Applied Mathematics 2019, 9(3): 89-161
DOI: 10.5923/j.am.20190903.03

Fundamental Concepts of Geometry

Kassahun Tesfaye Agzew

Department of Mathematics, College of Natural and Computational Sciences, Wolkite University, Wolkite, Ethiopia

Abstract Euclidean Geometry is a mathematical system attributed to Alexandrian Greek mathematician Euclid, which
he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively
appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been
stated by earlier mathematicians, [1] Euclid was the first to show how these propositions could fit into a comprehensive
deductive and logical system. [2] The Elements begins with plane geometry, still taught in secondary school (high school) as
the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much
of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1] For
more than two thousand years, the adjective "Euclidean” was unnecessary because no other sort of geometry had been
conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any
theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other
self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An
implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space
is a good approximation for it only over short distances (relative to the strength of the gravitational field). [3] Euclidean
geometry is an example of synthetic geometry, in that it proceeds logically from axioms describing basic properties of
geometric objects such as points and lines, to propositions about those objects, all without the use of coordinates to specify
those objects. This is in contrast to analytic geometry, which uses coordinates to translate geometric propositions into
algebraic formulas.
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1. Absolute Geometry

1.1. Introduction

We shall be concerned mainly with Geometry, like arithmetic, requires for its logical development only a small number of
simple, and fundamental principles. These fundamental principles are called the Axioms Of Geometry. The choice of the
axioms and the investigation of their relation to one another is a problem which, since the time of Euclid, has been discussed
in numerous excellent memories to be found in the mathematical literature.

Geometry is a science of shape, size and symmetry. While arithmetic dealt with numerical structures, geometry deals with
metric structures. Geometry is one of the oldest mathematical disciplines and early geometry has relations with arithmetic.
Geometry was also a place, where the axiomatic method was brought to mathematics: Theorems are proved from a few
statements which are called axioms.

Absolute Geometry is a geometry which depends only on the first four of Euclid’s postulates and not on the parallel
postulates. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulates.

Let us consider three distinct systems of things. The things composing the first system, well will call points and designate
them by the letter A, B, C, those of the second, we will call straight lines designate them by the letters a, b, ¢, and those of the
third system and we will call planes and designate them by the Greek letters a, S, y.... The points are called the elements of
linear geometry; the points and straight lines, the elements of plane geometry; and the points, lines, and planes, the elements
of the geometry of space or the elements of space.
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We think of these points, straight lines, and planes as having certain mutual relations, which we indicate by mean of such
word as “are situated”, “between”, “parallel”, “congruent”, “continuous”, etc. the complete and exact description of these
relations follows as a consequence of the axioms of geometry. These axioms may be arranged in five groups.

Each of these groups expressed, by itself, certain related fundamental fact of our intuition.

I. Axioms of incidence (connection)

I1. Axioms of betweenness (order)

I1l. Axioms of parallel (Euclid’s axiom)
IV. Axioms of congruence

V. Axioms of continuity

Although point, line and plane etc. do not have normal definition, we can describe them intuitively as follows.

Point: We represent points by dot and designate them by capital letters. (See figure 1.1.1).

Line: We represent lines by the indefinitely thin and long mark. Lines are designated by small letters. We regard lines as a
set of points that can be extended as far as desired in either direction (See figure 1.1.2).

Plane: We think of a plane as a flat surface that has no depth (or thickness). We designate planes by Greek letters a, £, 7...
and represent it by some appropriate figure in space. (See figure 1.1.3)

A £
*
point A
Figure 1.1.1. Point Figure 1.1.2. Line Figure 1.1.3. Line on a plane

In this subsection the axioms completely and exactly describe the properties or characteristics that the undefined elements
should possess. They also state the relationships that hold among the undefined terms and the existence of some of these
elements. We shall see them one by one.

1.2. Axioms of Incidence

The axioms of incidence determine the properties of mutual disposition of points, lines and planes by the term “incident”.
Statement such as “a point is incident with a line”, “a point lies on the line”, a line passes through a point” and a line contains
a point” are assumed to be equivalent. Thus we can use them interchangeably.

So if a point is incident with two lines then we say that they intersect at the point or the point is their common point.
Analogues statement will be used for a point and a plane, and for a line and a plane.

Convention: When numbers like “two”, “three” and “four” and so on are used in any statement of this material, they will
describe distinct objects. For instance by “two planes”, “three lines”, “four points” we mean “two distinct planes”, “three
distinct lines”, “four distinct points”, respectively. But by line m and n, we mean m and n may represent different or the
same line. The same true for points and planes. The group of the axioms of incidence includes the following:

Al;: If A and B are two points, then there is one and only one line ¢ that passes through them.

A By

e

Figure 1.2.1. A Line through two points A & B

At least two points on any line (exactly one line through two points). This axiom asserts the existence and uniqueness of a
line ¢ passing through any two given distinct points A and B.
Here ¢ can be described as a line determined by the two points A and B. We denote the line passing through A and B by

AB.

Aly: Given any three different no collinear points, there is exactly one plane containing them.

For every plane there exists a point which it contains.

It follows from Al, that any three given distinct points not all on the same line determine a plane passing through the three
points and there is no other plane different from this containing all the three given points.

Alj: If two points A and B lieina plane « then the line containing them lies in the plane «

Figure 1.2.2. Two Points A and B on a plane
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Aly: If two planes intersect, then their intersection is a line.

Als: a) There exists at least two points which lie on a given line.
b) There exists at least three points which do not lie on a line
(Every plane contains at least three non collinear points).

C
[

A B

Figure 1.2.3. At least three non-collinear points

¢) There exists at least four points which do not lie on a plane.

Now let us see some of the immediate consequences of this group of axioms.
Theorem 1.2.1: If m; and m, are two lines, then they have at most one point in common.

Proof: Suppose my and m, have two points in common. Let these points be A and B. Thus both m; and m, passes
through A and B.

m,
m'?'

Figure 1.2.4. Two Lines having a common point

But this is impossible by Al;. Hence they cannot have two or more points in common. Therefore they have at most one
point in common.
Remark: From the above theorem it follows that two distinct lines either intersect only at one point or do not intersect.

Figure 1.2.5. Two Intersecting and Parallel Lines

Theorem 1.2.2: Two planes meet in a line or they do not meet at all.
Proof: Suppose two planes z; and 7z, have a point P in common. Then z; and 7z, have one more point Q in

common by Al,. Thus Pand Q lieon 7; and P and Q lieon 7, . But P and Q determine a unique line, say h, by Al;. So
line h liesonboth 7y and 7, (why?), thatisevery pointon line h is common to both z; and =, .

Further they cannot have any other point noton h in common. (What will happen if they have such a point in common?).
Therefore they meet in a line if they have a point in common otherwise they do not meet.

Definition 1.2.1: Three or more points are called collinear if and only if they lie on the same line.

Definition 1.2.2:

a) Points that lie in the same plane are called coplanar points.
b) Lines that lie on the same plane are called coplanar lines.

Notation: If P, Q and R are three non collinear points on a plane ~ then we denote =~ as PQR.
Theorem 1.2.3 Two intersect lines determine one and only one plane.

Proof: Left for students as an exercise.

Activity: Answer the following questions and the give a formal proof of theorem 1.2.3
i. How many lines are given?

ii. Are they assumed to be intersecting?

iii. What do we need to show?

iv. How many points do two intersecting lines have in common? Why?

v. Is there a point on each of these lines different from their common point? Why?

vi. How many points do we need to determine a unique plane?

Example 1.2.1

a) Prove that a line and a point not lying on it determine one and only one plane.
b) Show that there are at least four planes.
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Solution:

a) Givenaline ¢ anda point P not lying on ¢ . We need to show that there is one and only one plane containing P and
¢. By Al5 (a), ¢ contains at least two points say X and Y. Points X, Y, and P are no collinear (Why?). Thus they
determine a unique plane @ containing them. Moreover ¢ lies completely on a (why?). so, we can conclude that
Pand ¢ determine plane @ uniquely.

b) By Als (c), there are at least four points that are not coplanar. Let us designate these points by X, Y, Z and W. Any three
of them are not collinear (why?). Thus we have four planes namely XY Z, X Y W, X Z W and YZW. This completes

the proof.
Example 1.2.2:
Prove that if the line intersects a plane not containing it, then the intersection is a single point.
L
P
=0

Proof: Let L be a line intersecting a plane E. We have given that L ~E contains at least one point P; and we need to
prove that L ~E contains no other point Q. Suppose that there is a second point Q in L~E . Then L=PQ by theorem

1.2.1and also PQ by Als. Therefore, L lies in E which is contradicts the hypothesis for L.

Activity: prove that a plane and a line not lying on it cannot have more than one point in common.
1. Show that there are at least 6 lines.

2. Develop model for the system described by the axioms of incidence.

(An interpretation satisfying all the five axioms)

1.3. Distance Functions and the Ruler Postulate

For most common day-to-day measurement of length, we use rulers, meter stick, or tape measures. The distance and ruler
postulates formulize our basic assumptions of these items into a general geometric axiomatic system. The Ruler postulate
defines a correspondence between the points on a line marking on a meter stick and the real numbers (units of measurement)
in such a manner that the absolute value of the difference between the real numbers is equal to the distance between the points
(measurement of the length of an object by the meter stick matches our usual Euclidean distance)

The Ruler placement postulate basically says that it does not matter how we place a meter stick to measure the distance
between two points; that is, the origin (end of the meter stick) does not need to be at one of the two given points.

The Ruler Postulate

The points of a line can be placed in a correspondence with the real numbers such that:

i. To every point of the line there corresponds exactly one real number.

ii. To every real number there corresponds exactly one point of the line.

iii. The distance between two distinct points is the absolute value of the difference of the corresponding real numbers.

Note that the first and second conditions of the Ruler Postulate imply that there exist a one-to-one and onto function. As a
reminder, we write the definitions for one-to-one and onto function.

Definition 1.3.1 A function f from Ato B is onto B if for any b in B there is at least one such that f(a) =b.

Definition 1.3.2 A function f from A to B is one-to-one (1-1) if f(x)= f(y) then x = y forany x and y in A. (note
that the contra positive of this definition can be used in writing proofs.)

Definition 1.3.3 the line segment determined by A and B, denoted by AB , is the set of points P such that P is between A
and B and the end points A and B. In other words the (line) segment (joining A and B) is AB = {A, B}u
{P: P is between A and B}

Definition 1.3.4 The length of segment AB denoted by AB is the distance from A to B. call the points A and B end points
of AB y

Definition 1.3.5 for two segments AB and AC AB=BC < AB=BC.

(l.e. AB iscongruentto AC)

Axiom 1.3.1 (Ruler Postulate)
For every pair of points P, Q there is a number PQ called distance from P to Q. for each line ¢ there is one to one mapping
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f:(+>R suchthat f(P)=x and f(Q)=y then PQ=|x—y| isthe value of the distance.

Definition1.3.6 Let b be the collection of all points. A distance (coordinate) function d is mapping from b X b into
Rsatisfying the following conditions:

1. The mapping d is a function, l.e. each pair of points in b x b assigned one and only one negative real number.

2. d(P,Q)=d(Q,P) (forall P,Q € P)

3. d(P,Q)=0 ifandonly if P=Q

Theorem 1.3.1 (Triangle Inequality)

d(P,Q)<d(P,R)+d(R,Q)

Existence postulate 1.3.1: The collection of all points from a non-empty set with more than (i.e at least two) points.

Lemma 1.3.1 Given any two points P,Q € P then there exist line containing both P and Q.
Proof: We have two cases (either P = Q or P # Q)

If P =+ Q, then there is exactly on line ¢=PQ such that P and Q both line ¢ (incidence postulate)

If P = Q, then by the existence postulate there must be a second point R # P and by incidence postulate there is a unique
line ¢ that contains both P and R. Since, P = Q,then Q € ¢. Hence there isaline ¢ that contains both P and Q.
Definition 1.3.7 A metric is a function d: b x b = R (where b is the set of all points) that satisfies:

1. d(P,Q)=d(Q,P) (forall P,Q € P)

2. d(P,Q)>0 (forall P,Q € P)

3. d(P,Q)=0 ifandonlyif P=Q

Theorem 1.3.2: Distance is a metric.

Proof: let P and Q be points. Then we need to show that each of the following hold:

> PQ =QP

> PQ=0

>»PQ=0oP=Q

By lemma 1.3.1 there is line ¢ that contains both P and Q. By the ruler postulate; there is a one to one function
f:l+—>R.Let x="f(P) and y= f(Q) such that the distance is given by

PQ=|f(P)-f(Q)=[x~Y|
To see (a),
PQ=|x-y|=|y—x=QP
To see (b)

PQ=|x-y|>0

To see (¢)
First suppose that PQ=0. Then

0=PQ=|x-Yy]|

=>XxX=Y

=>P=Q
Where the last step follows because f is one-to-one. To verify the converse of (c) suppose that
P=Q.Then x=f(P)=f(Q)=y sothat PQ=|x—y|=0 which verifies the converse of (c).

Examplel.3.1: Let P=(%,¥1), Q=(%,Y2), Then d(P,Q)= \/(xz - x1)2 +(y2 - yl)2 . To show that this is a metric,
calculate

d(P’Q)=\/(X2‘X1)2+(y2—y1)2 =\/(X1—X2)2+(y1-Y2)2 =d(P,Q)

This Verifies Property (1).

To get property (2), observe that the value of the square root is a non-negative number, hence the square root is defined and
positive or zero.

For property (3), first assume P=Q. then d(P,Q)=d(P,P) = \/(xl - x1)2 +(y1 - y1)2 .
This shows that (P=Q) implies d(P,Q)=0. Then
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\/(Xl_X2)2+(y1_y2)2 =0

(% —%)>+(y—y,)’ =0

If either X —x, #0 or y;—y, #0 then the right hand side of equation 1.1 is non-zero. Hence X =X, and y; =y,,
which means P=Q. Thus d(P,Q)=0 implies P=Q.

