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Abstract  We investigate the effects of moving channel wall, thermal radiation and variable-thermal conductivity on the 

flow of a non-Newtonian fluid in a porous channel. The effects on fluid temperature variations are also studied. By assuming 

that both the fluid viscosity and thermal conductivity are temperature-dependent, and incorporating viscous dissipation, 

uniform magnetic field and constant pressure gradient, the governing equations are presented. An implicit-explicit finite 

difference scheme is formulated and the numerical results are presented and discussed. The results show that near the moving 

wall, the transport of momentum, from the moving wall into the channel, is retarded by decrease in the fluid viscosity. While 

the opposite happens -velocity increases with decreasing viscosity- away from the moving wall where the pressure forces 

dominate the wall shearing forces. 
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1. Introduction 

Many engineering applications involve some moving 

and/or stationary parts that sandwich some (viscous) fluid; 

an example is in fluid bearings. The moving parts and other 

sources, like thermal radiation and frictions between fluid 

layers (viscous dissipation), can cause some heat variations 

within the fluid. These temperature variations might in turn 

lead to some change in the fluid properties, especially the 

viscosity which are generally not temperature-independent, 

hence may alter the desired state of the system. It is therefore 

important to investigate the effects of moving walls and 

transport properties on the flow of fluid and heat distribution 

in a channel where one of the walls is moving and the fluid 

has temperature-dependent properties. 

Fluid flow and heat transfer in a porous medium has 

significant importance in industrial applications such as 

chemical processing equipment, exchangers, polymer 

extrusion, magnetic material extract, geophysics and cooling 

rate control (Raju and Sandeep 2016). They also play 

important roles in ground water hydrology, insulation 

engineering, grain storage devices, ground water pollution, 

purification processes and petroleum reservoirs. 

Non-Newtonian fluids are useful in the chemical process  

 

* Corresponding author: 

nwaigwe.chinedu@ust.edu.ng (C. Nwaigwe) 

Published online at http://journal.sapub.org/am 

Copyright © 2019 The Author(s). Published by Scientific & Academic Publishing 

This work is licensed under the Creative Commons Attribution International 

License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

engineering, geothermal engineering, storage of nuclear 

waste materials and petroleum production (Elgazery 2008). 

These and many other applications have attracted many 

researchers to the study of heat and mass transfer in 

non-Newtonian porous media flows. 

Loenko et al. (2019) investigated thermogravitational 

convection of a non-Newtonian fluid in a closed square 

cavity with a local heat source and showcased their results in 

the form of isolines of stream function and temperature. It 

was observed that increase in Raleigh number transforms the 

heat transport process from conductive to convective, 

whereas increase in the average Nusselt number reduces heat 

from the heater surface. Nwaigwe (2010) investigate the 

evolution of temperature distribution in the ground taking 

into account the effects of suction and thermal radiation. 

Prasad et al. (2018) studied the flow and heat transfer in a 

Casson liquid over a porous vertical heated stretching plates 

with time-dependent temperature. Nonlinear equations were 

derived and solved using a semi-analytical approach. It was 

discovered that suction decreases the velocity boundary layer 

thickness, while the infusion/blowing increases the velocity. 

Ratchagar and Vijayakumar (2017) investigated the 

Hydromagnetic free and forced convection in a parallel plate 

channel bounded by porous bed and transverse magnetic 

field. 

Shit et al. (2016) examined an electrosmotically driven 

MHD flow and heat transfer in a microchannel. The 

magnetic field and heating joule were considered as a 

contributing factor to the control of the fluid and the potential 

electric field aided the flow. Raju and Sandeep (2016) 

carried out a numerical study on the flow coupled with heat 
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and mass transfer effects in a vertical rotating cone/plate in 

porous medium, presenting solutions for thermo diffusion 

and diffusion- thermo effects using RungeKuttaFelhberg 

integration scheme. Their results showed that an increase in 

the magnetic field parameter increases the heat and mass 

transfer rates, while Soret and Dufour parameters also 

enhance the heat and mass transfer rates. The work of Raju et 

al. (2015) examined an unsteady MHD free convection, heat 

and mass transfer flow of a Newtonian flow past boundless 

vertical plate with homogeneous chemical reaction and heat 

absorption. Choudhary et al. (2015) investigated the 

unsteady MHD flow and heat transfer over an expanding 

permeable surface with suction using a fourth-order 

Runge-Kutta method. 

