

integrated region. For this point, as the aforementioned 

discussion, the complication in depicting the general region 

can be overcome in a somewhat temporarily acceptable 

approach in which we store discretely a set of data points 

that establish the skeleton of the region. We are not going to 

use these points all at once, but with the accommodation to 

fit the requirement each checking time. This does not makes 

the memory of computer working without overloading. 

Another benefit of this approach is the same as that of a 

usual adaptive cubature with the flexibility in subdividing 

the integrated region by adjusting the size of the 

sub-regions for the next iteration incorporating with the 

estimate of the error obtained from the use of the two 

methods applied at this step. 

The third section shows off the algorithm of the method 

which is organized and presented generally in the style of 

the Matlab language. An illustration for the proper 

operation of the algorithm is also presented in the case of 

the dimension 2, the approximation of double integrals.    

In the last section, we briefly conclude the feature of     

the algorithm discussed including its advantages and 

shortcoming.  

2. Adaptive Cubature 

2.1. Approximation of the Multiple Integrals over 

Non-rectangular Hyper-boxes  

Consider the problem of approximating multiple integral I 

of a function   which is continuously differentiable up to 

order 4 on a region         a non-rectangular hyper-box 

                            
          

                    

  and   are continuous functions on the rectangular 

hyper-box                                   
Our aim now is to formulate an approximation for 

            
 

                     

    

     

     

with             by using the Simpson’s rule and the 

Composite Simpson’s rule with      
Simpson’s rule. Firstly, the inner integral of (1) is that of 

one variable, and treated as  
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Theorem 1 (Simpson’s rule) 
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PROOF: Integrate both sides of (2) over   with respect to 

  with the use of Mean Value Theorem for the multiple 

integral of the term    over   to get 
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Reapply Simpson’s rule for one variable on         for 

terms in the sum of the first term of (4), denoting that 

                to get the first term of (4) to be 
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Applying Intermediate Value Theorem for (5), and then 

Mean Value Theorem for the second term of (4), we obtain 

      
     

    

 
        

 

  

  

   
      

                
         

for some          Similarly, reapplying the Simpson’s rule 

consecutively to other       dimensions of    we 

complete the proof. 

Composite Simpson’s rule with n=4.  

Set      
    

 
         

  

 
             Similar 

to the above derivation of Simpson’s rule, the following 

result is obtained for the Composite Simpson’s rule. 

Theorem 2. (Composite Simpson’s rule) Let       
               be the coefficients of the 

Composite Simpson’s rule with      We have, 
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for some             and some     
                           

2.2. Adaptive Cubature in High Dimensions 

Let denote       the first term in the right-hand side of  

(3), (7), respectively. Assume that                       
         So,        . Since                
we have                Hence, 

       
 

  
                     (8) 

This means that we can use the difference between two 

estimates    and    of   to approximate the error    in 

the approximation revealed by (7). Therefore, we can  

design the size of the error to be less than a given tolerance 

   . Concretely, if              then we could 

believe that    approximates   to within    Otherwise, if 
             we mostly get wrong when using    to 

approximate   with the error less than  . In the latter case, 

we may get a reasonable approximation by reapplying the 

above-mentioned procedure on smaller regions (each of such 

a sub-region has only a size of nearly        of that of the 

original region    and the expected tolerance for 

approximation of the integral over that sub-region is only 

      ). Now in such smaller region, we search for 

                               Since the size of such 

sub-regions becomes smaller and smaller,         

                              we can eventually reach 

the target if continuing the procedure. Theoretically, the 

procedure always succeeds in finding an approximation of   
lying to within the given tolerance. However, a computer 

program cannot execute the procedure in the infinite number 

of times. Therefore, we set up a limitation for the search by 

requiring that the level of subdivision (or the number of 

times in which the procedure is repeated) does not exceed a 

prior number  . So, the program will reveal the status of 

failure if   is exceeded. Otherwise, we obtain a desired 

approximation.  

3. Algorithm for the Adaptive Cubature 

3.1. Pseudo Matlab Code for the Implementation 

We describe the algorithm for the aforementioned 

procedure in the form of a pseudo-code with the use of 

Matlab functions. However, the notations and the structure 

of the repeat loops or the if-condition, the assignment 

operator are not the same as those in Matlab. They are 

changed in order to make the program familiar with the 

mathematic notations, so it may be simpler to analyse. 

INPUT region   (including    and functions 

         ), function    tolerance    limited level     

OUTPUT approximation    of    or a message 

announces that the level   is exceeded (that is, the 

procedure fails!). 
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Step 1 (% Initiate the procedure.) 

      
     
      (%    indicates the current level of subdivision.) 

         

      
      
      (%      are coefficients of Simpson’s rule.) 

      
      
      
      
       

(%      are coefficients of Composite Simpson’s rule.) 

For     to   do:  

  
     

  
         

End do; (%These are the starting and ending indices of 

mesh points on each interval         ) 
      (%Initial region is numbered by 0.) 