Example 1.3.2: In the Cartesian plane any (non-vertical) line ¢ can be described by some equation y =mx+b and any

vertical line x = a. Show that an arbitrary line in the Euclidean plane satisfies the ruler postulate.
Solution:

Let f(x,y)=xv1l+ m? if ¢ isnon-vertical, and set f(x,y)—f(a,y)=y if ¢isvertical.

To see that f is a distance (coordinate) function and that this works, we need to consider each case (vertical and
non-vertical) separately and to show that f is 1-1, onto, and satisfies

PQ=|f(P)-f(Q)

In each case, suppose first that ¢ is non-vertical, and define f .

(a) Toshow that f isone-to-one, letP =(xg,y;), Q=(Xp,Y,) and suppose that f(P)= f(Q)

Then xv1+m? = xpy/1+m?

Since v/1+m? = 0it can be cancelled out, giving X =X Thus
Yi=mx +b=mx, +b =y,
Hence, f isone-to-one (P=Q= f(P)=f(Q))

(b) To show that f is onto, pick and z<R define x= and y=mx+b . Then P(x,y)e £ and

1+m?

f(P) = f(x,y) = xV¥1+m? = z. Thus f is onto.
(c) To verify the distance formula, let P = (x,y)ef andQ = (x,y) e £. Then y;, =mx; +b and y, =mx, +b.

Hence, PQ=d(P,Q)
= 0o —x)% + (v, — )2

= \/(xz —xl)2 + (mxo +b—mx1—b)2

= Jxp ~ x0)% + (M(x ~ %))
=1+ m?[x, - x|

X2\/1+ m2 - Xl\/1+ m2 ‘

=|y2 v
=|f(P)-f(Q)
Thus, if ¢ isnota vertical line, f isa coordinate function.
Now suppose that ¢ is a vertical line with equation x =aand define f:(+—>Rby f(a,y)=y.
(@ To show that f is one-to-one, let P=(a,y;)el and Q=(ay,)el, where P#Q, hence y; =Yy, and
f(P)=y; =Yy, = f(Q).Which show that f isone-to-one P=Q = f(P)= f(Q)
(b) Toshowthat f isonto,let yeR beanynumber. Then P=(a,y)el and f(P)=y.Hence, ¢ isonto.
To verify the distance formula, P=(a,y;) and Q=(a,y,).

Then, PQ=d(P,Q)
= J@-a)2+(y, - w)°

=\(y2 —)?
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=|Y2—Y1|
=|f(P)- f(Q)

The following theorem tells us that we can place the origin of the ruler at any place we want, and orient the ruler in any
direction we want.
Theorem 1.3.3: (Ruler Placement Postulate)

For every pair of distinct points P, Q there is a coordinate function f :PQ > R such that f(P)=0 and f(Q)>0.

Lemma 1.3.2: Let f:/—~R be a coordinate function for ¢ and let ceR . Then g¢g:{+— R given by
g(p)= f(P)+c isalso acoordinate function for ¢

Proof: We need to show three things: g is one-to-one, onto and PQ = |g(P) - g(Q)|

a) Suppose g(p)=g(Q) . Then f(p)+c=f(Q)+c . So f(p)=f(Q) . Since, f is one-to-one, P=Q. Thus,
g(p) =9(Q) = P=Q. So g is one-to-one.

b) Let xeR.Since, f is onto, there exist P ¢ such that f(p)=x—c. Sothat g(P)= f(p)+c=x. Hence for all
xeR,thereexist P e ¢ suchthat g(P)=x. Thus, g is onto.

Activity: Verify the distance formula for the above lemma, i.e. show that PQ = |g(P) - g(Q)|

Lemma 1.3.3: Let f:{+ R be acoordinate function. Then, g(x)=—f(x), is a coordinate function.

Proof: We need to show three things: g is one-to-one, onto and PQ = |g(P) - g(Q)|

a. Let g(P)=-—f(P). Supposethat g(P)=g(Q).Then —f(Q)=-f(P) hence P=Q. hence g is one-to-one.

b. Let xeR.Since, f isonto, there is some point P ¢ such that f(p)=—x hence, there exist P e ¢ such that
g(P) =—x there is some point P ¢ suchthat g(p)=x.

Hence, g is onto.

The last property is left as an activity. Thus, g is a coordinate function.

Activity:

1. In lemma 1.3.3 shows the last property.

2. Show that the Euclidean distance function d satisfies the triangle inequality.

Now let us prove theorem 1.3.3

Proof: (theorem 1.3.3)

Pick any two distinct points P = Q. By the incidence postulate there is a line (= PQ. By the ruler postulate there exists
a coordinate function g:/—> R. Define ¢=-g(P). And define h:¢/+—R by h(x)=g(x)+c. Then h is a coordinate
function by lemma 1.3.1. Since h(P) =0, it must be the case that h(Q) =0 because h is one-to-one. We have two cases to
consider. h(Q)>0 Or h(Q)<0.If h(Q)>0,thenset g(P)=h(P) and the theorem is proven.

If h(Q)<O0, define g:{—=R by g(R)=-h(R), which is a coordinate function by lemma 1.3.2. Since,
g(P)=-h(P)=0 and g(Q)=-h(Q)>0, we see that g has a desired properties. Fig. 1.3.1 circles that intersect in the real
plane do not necessarily intersect in the rational plane.

1

N
IS
-les

Figure 1.3.1. Two intersecting lines

The following examples illustrate why rulers (hence distance) requires real numbers and no rational numbers.

Example 1.3.3: The distance between the point (1, 0) and (0, 1) in b is V2
Example 1.3.4: Find the intersection of the line y=x and the unit circle using whatever knowledge you may already

have of circles and triangles.
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Example 1.3.5: Let P=(0,0) and Q=(2,0). The circle of radius 2 centered at P and Q do not intersect in Q2 (Q isa

rational numbers). Their intersection in ®? is (1,+v3) (fig. 1.3.1)
Remark! The Euclidean distance on 9R? where R is the set of real numbers is given by

d(P,Q):\/(xz—xl)z+(y2—y1)2 for P=(x,y;) andQ=(Xp,Y,) for x,%,,¥,y, real numbers.

Activity:

Let L be a vertical line L, . Then POL, implies that P =(a,y) for some y. Define the standard ruler f:L; >R by
f(a,y)=y LetL be aline Lyp. Then PaL,, with P=(x,y) implies that y=mx+b. Define the standard ruler

filnp > Rby f(P)=f(x,y)=xyl+m?.

In the Cartesian plane:

a. Find the Euclidean distance between P=(2,5) and Q=(0,1).

b. Find the coordinate of (2, 3) with respect to the line x=2.

c. Find the coordinate of (2, 3) with respect to the line y=-4x=11.

Remark! The distance function d satisfies the triangle inequality if

d(A,C)<d(AB)+d(B,C) forall A,BandC.

Example 1.3.6: consider the simplest non-vertical line y = x. The points (0, 0), (1, 1), (2,2) and (3,3) are on the line.
What is the distance from (0,0) to (1,1), From (1, 1) to (2,2)?, From (1, 1) to (3, 3)? Note the standard ruler for this line
is f(x,y)= x~/2 . The coordinate for the four points determined by the standard ruler are 0,+/2,2v/2 and 3v2 respectively.

Activity: By subtracting the appropriate coordinates of the ruler, can you obtain the distance between the points?

Example 1.3.7: Let L be the line Ly3 (i.e. a line with slope 2 containing the point (0, 3)) in the Cartesian plane with
distance function d. show that if for an arbitrary point Q = (x,y), f(Q) = 5x, then show that f is a ruler for L. also, find the
coordinate of R=(1,5). We first show f satisfies the ruler equation.

Let P=(x,y;) and Q=(x,y)be pointsin Ljys.

d(P,Q) =04~ 02 +(y ~y)? why?
=04 -7+ (2% +3) - (2x+3))° why?
=\/(x1—x)2 +(2x1—2x)2 why?
:\/(xl—x)2 +4(x1—x)2 why?
=504 — x)? why?
=\/§|X1—X| why?
= |\/§X1 —\/§X| why?
=|f(P)- f(Q)| why?

This proves the ruler equation.

Activity:

A. Why is f bijective?

B. What is that inverse function?

C. Given a real number r, set x=5r. then find y using the equation y=2x+3
D. Find the coordinate of R

1.4. The Axiom of Betweenness

One of the simplest ideas in geometry is that of betweenness for points on the line. Here we use the undefined term
“between” to establish some properties of an order relation among points on a line and plane.

Definition 1.4.1: Let A, B and C is three collinear points. If AB+BC = AC , then B is between A and C.

Notation: Point B is between points A and C will be denoted as A-B-C.

AB;: If point B is between points A and C, then A, B, C are three distinct points on a line and B is also between C and A.

A B c

Figure 1.4.1
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This axiom implies that the term ‘between’ is used only for points on a line and state that the relative position of points A
and C does not affect B’s property of lying between A and C.

AB,: If A and B are any two different points on a line h then there exist at least one point C on h such that A-C-B.

This axiom guarantees the existence of at least three points on a line.

AB;: If A, B and C are three collinear points then one and only one of them is between the others. AB; states that for any
three collinear points A, B and C, exactly one of the following is true:

ABy: Any four point on a line can be labeled in an order A, B, C and D in such a way that

A-B-C-D. As aresult of AB,, we have:

m

A B Cc D

Figure 1.4.2. Four Points on a line

Definition 1.4.2: Let A and B be two points. The set of points on the line AB that consists of points A and B, and all
points between A and B is called a line segment determined by A and B. we denote it by AB . Points A and B are called end
points of the line segment AB . Using set notation we write AB = {X:A-X-B}U{AB}

This means that for distinct points A, B, C; B is between A and C, and write A-B-C, if C e AB and AC+BC=AC

Definition 1.4.3: Let O be apointonaline ¢ . A setof points containing of point O and all points which are on one and the

same side of O is called a ray. Point O is called end point of the ray. We use point O and any other points say A, on the ray to
name it.

- - » + -—-——-—

0 A B O
ray 04 ray OB
Figure 1.4.3 Figure 4.4.4

In short the ray (from A in the direction of B) is AB = ABU{P:A-B-P}

A A"P'B B
cC Cc'P'D D c'D’P
P'E'F E E'P'F F E'F'P

Figure 1.4.5. Betweenness on a line segment (top), ray (middle), and line (bottom)

Activity:
1. From the discussion we made so far, what do you conclude about the number of points on a line? Give justification for
your answer?
2. In how many ways we can label four point P, Q, R and S on a line if P-Q-R is given.
Exercises
1. Explain why collinear is necessary in the definition of betweenness.
2. Prove that a segment has a unique midpoint.
Theorem 1.4.1: If A-B-C, then C-B-A.
Proof: We must show that CB+BA=CA
CB+BA = BA+CA why?

=AB+AC why?
=AC why?
=CA why?

Activity:

1. Suppose the intersection of AB and CD is CB.IsA-C-B-D? Explain your answer.

2. In the Euclidean plane A-B-C if and only if there isanumber t with 0 <t <1 and B = A + t(C — A).

A line ¢ lying in plane 7, divides the remaining points of the plane in two parts (called half planes), so that the line
segment determined by two points in the same half planes doesn’t intersect ¢, whereas the line segment determined by two
points in different half planes intersect ¢ .
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Figure 1.4.6

Infig.1.4.6, P, and P, are on the same half plane. But Q; and Q. are on different half planes.
Theorem 1.4.2: Every segment contains at least one point different form its end points.

Proof: Let A and B be end points of a segment AB . From Alsh, we have a point C not on line AB . Now taking Aand C
there exist a point D on the line through A and C such that A-C-D (Al,). Again by using Al,, we have a point E on line BD
such that D-B-E. Now consider line EC . It divides a plane into two half planes thus points A and D are on different half
planes and points B and D are on the same half planes. Hence, A and B are on different half planes. So AB intersects EC
at some point, say X. point X different from A and B (why?) and X is on AB. Consequently AB contains at least one point.

Figure 1.4.7

Activity:

1. Prove that if m is a line then there exist at least three points in the plane containing m, which does not lie on m.
2. Let A and B be two points. Does there exist a point X on the line through A and B such that A-X-B?

Theorem 1.4.3: (Betweenness theorem for points)

Let A, B, C be distinct points on the line. Let f : ¢+ R be a coordinate function for ¢.

Then A-C-B if and only if either f(A)< f(C)< f(B) or f(A)> f(C)> f(B)
Proof: Suppose that f(A) < f(C) < f(B). Then

AC+CB =|f(C)- f(A)+|f(B)- f(C)
= f(C)-f(A)+ f(B)-f(C)
= f(B)— f(A)
=AB
So that A-C-B. A similar argument holds in  f (A) > f(C) > f(B).
Now consider the converse. Assume that A-C-B so that AC+CB=AB, i.e. |f(C)— f(A)|+|f(B)—- f(C)|=|f(B)-f(A)|.
But by algebra, we also have f(C)—f(A)+f(B)—f(C) =f(B)—f(A) . Hence, |f(C)-f(A)+f(B)-f(C)|
=|f(B)— f(A)|. Now let u=f(C)—f(A) and v=f(B)—f(C).Then [u|+|v|=|u+V|. From algebra we know that this

means that either u or v is both positive and both negative. Assume the converse. If u>0 and v<O0, then this gives u-v=u+v
which implies v=0 or f(B)= f(C): But C and B are distinct points so f(B) = f(C); if u<0 and v>0, then u+v=u+v which
implies u=0 or f(A)= f(C) which is impossible because A and C are distinct points. Since u and v have the same sign,
then both f(C)-f(A) and f(B)—f(C) have the same sign. If both f(C)-f(A)>0 and f(B)—f(C)>0, then
f(C)>f(A) and f(B)> f(C) so that f(B)> f(C)> f(A) If both f(C)-f(A)<0 and f(B)—f(C)<0, then
f(C)< f(A) and f(B)< f(C) sothat f(B)< f(C)< f(A)

Corollary1.4.1: If A, B, C is distinct collinear points then exactly one of them lies between the other two.