Celik and Mobedi (2015) studied the effects of an inserted 

porous layer on the heat and fluid flow in a vertical channel 

with mixed convection. The impart of buoyancy in the clear 

fluid region reduces with increment in the thermal 

conductivity and as a result of this downward the flow 

reduces. Arthur and Seini (2014) investigated the problem of 

hydro- magnetic stagnation point flow of a fluid towards a 

stretching sheet in the presence of radiation and viscous 

dissipation using Newton-Raphson shooting method along 

with a fourth-order Runge-Kutta integration algorithm and 

discovered that increasing the radiation parameter increases 

the temperature profiles as a result of radiative heating. 

Vajravelu et al. (2013) examined, numerically, the effects of 

variable thermal conductivity, thermal radiation and thermal 

buoyancy on the unsteady flow over a vertical porous 

stretching sheet. Qasim (2013) examined the combined 

effects of heat and mass transfer in Jeffrey fluid over a 

stretching sheet in the presence of heat source/heat sink. It is 

found that an increase in the heat sink parameter results 

decreased temperature. It is also observed that boundary 

layer thickness decreases by increasing Schmidt number. 

Misra et al. (2008) developed a suitable numerical method 

to solve a problem of the flow of an incompressible 

viscoelastic and electrically conducting fluid coupled with 

heat transfer in between horizontal parallel plates. Ellahi and 

Riaz (2010) used homotopy analysis method (HAM) to 

investigate the the influence of MHD on pipe flow of a 

thirdgrade fluid with variable viscosity. Elgazery (2008) 

carried out a numerical study on the problem of unsteady free 

convection with heat and mass transfer from an isothermal 

plate to a non-Newtonian fluid saturated with porous 

material. Kim (2000) analyzed unsteady MHD convective 

heat transfer past a semi-infinite vertical porous moving 

plate with variable suction and over a plate moving with 

steady velocity. Recently, Nwaigwe et al. (2019) 

incorporated double diffusion into channel flows, and the 

numerical analysis of channel flow is conducted in Nwaigwe 

(2019). 

Chinyoka and Makinde (2015) investigated the flow of a 

non-isothermal fluid with temperature-dependent viscosity 

in a vertical channel filled with porous material. It is found 

that the presence of uniform suction/injection reduces the 

generation of heat and significant delay in the increase of 

temperature. The purpose of the present paper is to extend 

the work in Chinyoka and Makinde (2015) by incorporating 

non-stationary channel wall, radiative heat transfer, variable 

thermal conductivity, transverse magnetic field, and 

non-stationary channel plate. We also consider a horizontal 

channel with the fluid not initially rest. Moreover, we 

propose a semi-implicit finite difference numerical scheme 

for the resulting coupled partial differential equations 

(PDEs). Our scheme decouples the coupled PDEs by treating 

nonlinear and coupled terms in an explicit manner and 

discretizes the viscous and thermal conductivity terms in a 

conservative manner (Nwaigwe 2020). The advantage of this 

scheme over the extended work is that the present scheme 

avoids differentiation of coefficients which may not actually 

exist; and it is also computationally less expensive than the 

previous. 

The remainder of the paper is organised as follows.       

In section 2. we present the mathematical models both in 

dimensional and non-dimensional forms. The numerical 

method is formulated in section 3. while the results are 

presented and discussed in section 4. and the paper is 

concluded in section 5.. 

2. Mathematical Formulation of the 
Problem 

Figure 1 shows a horizontal channel of width h meters 

which is filled with a fluid-saturated porous material. The 

width lies along the y'-axis and the length along the x'-axis. 

The wall at y' = 0 is im-movable and perfectly insulated, 

while the other wall at y' = h moves at a constant velocity, 

  
  and maintained at a constant temperature,   

 
 . We 

consider the flow of a temperature-dependent-viscosity non 

Newtonian incompressible fluid within the domain.  