For     to   do:  

(%Set up the mesh points on each dimension        .) 

For     to      do: 

  
 
                  

   

End do; 

End do; 

For      to                    do:  

(%See NOTE below.) 

                   
     

       
     

                   
     

       
     

End do; 

Step 2  While     do steps 3-5. 

Step 3  For     to   do:  

      
        

  
 

   
  
 

   

      
        

    
     

  End do; 

IF              
          THEN  

OUTPUT (“Level exceeded!”);  

STOP. 

ELSE For     to   do:  

       For     to 3 do:  

        
 
   

  
 

        
    

    End do;  

  End do; 

    ;  

    ; (%Initiate the values for Simpson’s and 

Composite Simpson’s rule.) 

     (%Initiate a value for the product of   ’s.) 
For     to   do:  

      ;  

End do; 

For      to             do:  

(%Set up data of mesh points for Simpson’s rule.) 

                        
          

    
 

         
      

          
   

      
          

    
 

         
      

          
     

For     to   do: 

               

      
          

    
 

         
      

          
  

                      

       
                                 

     
     

       
                     

End do; (%End For-loop for  . See the convention in 

NOTE below.) 

  … 

End do; (%End For-loop for    ) 
For     to   do:  

  For     to 5 do:  

    
 
   

  
 

           
    

  End do;  

End do; 

For      to               do:  

(%Set up data of mesh points for Composite Simpson’s 

rule. Reference to the convention in NOTE below.) 

                         
             

      
 

            
  

      
             

      
 

            
     

For     to   do: 

               

      
             

      
 

            
  

                      

       
                                 

     
     

       
                     

End do; (%End For-loop for  .) 

  …  

End do; (%End For-loop for    ) 
For     to   do: (%Save data before deleting level.) 

    
    

   

    
    

   

    
    

   
         
         
         
         
End do; 

            (%Variable       is used to store the 

sequence of operating level.) 
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If               then  

           
        

While                 do:  

  If                    then  

                  

  End if;  

          

End do; (%End while-loop.) 

                         (%To point out which 

sub-region to be operated in current level.)  

End if;  

Step 4        (%Delete the current level.) 

Step 5 If            then  

            
                    (%Variable         

announces the results obtained when performing the 

procedure on the current sub-region.)  

  Else (%Add one level.) 

                    
  For     to      do:  

                           
         (%Set up data for the sub-region  

    -th.)  

      For     to   do:  

      If       then  

        
    

   
        

    
    

    
      Else  

        
    

    
   

        
    

    

      End if;  

      End do; 

  If        then  

         
                  

  Else  

           
          

  End if; 

  End do; (%To end For-loop for   ) 
    End If. (%To end Step 5.) 

END IF. (%To end IF-condition in early of Step 3.) 

Step 6 OUTPUT                     

  STOP. 

NOTE: In the pseudo-code, we use the convention for 

For-loop of the type “For      to …            ” to 

mean that there are   nested For-loops: 

For      to      do:  

   For      to      do: 

        … 

    For      to      do: 

     Statements relate to               
    End do; (%End For-loop for   .) 

    … 

End do; (%End For-loop for   .)  

 

Figure 1.  The region B and its 4 sub-regions in the first iteration step 

3.2. Numerical Example 

Consider the double integral (   ) 

            
 

  

where the non-rectangular region 

                        The exact result is 

  
  

   
            An implementation use the above 

algorithm yields an approximation              of   
to within the given tolerance         The limit level is 

     The whole procedure is described in the Table 1. 

Table 1.  The result produced by the implementation 

Leveli Sub-region Ri Statusi Leveli Sub-region Ri Statusi 

1 0 Fail 2 2 Fail 

2 4 Fail 3 4 Pass 

3 4 Pass 3 3 Pass 

3 3 Pass 3 2 Pass 

3 2 Pass 3 1 Pass 

3 1 Pass 2 1 Fail 

2 3 Fail 3 4 Pass 

3 4 Pass 3 3 Pass 

3 3 Pass 3 2 Pass 

3 2 Pass 3 1 Pass 

3 1 Pass Procedure is Successful 

4. Conclusions 

The algorithm discussed in the paper dials with a basis 

problem of numerical analysis with a technique which 

enables to optimize the implementation of the science 

computers even when the setting of the multiple integration 

is quite general, a general iterated regions with a continuous 

multivariable function refer to as the integrand.  

There are the repeat loops presented in the implementation 

which are nested loops. To realize each such loop in the 

program we need to makes the verification with respect to 

the dimension of the multiple integral. That means, each 
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dimension has a particular program to the corresponding 

algorithm. Therefore, it is preferable to use the 

implementation for not too high dimension, say less than 7. 

For these sizes of dimension, the algorithm take much more 

advantages of a high speed of convergence comparing to the 

Monte Carlo and Quasi-Monte Carlo cubature which are 

preferable choices in very high dimensions. 
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