Proof: Since A, B, C are distinct then they correspond to real numbers X, y, z. Then this is properties of real numbers,
exactly one of x, y, and z lies between the other two.

Corollary 1.4.2: Let A, B, C be points such that B e AC.ThenA-B-C < AB< AC
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Proof: By theorem 1.4.5 one of the following holds
f(A) < f(B)< f(C) (1.1)
f(A) > f(B)> f(C) (1.2)
If 1.1 holds, then AB= f(B)- f(A)< f(C)-f(A)=AC
If 1.2 holds, then AB=f(A)—f(B)< f(A)—f(C)=AC
To prove the converse, suppose that AB < AC . By the corollary one of A, B, C lies between the other two. We have three
possibilities A-B-C, B-A-C or A-C-B
But B-A-C is not possible B e AC and B is distinct from A. so suppose A-C-B. Then either f(A)< f(C)< f(B) or
f(A>f(C)>f(B). If f(A)>f(C)>f(B), then —AC=f(C)-f(A)>f(B)—f(A)=—AB. So AB> AC this is
contradiction.
If f(A)<f(C)<f(B), then AC=f(C)-f(A)< f(B)-f(A)=AB this is also contradiction. Hence A-C-B is not
also possible. All that is left is A-B-C.

Definition 1.4.4: The point M is the midpoint of the segment AB if A-M-B and AM=MB.
Theorem 1.4.4: If A and B are distinct points then there exist a unique point M that is a midpoint of AB.

Proof: To prove existence, let f be a coordinate function for the line AB , and define
‘o f(A)+ f(B)
2

Since, f is onto, there exist some point M € AB such that f(M)=x . Hence, 2f(M)=f(A)+f(B) or
f(M)—f(B) = f(A)+ f(M). Thus, AM=MB. To see that A-M-B, let a=min{f(A), f(B)} and b=max{f(A), f(B)}.

Since A and B are distinct then a=b and we have x:aT+b with a<b. hence x<2—2b:b and x>2—2b:a giving
a<x<b. hence, either f(A)< f(M)< f(B) or f(A)> f(M)> f(B).By theorem 1.4.3 A-M-B. To verify the uniqueness,

let M e AB,where M =M and AM =M B. Suppose that f(A)< f(B).
Then both the following holds: f(A)< f(M)< f(B) and f(A)< f(M')< f (B) . Furthermore, since M and M

are midpoints. |f(A)— f(M)|=AM :%AB:AM'= f(A) - f(M)|. Since f(A)<f(M) and f(A)<f(M), this

gives f(M)-f(A)= f(M')— f(A) or f(M)= f(M') .Since f isonetoonethen M =M, which proves unigqueness
when f(A)> f(B). If f(A)> f(B), then the inequalities are reversed and we get f(A)> f(M) and f(A)> f(M')
which leadsto f(A)—f(M)=f(A)-f(M ') .Hence, M =M’ by the same argument. Thus, the midpoint is unique under
all cases.

Definition 1.4.5: The union of three line segments AB, BC and AC are formed by three non collinear point A, B and

C is called a triangle. The points A, B and C are called vertices and segments AB, BC and AC are called sides.
We denote triangle with vertices A, B, Cas AABC

Figure 1.4.8

Theorem 1.4.5: If a line in the same plane of a triangle does not pass through any vertex of a triangle and intersects one of
its sides then it intersects one and only one of the other two sides.

Proof: Let ABC be a triangle and ¢ be a line lying in the plane determined by A, B and C. suppose ¢ does not pass
through any of A, B,C and intersects side AB. Then A and B are in different half-planes with respectto ¢, Since ¢ does not
pass through C, point C is in one of the two half planes. If C is in the same half plane with Athen ¢ does notintersect AC,

but intersect BC by Alls (as B and C are in different half planes in this case). If C is in the same half plane with, B and ¢
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does not intersect BC , but intersect AC by Alls (as A and C are in different half planes in this case). Consequently, in both
cases ¢ intersect one and only one of the sides AC and BC of the triangle.

Activity:

1. Restate theorem 1.4.4 using the undefined term “between”

2. Prove: If A and B are two points on a line m then there exist at least three points which lie on m and are between A and
B.

3. Prove: If A, B, C are three non collinear points and D, E are points such that A-B-D, B-E-C, then the line through D and
E has a point in common with AC

Remark:

1. We know that a line contains at least two points by Als. Now by using AB, and theorem 1.4.4 repeatedly we get the
following result: a line contains infinitely many points.

2. Asaline lying in a plane divides the plane into two parts called half planes, any point of a line divides the line into two
parts. We call them half lines.

Let O be any point on line h. then we say that point A and B of h are on different sides of O if A-O-B, otherwise we say that

they are on the same side of O.

Activity:

1. Examine possible cases in which two different rays can intersect.

2. Give your own definition for an angle. After having done this, compare your definition with that given below.

1.5. The Plane Separation Postulation

Intuitively, we know that a line divides a plane into halves. These two halves are called half-planes. We will take this
observation as an axiom.
Definition 1.5.1: A set of points S is convex if for every P,Q €S, the entire segment PQeS.

Convex Not convex

Figure 1.5.1
Axiom 1.5.1 (Plane separation postulation)
For every line ¢ the points that do not lie on ¢ from two disjoint convex non-empty sets H; and H, called

half-planes bounded by ¢ suchthatif PeH; and QeH, then PQ intersects ¢.

. . The shaded region represents half plane denoted b
PQ intersects the line because P and Q are g P P y

in different half planes. Hpg ; that is half plane formed by line ¢ and point R.
Figure 1.5.2

We can see that this postulate gives rise to the following notion. If both E and F lie in the same set (i.e. in the same
half-plane determined by 1), then the line segment EF does not intersect 1.

In this case we say that E and F lie on the same side of 1. More specifically, the plane separation postulate tells us the
following (see fig. 1.5.2).

H; U H, =the whole plane minus ¢

HinHy, =¢

(E,F eH;)= (EF cH;) and (EFn()=¢
(CHeH,)=(CHcH,) and (CHN)=¢p
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Thus, PeH; and QeH, =PQn/#gp
Definition 1.5.2: Let ¢ bealineand Aapointnoton ¢.Thenweuse H,, todenote the half-plane of ¢ that contains A.
When the line is clear from the context we will just use notation H 4.

Definition 1.5.3: Two points A, B are said to be on the same side of the line ¢ if they are both in the same have-plane.
They are said to be on opposite sides of the line if they are in different half planes.

In figure 1.5.2 points P and Q are on opposite sides of ¢, while point P and F are on the same sides of ¢ . In terms of this
notation, we can restate the plane separation postulate as follows.

Axiom 1.5.2: (Plane Separation Postulate)

Let ¢ bealineand A, B be points noton ¢. Then A and B are on the same sides of ¢ if and only if ABN( = ¢ and
are on opposite sides of ¢ ifand only if AB (=g

Definition 1.5.4: Two rays AB and AC having the same endpoint A are opposite rays if AB = AC and
BC = ABUAC

B A C

Figure 1.5.3

Definition 1.5.5: An angle is the union of two non-opposite rays AB and AC having the same endpoint, and is denoted
by #BAC or ZCAB . The point A is called the vertex of the angle and the two rays are called the sides of the angle.
Definition 1.5.6: Let A, B, C be points such that the rays AB = AC are not opposite. The interior of ZBAC is

HH,FC N HC,E (i.e. the intersection of the two half-planes)

Figure 1.5.4. The interior of the angle ZBAC is the intersection of the two half planes and shaded darker
Definition 1.5.7: Three points A, B, C are collinear if there exists a single line ¢ suchthat A, Band Call lieon ¢ . Ifno
such line exists, then the points are non-collinear.
Corollary 1.5.1: If A, B and C are non-collinear, then the rays AB and AC are neither opposite nor equal.
Definition 1.5.8: Let A, B and C is non-collinear points. Then the triangle AABC is the union of the three segments
AABC = AB+BC +CA

The points A, B and C are called the vertices of the triangle, and the segments AB , BC and AC are called the sides of
the triangle.
Theorem 1.5.1: (Pasch’s theorem)

Let AABC be atriangle and suppose that ¢ is a line that does not include A, B or C. then if ¢ intersects AB then it
also intersects either BC or AC.

A \ C
Figure 1.5.5. Any line that intersects AB  must intersect either C_A or E

Proof: Suppose that ¢ intersects AB and does not include any of the vertices A, Bor C. let H; and H, be the two

half planes determined by ¢ . Then the points A and B are in opposite half planes by the plane separation postulate and by
hypothesis.
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Suppose AeH; and BeH, (thisis just notation; we could have made the alternative assignment without any loss of
generality) then either CeH; or CeH,.

If CeHj,thenBand C are in opposite half- planes. So BC intersects ¢ by the plane separation postulate.
Alternatively, if BeH,, then A and C are in opposite half- planes. So BC intersects ¢ by the plane separation
postulate. AC
Activity: What needs to be added so that we can define the interior of triangle ABC?
1.6. Angular Measures

Recall that an angle is the union of two rays with common end point. The common end point is called the vertex; the two
rays are called sides of the angle. (See fig.1.6.1)

Figure 1.6.1

Notation: The angle which is the union of the two rays OA and OB isdenotedas AOB or ZAOB.
Definition 1.6.1:

i. The interior of an angle AOB is the intersection of

a. The half plane determined by the line EA\ which contains B and

b. The half plane determined by the line @ which contains A.(see figure 1.6.2)

The interior of an angle AOB  will be denoted by int( AOB )

ii. The exterior of an angle AOB s the set of all points which are neither on AOB nor int ( AOB ). The exterior of
an angle AOB  will be denoted by ext( AOB ). (see figure 1.6.3)

Figure 1.6.2 Figure 1.6.3

Remarks:

1. Aline segment formed by any two points in the int( AOB) does not intersect AOB
(That is it lies completely in this region). A line segment whose one end point lies in the int( AOB)

2. Inatriangle, an angle will be referred to as being included between two sides when its sides contain those sides of the
triangle. A side will be referred to as being included between two angles when its end points are the vertices of those
angles of the triangle.

In view of this,in AABC , AB, A and AC aretwo sides and the included angle, while AB, A and B are two
angles and the included sides. Can you mention two more triplets of

i. Two sides and the included angle

ii. Two angles and the include side.

Theorem 1.6.1: (Angle addition theorem)

If ABC and DEF are angles such that G and H are in the int(ABC) and int(DEF) respectively.
ABG =DEH and GBC =HEF then ABC =DEF.

Proof: Suppose ABG =DEH And GBC = HEF with G in the int( ABC) . And Hin the int( DEF)

To show that ABC = DEF



Applied Mathematics 2019, 9(3): 89-161 103

A D
G H
B E

Figure 1.6.4

Consider AI§C and ray E . Then by axiom of angle construction, there exists a point | on the half plane determined by

line ED containing H and F such that ABC = DEI . Moreover, we have only one and only one ray EIl satisfying this

condition.
D
A
L @
B ¢ E |

Figure 1.6.5

Now since G is in the int( ABC) and ABC = DEI , there exists a unique ray EJ with J in the int( DEI) such
that ABG =DEJ and GBC = JEI . why?

so, GBC = DEH (hypothesis of the theorem) and ABG = DEJ . Thus, EH and EJ cannot be two distinct rays
by axiom of angle construction, as H and J are on the same half plane determined by ED and DEH = ABG = DEJ .

— —

Thatis EH and E_j represents the same ray. Points F and | are on one and the same half plane determined by EH and
EJ . (Why?). Again from GBC =HEF, GBC = JEl and EH isthe same as that of EJ , it follows that El and
EF represent the same ray by (why?). Hence, DEI = DEF . Therefore, ABC = DEF by AC4 (as ABC = DEI

and DEI = DEF )

Theorem 1.6.2: (Angle subtraction theorem)
If ABC and DEF are angles such that point G in the int( ABC) , point H in the int( DEF), ABG = DEH

and ABC = DEF , then GBC = HEF .

Proof: Left as an exercise.

Activity:

1. Infig. 1.6.6, AE =DE, BE=CEand AEB = DEC . Prove that ABD = DCA . Use SAS theorem, angle
addition and subtraction theorems.

Figure 1.6.6
2. You are familiar with certain pairs of angles like adjacent angles, supplementary angles, vertically opposite angles and
so on using the undefined terms, axioms and theorem so far discussed give your own definition for each of them.
Definition 1.6.2: Two angles are said to be adjacent if and only if they have the same vertex, one side in common and
neither contains an interior parts of the other.
Definition 1.6.3: Two angles which are congruent, respectively, to two adjacent angles whose hon-common sides form a
straight line are called supplementary angles. Each of a pair of supplementary angles is called the supplement of the other.

A D
Q
C F 0 N P.
Figure 1.6.7
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ABC =ONQ
DEF = PNQ — ABC and DEF are supplementary angles.
P, N, Ocollinear

When do you say that two adjacent angles are supplementary?

Definition 1.6.4: Non adjacent angles formed by two intersecting lines are called vertical angles.

Definition 1.6.5: An angle is said to be a right angle if and only if it is congruent to its supplementary angle. An angle
whose two sides form a straight line is called straight angle.

Ilustration: In fig. 1.6.8, if lines % and % intersect at O, then UéQ and QéT are adjacent angles, QéT

and TOP are supplementary angles, POR and Q(SS are vertical angles and P(5Q is a straight angle. Can you list
some more pairs of adjacent, supplementary and vertical angles?

Figure 1.6.8

So far we examined different relationships that exist between line segments and between angles. Some of these
relationships are expressed in terms of the undefined terms “between” and “congruence”.