 

Figure 1.  Physical set up 

Further assume that the fluid is thermal radiating with 

temperature-dependent thermal conductivity and viscous 

dissipation is significant. The flow is assumed to be driven 

by both the pressure gradients and shearing effects 

occasioned by the mobile wall. A uniform magnetic field is 

applied on the channel walls and the ensuing flow is 

unsteady. Assuming a fully developed flow, then the x' 

component of the fluid velocity, u'(y, t) and temperature   
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T'(y, t) at the distance, y', measured from the stationary wall, 

at time, t are governed by the following initial-boundary 

value problem (see Chinyoka and Makinde (2015), 

Nwaigwe (2020), Selvi and Muthuraj (2017), Nwaigwe and 

Makinde (2019)): 

    (1) 

 (2) 

subject to 

     (3) 

where   0b T
0T e 

   and     011T bT     are the 

fluid’s temperature-dependent viscosity and thermal 

conductivity respectively, while 0  and 0  are their 

constant average values; b0 and b1 are variation constants. 

Also,  = fluid density, P' = fluid pressure, K = permeability 

of porous medium,  = electrical conductivity, B0 = uniform 

magnetic field intensity, cp = specific heat capacity, while  

qr is the heat flux due to radiation. 

2.1. Non-Dimensional Equations 

We define the following non-dimensional variables and 

variables and parameters: 

(4) 

Using (4), then the problem defined in (1) - (3) becomes: 

 (5) 

 (6) 

subject to: 

      (7) 

In the above non-dimensional problem, Px is the pressure 

gradient parameter, a is the viscosity parameter, M is the 

magnetic field parameter, Da is the Darcy number, Pr the 

Prandtl number,  the thermal conductivity parameter, Br the 

Brinkman number and wr is the non-dimensional wall 

velocity. This completes the mathematical statement of the 

problem. 

3. Numerical Formulation of the 
Problem 

We choose 1 N   , and define  
N

i i 0
y


 such that 

, :
1

yi ih h
N

    and :nt n t n   = 0,1,2, where t  is 

given. Then we seek to compute the following 

approximations    , , ,n n n n
i iu u yi t T T yi t  . We also 

define the operators: 

 
and let 

       (8) 

Finally, for any function , we define  n n
i : yi, t    and 

n n
n i i 1
i 1 2 :

2




  
  . Then, we consider the following scheme, 

see Samarskii (2001), Matus (2014)’ Morton and Mayers 

(2005), Nwaigwe (2020), Nwaigwe and Makinde (2019): 
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    (9) 

 (10) 

   (11) 

In the above scheme, we treated the coupling terms 

explicitly and also the variable transport properties. These 

make the algebraic systems to be solved at any new time step 

t n+1 to be decoupled and linear, hence each can be solved 

independently, see Chinyoka and Makinde (2015), Nwaigwe 

(2020). We present the numerical results in the next section. 

4. Numerical Results 

In this section, we present the numerical results. The 

formulated numerical scheme in the previous section is 

implemented in a C++ code which is developed by the first 

author. 

4.1. Velocity Variations 

Figure 2 shows the effect of the viscosity parameter on  

the fluid velocity. The results indicate that increasing the 

viscosity parameter (decreasing the viscosity) decreases the 

flow towards the moving wall (see figure 2(a)) but increases 

the flow away from the moving wall (see figure 2(b)). This is 

perfectly expected because of the following: near the 

moving wall, the flow is mainly driven by the shearing 

forces generated by the motion of the wall, but away from it 

(near the stationary wall), the flow is mostly driven by 

pressure gradients. A decrease in viscosity decreases the 

effects of shearing forces, thereby decreasing the velocity in 

the vicinity of shear-driven flow - near the moving wall. On 

the other hand, a decrease in the viscosity increases the 

effects of the pressure forces, hence increases the flow away 

from the moving wall (or near the stationary wall) where the 

flow is driven by pressure. This leads to the observed (i) 

decrease of the flow near the moving wall (region of 

shear-driven flow) and (ii) increase in the flow away from 

the wall (pressure-driven region). 