In the following groups of axioms we will investigate further relationships between angles and between line segments in
terms of the notion of equality. For this we first raise the following question: what is wrong if we say

i. AB=CD

ii. XYZ=RST
1.7. Axioms of Congruence

So far we have seen two groups of axioms. These are axioms of incidence, order axiom. Each consists of a number of
axioms that characterize the undefined terms (e.g. point, line and plane) using the undefined relations ‘incident’, “between”
and so on. By using these axioms, we have stated and proved some properties concerning the undefined terms and the
relations that exist among them. In the same manner we continue our discussion on Euclidean geometry with a study of the
ideas of congruence. The undefined term congruence will be examined relative to segments, angles and triangles.

Notations: We use the symbol “ =" to mean is congruent to and “#” not congruent.

ACl:

a) If AB isaline segment then AB = AB (Reflexivity)
b) If AB and CD, are line segment such that AB=CD, then CD = AB (symmetry)
c)If AB,CD and EF are line segments such that AB=CD and CD = EF , then AB=EF (Transitivity)

AC,: If A, B, C, D, E, F are points such that A-B-C, D-E-F, AB=DE and BC=EF then AC=DF .
(Axiom of addition of segment)

h s

c
B Ezﬁl — AC=DF E
BC =EF|

Figure 1.7.1

AC;: If AB isaline segment and C is a pointon a line ¢ then there exists on ¢ on one side of C exactly one point D
such that AB=CD. (Axiom of segment construction). Whenever we have given a line segment XY and a point W on a
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line ¢, ACsenables us to conclude the existence of a unique line segment WZ on either of the two sides of W on ¢ such

that XY =WZ . That s if U and V are on the same side of W on ¢suchthat XY =sWU and XY =WV , then U and V must
represent the same point i.e. U=V.
AC,:

a) If ABC isananglethen ABC = ABC (Reflexivity)

b) If ABC and DEF are angles such that ABC = DEF then DEF = ABC (symmetry)

c) If ABC, DEF, GHI are angles such that ABC = DEF then DEF =GHI , then ABC =DHI (Transitivity)
ACs: If ABC isanangleand ¢ is a line on any plane and ED isa ray on ¢ the there is one and only one ray EF

whose all points except E lie on one of the two half-planes determined by ¢ such that ABC = DEF . (Axiom of angle
construction)

Given ABC and ray ED on line ¢ (see fig. 1.7.2). There exists exactly one angle on each side of ¢ congruent to

ABC . That is it is not possible for ABC to be congruent to DEF and DEG, where F and G are on the same half-plane
determined by ¢, unless F=G. (see fig. 1.7.3)

Figure 1.7.2 Figure 1.7.3

ACs: If AABC and ADEF, AB=DE, ABC=DEF and BC =EF, then BAC =EDF and. That is then A=D
and C=F

B " C E F
Figure 1.7.4

By using the axioms of congruence we will prove several theorems concerning congruence of segments, angles and
triangles. We first prove two theorems about congruence of segments.

Theorem 1.7.1: If A, B, C, D, E, and F are points such that A-B-C, D-E-F, AB=DE and AC=DF then BC=EF.

Proof: Suppose BC s not congruent to EF . Then by AC; there exist a point G on ray EF different from E and F such
that BC = EG . Hence either E-G-F or E-F-G. in both cases we have D-E-G. Now from AB=DE, BC = EF , A-B-C and
D-E-G it follows that AC=DG by AC,. But AC =DF by assumption. So G=F by AC,. Thus we have F =G and
F =G (contrary). Therefore, the supposition BC isnot congruent to EF is false. Consequently, BC=EF.

A B c D E F
Figure 1.7.5

Theorem 1.7.2: If A, B, C, D, E are points such that A-B-C and AC = DE , then there exists exactly one point X such that
AB=DX and D-X- E.

Proof: Suppose A, B, C, D, E are points such that A-B-C and AC = DE . Then AB s not congruent to DE by AC; as
DE = AC and B, C are on the same side of A on line AC .

A B C D E
Figure 1.7.6
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Thus there exists a unique point X on ray DE suchthat AB=DX by AC;. Again by using AC; there exists a point G on
the line through D and E such that D-X-G and BC = XG . But A-B-C, D-X-G, AB=DX , BC = XG implies AC =DG.
From AC=DE, AC=DG and G, E are on the line through D and E on the same side of D it follows that E=G by ACs.

Therefore, there exists exactly one point X such that AB=DX and D-X-E. one can prove the following statement by using
theorem 1.7.1 and 1.7.2. we state it as a corollary, as it is an immediate consequence of the two theorems.

Corollary 1.7.1: Given two congruent segments XZ and PR.IfYis any point on XZ different from X and Z then
there exists a unique point Q on PR different from P and R such that XY =PQ and YZ =QR
Proof: Left for students.
Activity:
1. Explain why the following statements are not necessarily true.
a. If PQ=ST and QR=TU, then PR=SU
b. AIlV;asserts that there is exactly one line segment on a given line that is congruent to a given line segment.
c. Given angle DEF and a line h containing point O. then we have at most two angles whose vertex is O and

congruent to DEF .
2. Complete the proof of the above corollary

1. XZ=PR ... hypothesis

2 XN hypothesis
S by theorem 1.7.2 and steps 1 and 2
Be o

Therefore, .......cccoovvnn....

Now let us deal with some basic points about congruent triangles. We shall discuss more about triangles in chapter two.
Recall that a triangle is defined as a set of points that lie on three segments which are formed by three non collinear points.

That is if A, B and C are three non collinear points then AABC is the union of the segments AB, BC and CA.So every
triangle has three vertices, three sides and three angles. Thus we can establish a one-to-one correspondence among the
vertices, sides and angles of any two given triangles ABC and DEF. we denote this by AABC <> ADEF and we have the
following correspondence

1.8. Congruence between Triangles

So far, we have proved a theorem called side angle side (SAS) congruence theorem. In this section we will prove theorems,
like SAS, that are concerned with conditions which cause one triangle to be congruent to another triangle. These theorems,
which deal with conditions for triangle congruence, will be used to establish several theorems in this material. First let us
restate SAS theorem.

Restatement: (Side angle side theorem)

If two sides and the including angle of one triangle are congruent, respectively, to two sides and the including angle of
another triangle, then the triangles are congruent.

Theorem (ASA)

If two angles and the including side of one triangle are congruent, respectively, to two angles and the including angle of
another triangle, then the triangles are congruent.

Proof: let AABC and ADEF be triangles such that ZCAB = £/FDE, ZABC = Z/DEF, and AB = DE . We need to
show AABC = ADEF

C B F E

Figure 1.8.1

For this suffices to show that % = ﬁ . (Why?). Now consider EF . Then there exists a unique point G on the ray
BC such that BG =EF by AC,. Thus in AABG and ADEF , we have AB = ﬁ ABG = DEF and
BG =EF . so AABG = ADEF by SAS, which in turn implies, BAG = EDF , by definition of congruence of
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triangles. Since BAG = EDF , BAC = EDF and BAG and BAC are on the same half plane determined by
AB , ray Ké must be the same as A_G: by ACs and hence G=C as they are on the same line on the same side of B.

therefore we have BC = EF (as BG = EF and G=C), ABC = DEF and AB = DE (hypothesis). Consequently,
AABC = ADEF , by SAS.

Theorem 1.8.2: (SSS)

If the three sides of one triangle are congruent, respectively, to the three sides of another triangle then the triangles are
congruent.

Proof: Let ABC and DEF be triangles such that, AB = DE : BC=EF and AC =DF . To show that

H .
B C D l

Figure 1.8.2

On the half plane determine by not containing D, there exists a point H such that CBA = FEH by ACs. Mark point
D'on EH sothat ﬁzﬁ,this is possible by axiom of segment construction (AC,) Further CBA= FED'why?

Thus in AABC and AD'EF we have AB=DE . ABC=DEF and BC=EF which implies
AABC = AD EF by SAS. It then follows from the definition of congruence of triangle that A_Czﬁ ,
BAC=EDF ad ACB=DFE . Now sice DE=DE ad DE=DF. ADED ad ADFD are
isosceles. Hence EPDD =ED'D and FDD = ED'D (base angle of isosceles triangles are congruent). So,
EDF = ED'F . by angle addition theorem. But, BAC = ED F and hence BAC = EDF by AC4. Thus from,

AB = DE. BAC = EDF and AC = DF itfollowthat AABC = ADEF by SAS.

Theorem 1.8.3: If two angles of a triangle are congruent then the sides opposite these angles are congruent.

Activity:

1. Let AABC be isosceles such that AB = AC and D is the midpoint of BC . Use SSS congruence theorem to show

that AD LBC and AD is the bisector of BAC

2. Prove theorem 1.8.3 by using ASA theorem.

The proof of the following theorem follows identically the same pattern as that used for proof of the SSS theorem.

Theorem 1.8.4: (RHS)

If the hypotenuse and a leg of a right triangle are respectively congruent to the hypotenuse and a leg of another right
triangle then the two triangles are congruent.

Proof: Exercise

Illustration: In fig. 1.8.3 D is the midpoint of BC, DE=DF, DE_LAC and DF L AB .Provethat AB=AC.

Proof: DEB isarightangleas DE | AB and DEC isarightangleas DE | AC.Thus ADFB and ADEC are
right angle with right angles at F and E. moreover, DF = DE by assumptionand DB = DC as D is the midpoint of
BC . Therefore, ADFB=ADEC, by, RHS and hence DBF = DCE by definition of congruence of triangles. That is

CBE =BCA.

Figure 1.8.3
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Activity: Prove that the perpendicular line segment from the vertex to the base of an isosceles triangle

a. Bisect the vertex angle

b. Divides the base in to two congruent segments

We are left with one theorem on congruence of triangles. Before dealing with this theorem, we state and prove a theorem
about a line perpendicular to a given line through a given point not on the given line. Suppose ¢ isaline and P is a point not
on ¢ .By parallel axiom there exists a unique line through P parallel to ¢ . What about a line through P perpendicularto ¢ ?

Theorem 1.8.5: If m is a line and A is a point not on m, then there exists exactly one line which contains A and is
perpendicularto m.

Proof: Suppose m is a line and A is a point not on m. First let us show that there exists at least one line through A

perpendicular to m. Since a line contains at least two points, there exists a point B and C on m. Since Alisnoton m, BA
and BC are two different rays. Thus by angle construction axiom there exist a point E on the half plane determined by m
not containing A such that ABC = EBC.

C m

Figure 1.8.4 Figure 1.8.5

By segment construction axiom there exist point D on BE suchthatBA=BD. ABC=DBC as rays BD and BE are
identical. Since A and D are on different half planes determined by m, AD intersects mat some point F. now there are two
possibilities: F =B or F =B

Case 1: If F=B, then AF L m Case 2: If F =B, then AF L m

Case 2

Figure 1.8.6

(You will be asked to prove case 1 and 2, as an activity.)

From the above step it follows that, there exist at least one line through A perpendicular to m. Thus it remains to show that
there does not exist more than one line which contains A and perpendicular to m. To do this, suppose h (whose existence is
shown above) is a line through A perpendicular tom at O.

Now, let h be any other line through A perpendicular to m at Q different from O. Then there exists a point A on h
such that A-O- A" and AO=AO (why?). Points Q, A, A" are not collinear, (why?). AAOQ EAA'OQ by SAS and
hence AOO=AQ0.But AQO isarightangleas h L m atQ.so AQO is also a right angle. This implies A, Q, A

lie on the same line contraction to that A, Q and A" are not collinear.
h

A/h‘

/\ \ H’i'

~

N 4

Figure 1.8.7

Therefore there does not exist a line h through A different from h perpendicular to m. Consequently only one line
exists through A perpendicular to m. In this theorem, the given point is not on the given line. What about if the given point is
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on the given line? In this case also we have the same result. We put it below as a theorem.

Theorem 1.8.6: Through the given point on a given line there exists one and only one line that is perpendicular to the given
line.

Proof: Left as an exercise.

Activity: Complete the proof of theorem 1.8.5 (prove case 1 and 2)

Theorem 1.8.7: (RHA)

If the hypotenuse and a non right angle of one right triangle are respectively congruent to the hypotenuse and a non right
angle of another right triangle then the two triangles are congruent.

Proof: Let ABC and XYZ be two right triangles with right angle at C and Z respectively such that AB=XY and
ABC = XYZ .

A
B C
Figure 1.8.8
Exercise: Complete the proof (theorem 1.8.7)
Activity:
1.Infig 1.8.9, AB=AC and DBC =DCB. Prove that AD bisects BAC .
A
C
B
Figure 1.8.9

2.Infig1.8.12, CD L AB, BE L AC and CD L BE. Provethat AD = AE.
A

O
m

Figure 1.8.10

1.9. Geometric Inequalities

This section deals with comparison of segments and angles. The concepts of betweenness for points and congruence for
segments can be combined to develop a definition which can be used for comparing segments. This definition can be used,
along with some preceding theorems, to obtain several theorems pertaining to the comparison of segments. Angles can be
compared in much the same manner as that of line segments. Let us see how this is possible.

Recall that, we have seen that:

Two line segments are equal in length if and only if they are congruent.

Two angles are equal measure if and only if they are congruent.

But in this section we focus on line segments of unequal length and angles of unequal measures. For this we put the
following definition about inequalities of line segments and angles.

Definition 1.9.1:

a) Segment AB s said to be less than segment CD ifand only if there exists a point E such that C-E-D and AB=CE .
b) Angle ABC is said to be less than angle DEF if and only if there exists aray EG such that G is in the int(DEF)

and ABC =GEF .
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Figure 1.9.1

Notations:
» AB islessthan CD issymbolized as AB<CD.

» ABC islessthan DEF issymbolized as ABC < DEF .

If AB<CD we also write CD>AB and read as CD is greater than AB. The same is true for angles.
Remarks:

1. In comparing two segments AB and CD , we have only the following three possibilities and exactly one of them is true.
a. AB<CD
b. AB=CD
c. AB>CD

2. in comparing two angles ABC and DEF ,we have only the following possibilities and exactly one of them is true:
a. ABC< DEF
b. ABC= DEF
c. ABC >DEF

Now by using definition 1.9.1 and previously proved theorems let us investigate some facts about comparison of line

segments and angles.
Theorem 1.9.1: an interior angle of a triangle is less than each of its remote exterior angles.

Proof: Suppose ABC is a triangle. Consider a exterior angle BAC . Then by AB,, there exists a point D and G on AC

and AB , respectively such that A-C-D and A-B-G. Also there exist points F and E on BC such that F-B-C and B-C-E (see
fig.1.9.2).

C
’ D
Figure 1.9.2

By definition 1.9.1 beach of ABF , CBG , BCD and ACE is a remote exterior angle of BAC . We show that
BAC < ABF , the others can be shown analogously. Now we have only three possibilities while comparing BAC and
ABF :

i. BAC = ABF

ii. BAC < ABF

iii. ABF < BAC

Suppose BAC = ABF , then AC isparallel to BC (why?). But AC and BC are not parallel as they intersect at C.
thus the supposition is false. Therefore, BAC is not congruent to ABF .

Suppose ABF < BAC, there exists a point H in the int(BAC) such that ABF = BAH . Again this implies m"%

(why?). But this is impossible as ray AH intersects sides BC of AABC at some point J different from B and C. thus the
supposition is false. Therefore, ABF isnotlessthan BAC .Since BAC is not congruent to ABF and ABF isnot less

than BAC, we have BAC < ABF analogously, it can be shown that BAC < ACE, BAC <CBG and BAC <BCD .
Therefore, an interior angle of a triangle is less than each of its remote exterior angles.
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Activity: Let O be any point inside AABC . Prove that BAC < BOC .
Theorem 1.9.2: If two sides of a triangle are not congruent then the angles opposite these sides are not congruent and the
lesser angle is opposite the lesser sides.

Proof: Suppose ABC is a triangle with AB % AC.Then, ABC # ACB otherwiseh AB = AC.
c

AN

A D B
Figure 1.9.3

Now since AB = AC, either AB < AC or AC < AB. Then there exist a point D on AB such that AC=AD by
definition 1.9 1a. AACD is isosceles as AC=AD and hence ACD=ADC . But, ACD<ACB definition 1.9.1b.
Moreover AD C is an exterior angle of ACDB and hence ABC < ADC by theorem 1.9.1. Thus from ACD= ADC ,
ACD < ACB and ABC < ADC it follows that ABC < ACD < ACB . Therefore, ABC < ACB. Analogously, it can be

shown that if AB<AC then ACB < ABC . Thus we have proved that an angle opposite to the smallest side is smallest.
Theorem 1.9.3: If two angles of a triangle are not congruent then their opposite sides are not congruent and the lasser side
is opposite the lasser angle.

Proof: Suppose ABC is a triangle with ABC # ACB. Then either ABC <ACB or ACB<ABC.

Case 1: Suppose ABC < ACB . To prove that AC<AB.

If AB=AC then ABC = ACB, contrary to the supposition ABC < ACB.Thus AB isnot congruentto AC .
If AB<AC then ACB < ABC (by theorem 1.9.2), which is contrary to the supposition

ABC < ACB . Thus AB<AC is not true.

Therefore neither AB=AC nor AB<AC. Consequently AC<AB.

Case 2: Suppose ACB < ABC . To prove that AB<AC.

If AB=AC then ACB= ABC, contrary to the supposition ACB < ABC . Thus AB is not congruentto AC .
If AC<AB then ABC < ACB (by theorem 1.9.2), which is contrary to the supposition
ACB < ABC . Thus AC<AB is not true.

Therefore neither AB = AC nor AC<AB. Consequently AB<AC.

Remarks:

» The angle opposite the greatset side is the greastest angle.

» The side opposite the greatset angle is the greastest side.

Thus in an obtuse triangle, the greatest side is opposite to the obtuse angle; in a right triangle the hypothenuse is the greatest
side.

Definition 1.9.2 The distance of a line from a point which is not on the line is the length of the perpendicular line segment
from the pont to the line.

Figure 1.9.4

Theorem 1.9.3; (Triangle inequality)

The sum of the lengths of any two sides of a triangle is geater than the lenth of the third side.

Proof: Let ABC be triangle. We need to show that BA+AC>BC, BA+BC>AC and BC+AC>BA. We show only
BA+AC>BC. The other can be shown in similar manner.
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Figure 1.9.5

Extend BA tosome point X on AB suchthat B-A-X and AX = AC . This is possible by axiom of segment construction.
Join C and X. Since AX = AC AXC = XCA. XCA< XCB by definition of angle comparison. Thus, AXC < XCB (i.e
BXC < XCB). Now, in ABCX we have BC<BX. But BX=BA+AX (as A, B, X are colinear and B-A-X). BX=BA+AC as
AX = AC . Therefore, BC<BA+AC.
Exercise
1. Prove that if two sides of one triangle are congruent to two sides of another triangle but the measures of the included
angles are unequal then the lengths of the third sides are unequal in the same order.
2. Prove that if two sides of one triangle are congruent to two sides of another triangle but the lengths of the third sides are
unequal then the measures of the angle included between the piars of congruent sides are unequal in the same order.
3. Prove that the difference of the lenths of any two sides of a triangle is less than the third side.

1.10. Sufficient Conditions for Parallelism

Two lines are parallel if they lie in the same plane but do not intersect. We shall use the abbreviation L; //L, tomean that
the lines the lines L; and L, are parallel. Later, as a matter of convenience, we shall say that two segments are parallel if

the lines that contain them are parallel. We shall apply the same term to a line and a segment, a segment and a ray, a ray and
so on. The Euclidean parallel postulate will be introduced in the next chapter, and used thereafter, except in the chapter on
non-Euclidean geometry. The postulate, in the form in which it is usually stated, say that given a line and a point not on the
line, there is exactly one line which passes through the given point and is parallel to the given line.

P I

Figure 1.10.1

We shall see, however, from theorem 1.10.1 and 1.10.2, that half of this statement can be proved on the basis of the
postulates that we already have.

Theorem 1.10.1: If two lines lie in the same plane, and are perpendicular to the same line, then they are parallel.

Restatement: Let Ly, L, and T be three lines, lying in a plane E, suchthat Ly L T and L, LT, then Lj//L,

T
L
> - e,
- 2
- -
R? ~o
-~ Q T
it =L,
X
Figure 1.10.2

Proof: Suppose that L; and L, intersect T at point Q and P, respectively. Suppose that Ly and L, are not parallel,
and let R be the point at which they intersect. Then there are two perpendiculars to T through R; and this is a contradiction.
Why?

Theorem 1.10.2: Given a line and perpendicular line, there is always at least one line which passes through the given point
and is parallel to the given line.
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Proof: Let L be the line, let P be the point, and let E be the plane which contains them. Then there is a line T in E which
passes through P and is perpendicular to L. then there is a line L in E which passes through P and is perpendicular to T. by
the preceding theorem it follow that L; / /L, which was to be proved. There is an easy generation of theorem 1.10.1, which
we shall get too presently. In the figure below, T is a transversal to the lines Ly and L,

lr/ — I
S
/"

Figure 1.10.3

L

More precisely, if L, Lpand T arethree lines in the same planes, and T intersects Ly and L, intwo different points P
and Q, respectively, then T is a transversal to Ly and L,
In the figure below 1 and 2 are alternate interior angles: and 3 and 4 are alternate interior angles.

Figure 1.10.4

More precisely,
1. If Tistransversalto Ly and L,, intersecting Ly and L, inP and Q, respectively, and
2. Aand D are points of Ljand L, respectively, lying on opposite sides of T, then ZAPQ and ZPQD are alternate
interior angles.
Theorem 1.10.3: Given two lines and a transversal. If a pair of alternate interior angles is congruent, then the lines are
arallel.
P In the figure below, ~1 and /1 are corresponding angles, ~2 and /2 are corresponding angles and so on.

Figure 1.10.5

Definition 1.10.1: If «x and ZYy are corresponding angles, and <z and ZYy vertical angles, then /x and ~z
are corresponding angles.

Given two lines and a transversal. If a pair of angles is congruent, then the lines are parallel.

Example: prove thatif m_L ¢ and n_L 7, theneither m=nor m//n

Solution: let ¢,m andn be three lines suchthat m L ¢ and n L ¢.We must prove that either m=n or m//n.Let A
be the point at which ¢ and mintersect and let B be the point at which ¢ and n intersect (definition of perpendicular lies).
There are two cases: either A=Bor A=B.If A=B,then m=n by the uniqueness of perpendiculars

1.11. Saccheri Quadrilateral



114 Kassahun Tesfaye Agzew: Fundamental Concepts of Geometry

Definition 1.11.1: Let A, B, C, D be points, no three of which are collinear, such that any two of the segments AB : ﬁ :
CD, DA either have no point in common or only have an endpoint in common. Then the point A, B, C, D determine a
quadrilateral, denoted by oABCD. The points A, B, C, D are called the vertices of the quadrilateral. The segment AB ,

ﬁ, C_D DA are called the sides of the quadrilateral. The diagonals of DABCD are the segment E and BD.
Two quadrilaterals are congruent if all four corresponding sides and all four corresponding angles are congruent.

Fig. 1.11.1: nABCD is a convex quadrilateral with diagonals E and BD ; OEFGH is non-convex quadrilateral with

diagonals E and ﬁ; ol/KL is not quadrilateral, although o/KJL (not shown) is a quadrilateral.
K J

Figure 1.11.1

Definition 1.11.2: 0ABCD is convex if each vertex is contained in the interior of the angle formed by the three other
vertices (in their cyclic order around the quadrilateral).
Definition 1.11.3: Let DABCD be convex. Then its angle sum is given by the sum of the measures of its interior angles:

o(BACD) = m(ZABC)+m(£BCD)+m(LABC)+m(/BCD)
Theorem 1.11.1: (Additively of Angle Sum)
Let DABCD be convex quadrilateral with diagonal BD . Theno(ABCD) = o(AABD)+ o (oBDC)

B

D
Figure 1.11.2. The angle sum of quadrilateral is equal to the sum of angle sums of the triangles defined by either diagonal
Proof: Apply the angle addition postulate to each of the angle that is split by a diagonal to get
o(ABCD)=a+fB+s+0
=a+r+o+e+é+np
=(a+r+n)+(S+e+g)
=o(AABD)+o(ABDC)

Definition 1.11.4: The defect of a quadrilateral is (DABCD) = 360 — 5 (ABCD)
Theorem 1.11.2: (The additively of defect for convex quadrilateral)

If OABCD is convex quadrilateral, then 6 (QABCD) = o(AABC) + (AACD)

Proof: Apply theorem 1.11.1.
Corollary 1.11.1: If oABCD is convex, then 6 (DABCD) < 360
Proof: Apply theorem 1.11.1.

Definition 1.11.5: 0ABCD is called a parallelogram if ABHCD and BCHAD .

Theorem 1.11.3: Every parallelogram is convex.

Proof: Left for reader.

Theorem 1.11.4: let AABC be a triangle and D and E points such that A-D-C and A-E-C. Then oBCED is a convex
quadrilateral.

Proof: Left for reader.
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Theorem 1.11.5: oBCED if and only if the diagonal have an interior point in common (i.e. they intersect, but not at an
endpoint)

Proof:

(=) Assume OBCED is convex. Then by the definition of convexity C is the interior of ZDAB . Then

BDNAC # @ ; call the point of intersection E, where B-E-D, by similar argument there is a point ﬁ GE =F
where A-F-C. Since AC and BD are distinct (they corresponds to opposite side of quadrilateral), they can meet in at most
one point, we must have E=F. Hence the diagonals intersect at E. Since A-F-C and B-E-D, the intersection is not at end point.

(<) Let oBCED be a quadrilateral with E = AC(1BD with A-E-C and B-E-D. Since A-E-C, A and E are on the same

side of the line CD . Similarly, since B-E-D, B and E are on the same side of the line CD . Hence A and B are on the same

side of CD (Plane separation postulate), i.e Ae Hg cp - Recall that Hy =5 is a half plane determined by line CD and

point B not on CD (ie H is a half plane containing point B). By a similar argument A and D are on the same side of

B,CD
BC,ie, AeH —.HenceAeH,==NH —andthusAisinthe interior of ~BCD .By asimilar argument, each of
D,DC B,CD D,DC

the other vertices is in the interior of its opposite angle. Hence by definition of convexity, the quadrilateral is convex. Assume
OBCED is a convex quadrilateral (i.e assume that R is false). Then AC(\BD = ¢, i.e the diagonals of OBCED share an

internal point. Hence oBCED is not a quadrilateral.
Example 1.11.1 Show that every parallelogram is convex.
Solution: let DABCD be a parallelogram (hypothesis). We must prove that DABCD is a convex quadrilateral. Since

ﬁ”% by definition of parallelogram, it follow that ADNBC = ¢ by definition of parallel. Hence, A and D lie on the

same side of BC (plane separation postulate).
In the same way, the fact that ﬁ”ﬁ can be used to prove that A and B lie on the same side of CD . Thus, is in the
interior of #/BCD (definition of angle interior). The remaining conditions left as an activity. Therefore, DABCD is convex.
Activity: In the above example:
a) Show that B is in the interior of ~CDA
b) Show that C is in the interior of ~«DAB and
c) Show that D is in the interior of ~ABC

Theorem 1.11.6: If ABCD is a non-convex quadrilateral then DACBD is a quadrilateral.
Proof: Since OABCD is a quadrilateral no three of the point A, B, C, D are collinear. Since dABCD is a quadrilateral

BCNAD = ¢. Since 1ABCD is nota convex then AC , BD are disjoint (the diagonals do not intersect). Thus segments AC ,
CB ,@and DA share at most their endpoints. Hence OBCED is a quadrilateral.