 

 

Figure 2.  Effect of viscosity parameter on the velocity 

Figure 3 displays the effect of the wall velocity on the 

fluid velocity. We can observe that the fluid velocity 

increases with increase in the wall velocity. This is also 

physically expected because the viscosity is unchanged, 

hence the determining factor for the shearing effects on the 

flow is solely the wall velocity which ultimately increases 

the velocities. 
 

 

Figure 3.  Effect of wall velocity, wr, on the velocity 

The effects of Darcy number and Magnetic field 

parameter are depicted in figure 4. It is observed that the 

velocity increases with increasing Darcy number but 

decreases with increasing magnetic field parameter. These 

results are in agreement with previous results such as those 

of (Nwaigwe and Makinde 2019). 
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Figure 4.  Effects of Darcy number, Da and magnetic field parameter, M 

on the velocity 

4.2. Temperature Variations 

Figures 5 - 6 display the variations of temperature with 

respect to thermal conductivity, radiation parameter and the 

Prantl number. It is found that the temperature increases with 

increasing thermal conductivity and radiation parameter but 

decreases with increasing Prandtl number. These results are 

also realistic because the thermal conductivity measures the 

ease with which the fluid conducts heat. So, increasing it will 

facilitate the rate of heat transfer from the heated wall (which 

is maintained at a constant temperature of unity) into the 

fluid. On the other hand, increasing the Prandtl means to 

decrease both the heat generated due to viscous dissipation 

and the heat transfer rate from the wall, hence the observed 

decrease in temperature in 6(b). 

 

 

Figure 5.  Effect of thermal conductivity parameter, , on the temperature 

 

Figure 6.  Effects of Radiation parameter, R and Prandtl number, Pr on the 

temperature 

4.3. Variation of Skin Friction 

 

Figure 7.  Effects of viscosity parameter, , and wall velocity, wr, on the 

skin friction 
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Figure 7 shows the effect of viscosity and the wall velocity 

on skin friction. Skin friction decreases with increase in 

viscosity parameter near the moving wall, but farther away 

from the moving plate skin friction increases significantly 

with increasing viscosity parameter (see figure 7(a)). 

However, skin friction effect decreases with increase in wall 

velocity. This effect is also noted to be obvious at some 

points farther away from the plate (see figure 7(b)). 

Physically, this is as a result of the downward shear drag 

acting on the fluid due to the moving plate. 

Figure 8 depicts the effect Darcy number and magnetic 

field on skin friction. The results show that about 0.58 units 

away from the plate skin friction decreases with increasing 

Darcy number but above that value the skin friction 

increases with increasing Darcy number while skin friction 

increases slightly with increasing magnetic parameter near 

the plate. This is so because of Lorentz force but effect is 

lesser away from the plate. 

 

Figure 8.  Effects of Darcy number, Da and magnetic field parameter, M on 

the skin friction 

4.4. Variation of Nusselt Number 

Figure 9 effect of thermal conductivity on Nusselt number. 

Nusselt number decreases significantly with increasing 

thermal conductivity parameter near to the plate but 

increased with increasing thermal conductivity parameter at 

some distance away from the plate. 

Figure 10 displays effect of radiation and Prandtl number 

on Nusselt number. The Nusselt number increases with 

increase in radiation parameter but decreases with increasing 

Prandtl number. 

 

Figure 9.  Effect of thermal conductivity parameter, , on the Nusselt 

number 

 

Figure 10.  Effects of Radiation parameter, R and Prandtl number, Pr on 

the Nusselt number 

5. Conclusions 

The fluid flow and heat transfer in a horizontal porous 

channel with a moving wall, variable transport properties, 

viscous dissipation and thermal radiation have been 

investigated. The resulting system of nonlinear partial 

differential equations is solved using an implicit-explicit 

finite difference method. The numerical results show that: 

  At constant fluid viscosity, the increase in the motion 

of the channel wall increases the fluid velocity 

throughout the channel. 

  At constant channel wall velocity, decreasing the 

viscosity decreases the fluid velocity near the mobile 

wall where the wall shearing forces dominate pressure 

forces, whilst this increases the fluid velocity near the 

stationary wall where pressure forces are dominant. 
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  Increasing the thermal radiation parameter increases 

the temperature and 

  Increase in the thermal conductivity parameter 

increases the temperature. 
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