Definition 1.11.6: DACBD is a Saccheri quadrilateral if ZABC = ZBAD = 90° and AD=BC, segment ABis called the
base and segment DC s called the summit.

D C

H

A B
Figure 1.11.3

Theorem 1.11.7: The diagonals of the Saccherei Quadrilateral are congruent.
Proof: Consider triangle AABD and AABC. Since BC=AD, AB=AB and /A=90= /B, the triangles are congruent.

Hence BD = AC
Theorem 1.11.8: The summit angles of a Saccheri Quadrilateral are congruent.
Proof: Repeat the argument in the previous proof, but with upper-half triangles. The triangles are congruent by SSS-they
share the same top, the diagonals are congruent; and the sides are congruent. Hence the corner angles are congruent.
Definition 1.11.7: A Lambert quadrilateral is a quadrilateral in which three of the interior angles are right angles.
Corollary 1.11.2: Let oABCD be a Lambert quadrilateral. Then it is convex.
Proof: It is a parallelogram and all parallelograms are convex
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1.12. The Angle Sum Inequality for Triangles

If we only assume Euclid’s first four postulates, along with the axiom of incidence, congruence, continuity and
betweenness, the angle sum of a triangle is always less than or equal to 180. This geometry is called neutral (or absolute)
geometry. We will also consider some important consequence of this theorem.

Theorem 1.12.1: (Exterior Angle Inequality)

The measure of an exterior angle of a triangle is greater than the measure of either remote interior angle.

Proof: Given AABC, extend side BC toray BC and choose the point D on this ray so that B-C-D. We claim that
mZACD > mZA and mZACD >m/D . Let M be the midpoint of AC and extend the median BM so that M is the
midpoint of BE .

A E
Z . s
B C D
Figure 1.12.1

Then ~AmB and <ZCME are congruent vertical angles and AAMB=ACME by SAS. Consequently,
mZACE =m~CAB . Now, E lies in the half-plane of Aand CD , since A and E are on the same side of CD . Also, E lies in
the half plane of D and AC since D and E are on the same side of AC . Therefore E lies in the interior of ~<ACD , which
is the intersection of these two half-planes. Finally, ZACD = ZACE + m£ZECD > m£ACE = mZCAB = m£A

Activity: In the above theorem (theorem 1.12.1) prove the case m£ACD > m/B
Corollary 1.12.1: The sum of the measures of any two interior angles of a triangle is less than 180.

Proof: Given AABC, extend side BC to BC and choose points E and D on BC, so that E-B-C-D (See figure 1.12.2)

B C
Figure 1.12.2

By theorem 1.12.1, m£ZA<m£ACD, m£ZB <m£ACD, and mZA<mZABE . By adding m£C <mZACB to both
sides of the first two inequalities, and by adding mZB <m£ABC to both sides of the third we obtain

m/A+m/C <m/ACD+m~/ACB =180

m/B+m/C <m/ACD + m/ACB =180

mZA+m«B < mZABE + mZABC =180

Theorem 1.12.2: If two lines are cut by a transversal and pair of alternate interior angles are congruent, then the lines are
parallel.

Proof: We prove the contra positive. Assume that lines ¢ andm intersect at the point R, and suppose that a transversal t

cuts line ¢ at the point A and cuts line m ata point B. let ~«1 and 2 be a pair of alternate interior angles. Then either
«1is an exterior angle of AABR and 2 isaremote interior angle or vise versa.

Figure 1.12.3

In either case m£1=m./2 by the exterior angle inequality (theorem 1.12.1)

Theorem 1.12.3: (Saccheri-legendre theorem)

The angle sum of a triangle is less than or equal to 180.

Proof: Assume, in the contrary that the angle sum of AABC =180+ p, forsome p >0 . Construct the midpoint M of side

AC , then extend BM its own length to point E such that
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B-M-E. Note that AABM = ACEM by SAS.
Therefore, the angle sum of AABC =angle sum of AABM +angle sum of ABMC
=angle sum of ACEM +angle sum of ABMC
=angle sum of ABEC
Furthermore, m/BEC = mZABE . Therefore, either mZBEC :%mLABC or m£EBC :%mzABC . Thus, we may

replace AABC with ABEC, having the same angle sum as AABC and one angle whose measure is less than or equal to

E mZABC .
2
[ =<
B C
Figure 1.12.4

Now repeat this construction in  AEBC . If mAEBCgémzABC , construct the midpoint N of CE and extend BN its
own length to point F such that B-N-F. Then ABEC and ABFC have the same angle sum and either
m/BFC s%mLEBC or mLFBCs%mLEBC.RepIace AEBC with AFBC having the same angle sumas AABC and

one angle whose measure is < %mAABC . On the other hand, if mZBFC < %mAABC , do same construction with N as the

midpoint of BC and replace AEBC with AFEC. Continue this process indefinitely; the Archimedian property of real
numbers guarantees that for sufficiently large n, the triangle obtained after the n" iteration has the same angle sum as AABC

. 1 . . . .
and one angle whose measure is S—nmLABC < p, in which case the sum of its other two angles is greater than 180°
2

contradicting corollary 1.12.1

Example 1.12.1: Prove that the sum of the measure of two interior angles of the triangle is less than or equal to the measure
of the remote of their remote exterior angle.

Solution: Let AABC be a triangle and let D be appoint on AB such that A-B-D (hypothesis). We must prove
m(£BCA)+m(£CAB)<m(ZCBD)

A B D
In the figure above, we know that m(ZCBA)+m(£ABC)+m(£BCA)<180 (saccheri-legedre theorem). We also now
that z(£ABC)+ u(~CBD)=180 (Linear pair theorem). Hence, from algebra
m(/CAB)+m(/BCA) <180 -m(~ZABC)=m(ZCBD).
Definition 1.12.1: The defect of AABC is SABC =180° —m/A-m~/B-m~C
Corollary 1.12.2: Every triangle has non-negative defect.

Proof: If 6ABC =180° —m/A-m~/B-m~C <0°, then the angle sum of AABC > 180° contradicting theorem 1.12.3.

Theorem 1.12.4: (Additivity of defect)
Given any triangle AABC and any point D between A and B, §ABC = §ACD +6BCD

C

N~

A D B

Figure 1.12.5
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Proof: Since, ~ADC and ~BDC are supplementary, mZCDA+m~CDB =180 . Since, DC is in the interior of
ZACB, ZACB=mZACD+m«ZBCD.

Therefore, SACD +5BCD =180° —m/ACD - m/CDA-m~/DAC +180° - m~/BCD - m~/CDB - m~/DBC
=360° — (M£ACD + m£BCD) —~m£DBC —(m£CDA + m£CDB)-~m~DAC

=180° —m~/ABC —m~BAC —m~/CDA
— 5ABC..

Corollary 1.12.3: Given any triangle AABC and any point D between A and B, the angle sum of AABC = 180° if and
only if the angle sums of AACD and ABCD both equal 180°.

Proof: If the angle sum of both AACD and ABCD equal 180° , then SACD=6BCD=0° . by theorem 1.12.4,
SABC =0° so that the angle sum of AABC =180°, SACD =+5BCD =0°. But, by corollary 1.12.2, §ACD > 0%and
sBCD>0° . Therefore, 6ACD =6BCD = 0% and both angle sums equallSO0 .

Theorem 1.12.5: If there is a triangle with angle sum 180°, then a rectangle exists.

Proof: Consider a triangle AABC with angle sum180°, by corollary 1.12.1, the sum of the measures of any two interior
angles is less than 180°, so at most one angle is obtuse. Suppose ~A and ~«B are acute and construct the altitude CD,we
cliam that A-D-B. But if not, then either D-A-B or A-B-D. Suppose D-A-B and consider ADAC

C

D 4 B
Figure 1.12.6
Then the remote interior angle <CDA has measure 90°, which is greater than the measure of that exterior angle ZCAB ,
contradicting the theorem 1.12.1, assuming the A-B-D leads to a similar contradiction, proving the claim. Then by corollary
1.12.3, ADC =+6BDC = 0% Let us construct a rectangle from right triangle ABCD . By the congruence axioms, there is

a unique ray CX  with X on the opposite side of BC from D such that /CBD = /BCX , and there is a unique point E on
CX suchthat CE =BD

C , E_
T x h X
L :
A D B
Figure 1.12.7

Then ACBD = ABCE by SAS; therefore, ABCE is a right triangle with 6BCE =0° and right angle at E. also,
since mZDBC +m~BCD =90° | substituting corresponding parts gives m<ZEBC and m/BCD =90° and
m/DBC +mZEBC =90° . Furthermore, since alternate interior angles ~/EBC and £ZDBC are congruent ﬁ”ﬁ by

theorem 1.12.2. Therefore, B is an interior point of ZECD . By the same argument ﬁ”ﬁ and C is an interior point of

~EBD . Therefore, mZECD =mZEBD = 90° and OCDEB isa rectangle.

Theorem 1.12.6: If a rectangle exists, and then the angle sum of every triangle is 180°.

Proof: We first prove that every right triangle has angle sum 180°. Given a rectangle, we can use the Archimedian property
to lengthen or shorten the side and obtain a rectangle OAFBC with sides AC and BC of any prescribed length. Now given a

right triangle AECD , construct a rectangle DAFBC such that AC > DC and BC>EC . Thereisa unique point D on
AC and a unique pointe on BC such that AECD=AEC D as shown in figure 1.12.8
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A A
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Figure 1.12.8

We claim SABC =0°. If not, then 6ABC > 0° by corollary 1.12.2 and consequently mZABC + mZBAC < 90° .
But, MZCBF = m/ABC +m/ABF =90° and m/CAF =m/BAC +m/BAF =90°.

Therefore, MZABF =90° - m/ABC m/BAF =90° —-m/BAC so that
5ABF =180° —90° - m~ABF —m~/BAF

=90° - (90° —m~ABC) —(90° —m~BAC)

— m/ABC + m/BAC -90° < 0°

Contradicting the corollary 1.12.2 and proving the claim. Now by repeated application of corollary 1.12.3 we have
5BCD=0° and SECD=0°.But AECD=AECD implies SECD =0°. Thus, every right triangle has zero defects.

Now by the construction in theorem 1.12.5, an arbitrary triangle AABC can be appropriately labeled so that its altitude CD

lies in the interior of AABC and subdivides the triangle into two right triangles (see figure 1.12.9), each having zero defect.
Thus, 6ABC = 0° by corollary 1.12.3.

vy

Figure 1.12.9
Corollary 1.12.4: a rectangle exists if and only if every triangle has angle sum 180°
1.13. The Critical Function

In this subunit, we shall make heavy use of the incidence and separation theorems. Convenience, we briefly restate two of
them:
The postulate of pasch:

Given AABC and a line L (in the same plane). If L intersects AB ata point between A and B, then L also intersects
either AC or BC.

v
A L? \' l L? ?

Figure 1.13.1

The Crossbar Theorem: If D is in the interior of /BAC , then AD intersects BC .

Figure 1.13.2
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Given a line L and an external point P. let A be the foot of the perpendicular from P to L, and let B be any other point of L

(fig. 1.13.3). For each number r between 0 and 180 there is exactly one ray PD , with D on the same side of AP as B, such
that m£APD =r

Figure 1.13.3

Obviously, for some numbers r PD will intersect AB. (For example, take r=m£APB). For r>90, PD will not
intersect AB.Let K = {r: PD intersects ﬁ} Then K is nonempty, and has an upper bound. Therefore K has a supremum.
Let ry =sup K. Thenumber ry is called the critical number for P and AB.Theangle ~APD with measure equals 1)

is called the angle of parallelism of ABand P.
Theorem 1.13.1: If M£ZAPD =1y, then pp does not intersect AR .

Proof: Suppose that PD intersect AB atQ.

Figure 1.13.4

If R is any point such that A-Q-R, then MZAPD > 1y sothat Iy is notan upper bound.
Theorem 1.13.2: If m£ZAPD <1y then PD intersects AB.

Figure 1.13.5

Proof: Since rp =supK and mZAPD <1, it follows that mZAPD not an upper bound of K. therefore, some r in K is

greater than mZAPD . Let D be such that MZAPD =r.Then PD intersects AB in a point of F. but PD isin the
interior of ZAPD . Therefore by the crossbar theorem PD intersects AF . Therefore PD intersects AB. Thus there is a
certain “critical ray” PD , with mZAPD =ry; PD doesnotintersects AB.Butif Fisintheinteriorof ~APD,then PF

does not intersect AB . (if F is in the interior of ~APD , we shall say that AF s an interior ray of ~APD)

A \ \ T~
Figure 1.13.6

Note that ry was defined in terms of P, A and B. It turns out, however, that ry depends only on the distance AP.
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Theorem 1.13.3: Let P, A, B and also P', A', B be as in the definition of the critical number. If AP = A'P', then the
critical numbers rg and r'O are the same

a
},G

1

A B Q>

Proof: Let K :{r:ﬁ..intersects...ﬁ} and let K ={r: P'D'..intersects...A'B'}. If reK, letQ be the point where

PD intersects AB, and let Q' be the point of E for which A'Q' =AQ. Then mZAPD =r (why?) Therefore

reK Thus KcK'; and similary K =K . Therefore K=K . And supK =supK . We now have a function
AP — 1. We shall denote this function by ¢, and call it the critical function. Thus, for every a > 0, c(a) denotes the critical

number corresponding to AP=a. thus PD intersects AB when m/APD < c(a), but PD does notintersects AB when
mZAPD > c(a)

c(a)’

A B 2~

Figure 1.13.8
we shall now investigate the function c.
1.14. Open Triangle and Critically Parallel Rays

Given rays AB : PD , and the segment AP , ho two of these figure being collinear. Suppose that B and D are on the same
side of AP, andthat AB//PD.
Then PDUPAU AB s called an open triangle, and is denoted by ADPAB .
P D

—

A B

Figure 1.14.1

Here, when we write AB//PD , Wwe mean that the lines are parallel in the usual sense of not intersecting one another.
Suppose now that ADPAB is an open triangle and every interior ray of ~APD intersects AB:
P D

—

B

’ N\

Figure 1.14.2

We then say tf that PD is crltlcally parallel to AB , and we write PD / AB. Here the single vertical stroke is supposed to
suggest that PD is parallel to AB, which no room to spare.
Note that PD and AB do not appear symmetrlcally in this definition. Thus if PD/ AB it does not immediately follow

that AB/PD . Note also that the relation PD /AB (as we have defined it) depends not only on the “directions” of the two
rays, but also on the initial points.



122 Kassahun Tesfaye Agzew: Fundamental Concepts of Geometry

Figure 1.14.3

Thus if PD/AB (as we have defined it) depends not only on the initial points. Thus if PD/AB , we cannot conclude

immediate that P D/AB. We shall see, however, in the next few theorems, that the conclusion is true.
Theorem 1.14.1: If ﬁ|ﬁ , and C-P-D, then Cﬁ|ﬁ

C P

A B

Figure 1.14.4

Proof: Let CE be an interior ray of ZACD, and suppose that CE does not intersect AB. By the exterior angle
theorem, we know that ZAPD > ZACD . Therefore, there is an interior ray PF of ~APD such that /DPF = /DCE .
Therefore ﬁ”ﬁ Therefore, PF does not intersect ﬁ, because these rays lie on opposite sides of CE . This

contradicts the hypothesis ﬁ|ﬁ .
Theorem 1.14.2: If ﬁ|ﬁ ,and P-C-D, then CD|AB

Figure 1.14.5

We give the proof briefly. Suppose that there is an interior ray CE of ZACD such that CE does not intersect AB.

Let F be any point of CE -C, and take G so that P-F-G. Then
1. Fis in the interior of ZAPC

2. PF does not intersect AB
3 PG does not intersect AB
4. PF does not intersect AB
Statement (1) and (4) contradict the hypothesis PD|AB .

Two rays R and R are called equivalent if one of them contains the other. We then write R ~ R. Obviously the
symbol ~ represents an equivalence relation. Fitting together the preceding two theorems, we get:

Theorem 1.14.3: If R|ﬁ,and R and R are equivalent, then R"E.Somewhat easier proofs show that the relation
ﬁ|ﬁ depends only on the equivalence class of AB . We leave these proofs to you.
Theorem 1.14.4: If Ry|R,, Ri~R, and Ry~ R, then R'l‘R'2

Given ﬁ|ﬁ , let C be the foot of the perpendicular from P to AB ,and let PC=a
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Figure 1.14.6

Then ﬁ|@ (providing, of course, that B is chosen so that A-C-B, as in the fig.). Therefore m~ZCPD =C(a). Now on

the side of PC that contains B there is only one ray PD for which mZCPD = C(a) . Thus we have:

Theorem 1.14.5: The critical parallel to the given ray, through a give external point, is unique. Two open triangles are
called equivalent if the rays that from their sides are equivalent. An open triangle ADPAB is called isosceles if /P = <A

P
D

B
Figure 1.14.7

Theorem 1.14.6: If PD|AB, then ADPAB is equivalent to an isosceles open triangle which has P as a vertex.

Figure 1.14.8

Proof: Since PD|AB, the bisecting ray of ~APD intersects AB ina point Q. By the crossbar theorem, the bisecting

ray of ~<PAB intersects % atapointR. let S, T, and U be the feet of the perpendicular from R to ﬁ, AB and AP.
Then RU=RT and RU =RS . Therefore RS=RT and ZRST = /RTS . Hence (by addition or subtraction)
/DST = /BTS and ADSTB is isosceles. To make P a vertex, we take V on the ray opposite to ﬁ,such that TV=SP.

P 3

Vo7

Figure 1.14.9

Theorem 1.14.7: Critical parallelism is a symmetric relation. That is, if ﬁ|ﬁ ,then AB|PD
Proof: By theorem 1.14.4 and 1.14.6, we may suppose that ADPAB is an isosceles open triangle:

P D Sl

P T ————
F! DES

N mE T

A B Q

Figure 1.14.10

-
~
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Let AE be any interior ray of ~PAB. Let PF be an interior ray of #~/APD, such that ~DPF = ~BAE . Then PF

intersects AB at a point Q. It follow that AE intersect PD at the point S where PS=AQ.
Theorem 1.14.8: If two nonequivalent rays are critically parallel to a third ray, then they are critically parallel to each
other.

Restatement: If ﬁ|@ @|ﬁ,and AB and EF are not equivalent, then AB|EF .

1. Suppose that AB and EF lieon opposite sides of CD.Then AE intersects CD , and by theorem 1.14.4 we can
assume that the point of intersection is C.

Figure 1.14.11

Let AG be any interior ray of ~EAB.Then AG intersects CD at appoint H. take I so that C-H-1 and take J so that
A-H-J. Then HI|EF , by theorem 1.14.4; and HJ s an interior ray of ~EHI . Therefore HJ intersects EF at appoint

K. therefore AG intersects ﬁ,which was to be proved.
2. If CD and EF are on opposite sides of ﬁ, then the same conclusion follows. Here we may suppose that

ABNEC = A, for the same reasons as in the first case. Through E there is exactly one ray EF critically parallel to

AB, by the result in case (1), EF |CD . Since critical parallels are unique EF =EF and EF|AB , which was to be

proved.
c D
/ = .
A
%

E
Figure 1.14.12
Given three nonintersecting lines, it can easily happen that every two of them are on the same side the third. Therefore the

conditions ﬁ”ﬁ ﬁ"ﬁ are not enough for our purpose; to get a valid proof, we need to use the full force of the

hypothesis AB"@ Cf|§ . We shall show, under these conditions, that

3. Some lines intersects all three of the ray AB, CD, EF. (surely this will be enough)
c D H

Figure 1.14.13

If A and E are opposite sides of CD , then AE intersects CD , and (3) follows. Suppose, then that
a. AandE are onthe same sidesof CD . If A and D are on the same side of EC ,then CA isan interior ray of /C ,so

that CA intersects ﬁ, and (3) follows. If A lieson CE then (3) holds. We may therefore suppose that.
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b. A and D are on opposite sides of CE . Therefore AD intersects CE at a point G. take H so that C-D-H. Then
DH|AB . By the exterior angle theorem ~HDA > ~C . Therefore there is an interior ray DI of ~HDA such that

ZHDI = /C . Then DI|CE but DI intersect AB at a point J. Now CE intersects AD at G. therefore CE

intersects another sides of AADJ . Since CE does not intersect DJ, CE intersect AJ at a point K. now (3)

follows; the line that we wanted is CE .
Exercises
By the interior of an open triangle ADPAB , we mean the intersection of the interiorsof ~P and ~A. Ifaline intersects
the interior of an open triangle, does it follow that the line intersects one of the sides? Why or why not?

1. The same question, for the case where PD|AB

2. In a Euclidean plane, if a line intersects the interior of an angle, does it follow that the line intersects the angle?

2. Euclidean Geometry

Though in schools most students learn plane geometry/Euclidean geometry, there are actual many different types. These
different types were developed by other mathematicians who developed theories and research that may have contradicted the
work of other. But, here our concern is Euclidean geometry which is based on rules called postulates as stated below. It is
different from other geometries, such as absolute/neutral geometry, hyperbolic geometry, elliptic geometry and the like
where no parallel lines exist, because of the parallel postulate. E of

Euclid’s Axioms of geometry: The Euclidean geometry is based on the following postulates

Postulate 1: We can draw a unique line segment between any two points.

Postulate 2: Any line segment can be continued indefinitely.

Postulate 3: A circle of any radius and any center can be drawn.

Postulate 4: Any two right angles are congruent.

Postulate 5: Let [ and m be two lines cut by a transversal in such a way that the sum of the measures of the two interior
angles on one side of ¢ less than 180. Then [ and m intersect on that side t.

2.1. Euclidean Parallel Postulate and Some Consequences

The parallel postulate was the most controversial of Euclid’s postulate for geometry. Many mathematicians felt that it
should be possible to deduce the parallel postulate from Euclid’s other postulates. It was later proved to be impossible to
deduce the parallel postulate from the other postulates, efforts to do so led the invention of various non-Euclidean geometries
in which the parallel postulate is violated. Here below it will be given the statement of Euclidean parallel postulate and some
of its consequences.

Definition 2.1.1: Two distinct lines are parallel if they have no points in common. We also say that any line is parallel to
itself.

The word parallel simply means that two lines have no points in common. It doesn’t say anything about being in the same
direction, or being equidistance from each other, or anything else.

Euclidean parallel postulate: For every line [ and for every point P that does not lies on ¢ there is exactly one line

AB suchthatPison @ and & . The parallel postulate in its equivalent form:

[P](Play fair’s Axiom): For each point P and each line [ , there exist at most one line through P parallel to [. Indeed, in
Euclid’s development of geometry; this is not an Axiom, but, a theorem that can be proved from the axioms. However, some
mathematicians like to take the statement [P] as an axiom instead of using Euclid’s parallel postulate. As a result, it is very
important to explain in what sense we can say that Euclid’s parallel postulate is equivalent to fair’s play axiom. Since the
parallel postulate plays such a special rule in Euclid’s geometry, let us make a special point of being aware when we use this
postulate, and which theorems are dependent on its use. Let us recall neutral geometry the collection of all postulates and
common notations except parallel postulate together with all theorems that can be proved without using parallel postulate. If
we take neutral geometry, and add back the parallel postulate, then we recover the ordinary Euclidean geometry and we can
prove [P] as a theorem.

Euclid has proved, using the parallel postulate, that the angle sum in triangle is always two right angles. This property of
triangles is equivalent to the parallel postulate, that is one can also prove that the converse implication, that if the angle sum is
assumed to be two right angles, then the parallel postulate follows. Thus, proving the parallel postulate is equivalent to
proving the angle theorem.

Theorem 2.1.1: Given two lines and a transversal. If the lines are parallel, then each pair of alternate interior angles are
congruent.
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Figure 2.1.1

Proof: There is exactly one line L'1 through P, for which the alternate interior angles are congruent, and by theorem in
chapter one, we have L'1‘|L2 . Since there is only one such parallel line, we have L'l =L, . Therefore, ~1= .2 thiswas to

be proved.

The proof of the following theorem is entirely analogous.

Theorem 2.1.2: Given two lines and a transversal. If the lines are parallel, then each pair of corresponding angles is
congruent. The inequality mZA+m«B+m/C <180 now becomes an equation.

Theorem 2.1.3: In any triangle AABC we have mZA+m«£B+m~«C =180.

D 3 E

(]
—_

Figure 2.1.2

Proof: let L be the parallel to AC through B. Let D and E be points of L such that D-B-E and such that D and A are on the

same side of BC . Then m/2+m./B=m/DBC and mZDBC +m/1=180° Therefore, m£1+m«B+m<2=180. By
theorem 2.1.1 m/A=m«C and; ms£2=m/A; Therefore mZA+m/B+m«C =180. This was to be proved.

Theorem 2.1.4: The acute angles of a right triangle are complementary.

Theorem 2.1.5: Every Saccheri quadrilateral is a rectangle.

Figure 2.1.3

Proof: By theorem 2.1.1 ms1l=m/2 . Since AB=DC and AC=AC, it follows that ABAC = ADCA . Therefore,
ms/B = m«D, is aright angle. The proof that ~#C is a right angle is obtained merely by permuting the notations. Thus we
have finally shown that rectangles exist. Note that in this proof we are using a figure to explain the notation. If the reader (or
the writer) sees no other way to explain, say, the idea of alternate interior angles, then it is worthwhile to fight our way
through the problem as we did in the previous chapter. But once we done this, we have earned the right to speak in the
abbreviated language of pictures. A quadrilateral is a trapezoid if at least one pair of opposite sides are parallel ( It is
sometimes required that the other pair of sides be nonparallel, but this is artificial, just as it would be artificial to require that
an isosceles triangle be nonequidrilateral ). If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral
is a parallelogram. If two adjacent sides of a parallelogram are congruent, then the quadrilateral is rhombus. The proofs of the
following theorems are omitted. (They are not much harder to write than to read.)

2.2. Equivalent Form of the Euclidean Parallel Postulate

In this section we consider some statements that are equivalent to Euclid’s parallel postulate. When says that two
statements are equivalent in this sense we mean that if we add either statement to the axioms of neutral Geometry, we can
prove the other statement. It does not mean that the two statements are precisely logically equivalent.

Euclidean parallel postulate: For every line ¢ and for every point P that does not lie on ¢ there is exactly one line m

suchthat Pem and m||(.
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Equivalent Axiom (Euclid’s Fifth Postulate)

Let ¢ and m be two lines cut by a transversal in such a way that the sum of the measures of the two interior angles on
one side of t is less than 180. Then ¢ and m intersect on that side of t.

Euclid’s Fifth postulates states that if a+ £ <180, then ¢ intersects m at a point C that is on the same of t as « and

B
. t
i \a
NN .
Y < ¢
5 &
n m/\B

Figure 2.2.1

Proof: (Euclid’s fifth postulate is equivalent to the Euclidean Parallel Postulate)
(=) [The Euclidean Parallel Postulate = Euclid’s fifth postulate]

Let [,m,t,a, 8 be as indicated in figure 2.1, i.e, construct the lines [,m and n as shown; then «+ 3 <180. There is a
line n through B such that ¥+ =180 (by the protractor postulate). By the linear pair theorem, then ¢+ =180 and
y+5=180.

Hence, a+¢&=180—-5+180—y =360—(5+y) =360—180 =180........ccc0eerrurrrrunes *

Thus, both pairs of non-alternating interior angles formed by t sum to 180. By assumption «+ <180 substituting
equation (*) gives 180—¢+3<180, f<e¢. Inparticular, since g#¢,then m=n.Since §=180-y=a, n||£ (alternate

interior angle theorem). Since m = n this means m is not parallel to ¢ (this is because we are assuming the Euclidean
parallel postulate, that there is only one line through B that is parallel to ¢ ). Since m is not parallel to ¢, they intersect at
a point C, and there must be such a point C on the same side of ¢ as the angles o and f. This is Euclid’s fifth postulate.

(<) [Euclid’s fifth postulate = Euclidean parallel postulate]
See proof that Euclid’s fifth postulate implies the Euclidean parallel postulate.

t
m Q /_.__-—-—"'
¥

B
n e
l g,—— a

7 p

Figure 2.2.2

Assume Euclid’s fifth postulate. Let ¢ be aline and P be a point such that p ¢ (. Drop a perpendicular line fromPto ¢,
and all the foot of the line Q. Construct m through P such that m L PQ . By the alternate interior angles theorem, f||m

Assumer n=m is a second line through P such that ¢||n. Then PQ s a transversal to n and ¢. Since, n=m the
interior angles ¥ #90 and &=90. Since, they form a linear pair ¥ +J =90. Hence one of y, & is less than 90 and
another is greater than 90. By Euclid’s fifth postulate, lines n and ¢ meet on whichever side of PQ the smaller of angles

y and ¢ lies. Thus, n is not parallel to ¢. Hence there is only one line through P that is parallel to ¢. Hence, the
Euclidean parallel postulate follows from Euclid’s fifth postulate.

2.3. The Euclidean Parallel Projections

We know that the perpendicular from a point to a line always exists and is unique. Furthermore, the parallel projection
theorem is one consequence of Euclidean Parallel Postulate. We will discuss the general notion of parallel projection in plane
as follows. And we also show that parallel projection preserves betweens, congruence and ratios, let us first consider the
special case indicated in the following figure, and treated in next the theorem.

Theorem 2.3.1: Every parallel projection is a one-to-one correspondence.

Proof: Given f:L—>L the projection of L onto L in the direction T (see figure 2.3.1). Let g be the projection L onto
L in the direction of T. Obviously g reverses the action of L. that is if P = g(P'), then P = f(p).: L — L. Therefore f
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is a one-to-one correspondence Lol , which was to be proved (another way of putting it is to say that every point P of
L is equal f(P) for one and only one point P of L.)

z
/ ,

’

L TF

Figure 2.3.1

Theorem 2.3.2: Parallel projection preserve betweeness.
Restatement: Let f:L—>L bea parallel projection. If P-Q-R on L, then P —Q' ~R on L

,r ’ ! L
’ ’
p ./ ’ R,
’
7 / 7
/! 7 7
/ 4 4
/ ’
P2 Qy R, L
’ 7 /
s /
’ 4 /
LAY
J P /Tq f Tr
¥ /
Figure 2.3.2

Here, of course P = f(P), Q' = f(Q)and R = f(R)

Proof: Let Tp, To, Tr be as in the definition of a parallel projection, so that Tp ||TQ ||TR. Then R and R are on the same

side of Tq, because RR  does not intersect Tg - Similarly, P and P are on the same side of To- But P and R are on

opposite sides of T , because P-Q-R, and P and R areon opposite sides of Tg . Therefore, PR intersects Tg ina

point X. since Tq # L, there is only one such point of intersection. Therefore, X :Q'. Therefore, Q' lieson PR , and

P —Q —R’, which was to be proved.

2.4. Basic Similarity Theorem

Here we will revise the preliminary notions that could be used in this section like ration and proportion while we study
similarity of triangles.

Definition 2.4.1: - A comparison of the magnitudes of two quantities of the same kind in the same unit is called a ratio. It
is usually expressed as quotient of two numbers. For instance, if we are given lengths of two line segments as AB =16cm

and DC = 7cm , then the ratio of their lengths is 16:7.
Definition 2.4.2: - Any equality of two ratios is called a proportion.
Remark:

v" A proportion is usually expressed as % =§ or a:b=c:d

. a c . L
v" The constant ratio k = Pl is called the proportionality constant

(Common values of each ratio)

o b . . .
v"If three quantities a,b,c are such that, :E then b is called a mean proportional between a and c. Thus, if

o |

b is the mean proportional between a and c, then b% =ac.
Ratio of segment of a line: Let p be a point on the line segment AB.

If A—P—B,then AB issaid to be divided internally at p inthe ratio AP:PB.
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-

A P B
Figure 2.4.1

If P~-A-B or A-B-P, then AB is said to be divided externally at p in the ratio AP:PB (See figure below ii
and iii)

P A B A B P
ii i
Theorem 2.4.1: If a line parallel to one side of a triangle intersects the other two sides (at points that divides the sides

internally), then it divides each of these sides in segments which are proportional.
Let us investigate some important proportions that can be deduced from this theorem.

In figure 2.4.2. Let DE|| BC . Then it follows that

................................ 1
DB EC @
A
D E
B C
Figure 2.4.3
AD AE AD AE AD+DB AE+EC
But —=—¢& —+1l=—+1< =
DB EC DB EC DB EC
AB AC
S s (2)
DB EC
Also f - " %_E®1+§_1+E©AD+DB_AE+EC
so from (1), it follows that D AE AD AE AD AE
o B A e ®
AD AE
Theorem 2.4.2: (Basic Similarity theorem)
If 1;,I, and Iy are three parallel lines, with common transversal m and n, then % :%
A {\ D ’,
2 ‘\‘ E £ 3
X -
/AN P,
/
Figure 2.4.4
. . BC EF
Here I;,I; and I3 are parallel lines, with common transversal M and n.We want to prove that E:E
Proof: Let M andn be transversalsto ly,l,, I3, where Iy |15 15.
AB_DE
To show that BC EE (see figure below)
. . . AB AX . .
Join A with F and apply the above theorem in AACF and AFDA,toget — =—— and = = FE (Xis the point of
BC XF XA ED

intersection of AF and |,)
XF _FX FE_EF _ AX DE

_———- e = =
BUt AX XA ED DE _XF EF
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. AB DE

"BC EF

NOTE: The theorem stated above is one of the basic theorems in proving similarity of two triangles.

Theorem 2.4.3: if M and N are two points on sides Xy and X7 of AXYZ, respectively such that MN ||ﬁ, then

XM _MN XN

XY Yz XZ
¢ By th 3 wehave M _XN
Proof: By theorem 3, we have Y Xz
X
M N
Y /D Z
Figure 2.4.5

Now since N is not on the XY , there exists a unique line | through N parallel to XY . Let this line intersect yz at O

Xz Yz
see the above figure) then by theorem (1) —=—
( gure) y D N "o
XN QY ~vEENTV
is —=— OY =NM ?
That is X7 - Y7 But (why?).
XN _MN
Hence, X7 vz
heretore. ML ZMN _ XN
erefore, ~ " =7 T %7
. . . — — AD AE
Theorem 2.4.4: If points D and E are respectively on sides AB and AC of AABC such that B AC then
DE||BC.

Figure 2.4.6

Proof: Suppose DE is not parallel to BC . Then by parallel axiom there exists a point F on AC different from E such

— == AD AF
that DF || BC . Hence — =—— by theorem (1)
AB AC
But from the hypothesis of the theorem we have % = Q—E . Thus Q—E _AE and hence AF=AE. This in turn implies

AF = E, contrary to axiom of segment construction as F = E . Therefore the supposition DE s not parallel to BC is
wrong.

Consequently DE ||BC

2.5. Similarities between Triangles

We will discuss the mathematical notion of similarity which describes the idea of change of scale that is found in such
forms as map making, perspective drawing, photographical enlargement and indirect measurement of distance. In this section
we will mainly discuss some important theorem that could be used to prove similarity of triangles. The proofs of similarity
theorem are based on the use of basic similarity theorem. Recall from high school that geometric figures are similar when
they have the same shape, but not necessary same size.

Definition 2.5.1: Two triangles AABC and ADEF are said to be similar, written as
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AABC ~ ADEF if and only if
i. All three parts of corresponding angles are congruent
ii. Lengths of all three pairs of corresponding sides are proportional.
Note: To establish similarity of triangles, however, it is not necessary to establish congruence of all pairs of angles and
proportionality of all pairs of sides. It also important to note that triangle similarity do require Euclid’s parallel postulate.
Note:
1) If AABC issimilarto ADEF , we denote this by AABC ~ ADEF .
2) Similar triangles should always be named in such way that so that the order of the letters indicates the correspondence
between the two triangles.
3) AABC ~ ADEF if and only if
/A=/D, /B=/E, /C=/F, and
AB BC CA
. DE EF FD
4) The common value of each ratio in (ii) is called proportionality constant.
5) Intuitively speaking, two triangles are similar if they have the same shape, although not necessary the same size. It
looks as if the shape ought to be determined by the angles alone, and this is true.
Theorem 2.5.1: The AAA similarity theorem.
Given a correspondence between two triangles. If correspondence angles are congruent, then the correspondence is a
similarity.
Restatement: Given AABC = ApEgF and correspondence ABC <> DEF
IF Z/Az/D, /B=z/E, /C=/F, then AABC ~ADEF

Proof: Let E and F be points of AB and AC as shown in figure
By SAS, we have AABC = ADEF,

Therefore /AE'F ~ «E Since ZB=~/E, wehave ,AE'F =~ B;thus EF ||BC andA, F',C

Correspond to A, E, and B under parallel projection.

. . . AE AF

Since parallel projection preserves ratios, we have —— = ——

AB AC

A
f [
f €
B C E P F
Figure 2.5.1
In exactly the safne, merely changing the notations, we can show that % = %

Therefore, i = E = E
C BC AB

Hence, corresponding angles are congruent and corresponding sides are proportional. By definition, AABC ~ ADEF

Theorem 2.5.2: AA similarity theorem

If two angles of one triangle are congruent to the corresponding two angles of another triangle, the triangles are similar.

Proof: Let AABC and AXYZ be two triangles such that £A=«X and «ZB=.ZY . we need to show that
AABC ~ AXYZ . Since ZA=/X and ZB=/Y ,then ZC=/Z (why?). So it remains to show that the corresponding
sides are proportional.

A X

B c Y Z
Figure 2.5.2
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If AB=XY,then AABC ~AXYZ (why?)
If £.C=42Z, AB = XY , then either AB < XY or XY < AB.Without loss of generality assume that XY < AB. Then
there exists a point D on AB such that A-D-B and AD = XY . By axiom of angle construction there exists a point F on the
half plane determined by AB containing C such that ~ADF = /XTZ
A

Figure 2.5.3

Since £ABC=/XTZ  ZADF = ZABC py transitivity. Hence DF [|BC (why?)
Sinceray DE does not pass through the vertices of AABC and does not intersect BC , it must intersect AC at some

point E. Thus, AADE =AXYZ by ASA. Hence AD= XY, DE=YZ, and EA=Z7X . But DF||BC as Ee<DF and

DF||BC.
XY _yz _2z«X

|t then follows from theorem (3) that this in turn implies — = = .
AB BC CA

Therefore AABC ~ AXYZ

Theorem 2.5.3: SAS similarity theorem
Given a correspondence between two triangles. If two pairs of corresponding sides are proportional, and the included

angles are congruent, then the correspondence is a similarity.
AB AC

Proof: Given two triangles AABC and APQR suchthat ~A=_~P and%_ﬁ.
A p
B cQ R

Figure 2.5.4

To show that AABE ~ APQR . Since it is given that <A = 2P, it is sufficient to show that £B=ZQ. Let D and E be
two points on AB and AC respectively such that AD =PQ and AE=PR (this is possible by axiom of segment

A
P
B c Q@ R

construction).
Then AADE = APQR by SAS

Hence ZADE = /PQR

Figure 2.5.5
AB _AC AD=PQ and AE=PR itfollow that ﬁ=A—C,
AD AE

From —=—,
PQ PR

Thus, DE||BC by theorem (4) and hence <ADE = ZABC
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SO ZADE = ZPQR by transitivity therefore AABC ~APQR by AA similarity as #A= /P and £B=2Q

Theorem 2.5.4: The SSS similarity theorem

If two triangles are such that the corresponding sides are proportional, then the two triangles are similar.

Proof: Left for reader.

Theorem 2.5.5: The bisectors of an angle of a triangle divide the opposite side into segments which are proportional to the
adjacent sides.

Restatement: If in AABC, AD is the bisector of /BAC where D is point on % then E:E

AC CD
Proof: Left as exercise.
Theorem 2.5.6: If an external bisector of an angle of a triangle intersects the line containing the opposite side, then the
point of intersection divides the opposite side externally into segment whish are proportional to the adjacent sides.
Proof:

Figure 2.5.6

Let the external bisector of angle ~X of AXyz intersect the opposite side YZ at W (externally).

Draw aline | through W parallelto XZ.Then |and XY are not parallel (why?). So they intersect at some point, say T.
LZXW = ZTWX Since they are alternate interior angles.

Also, ZZXW = /TXW sowe have ZTXW = ZTWX by transitivity. Thus, XT=TW.

Since XZ||TW, we have AL L T (1)
Wz TX TW
From AYTW -« AYxz it follow that M:E:M,Which implies that ﬂ:ﬁ ........ )
YZ TX XZ T™W XZ

YW  YX .
From (1) and (2) we conclude that Wz Xz this completes the proof.

Example: Let BE and DC are angle bisectors of ZCBF and £ACB respectively. If AD=21cm, AC=30cm, and
BC=20cm, then find DB and EC.

Figure 2.5.7
_ N
Solution: Since CD is the bisector of AC B, AC _AD (why?)
BC DB
. DB= ADx BC _ 21x20 _14
AC 30
. o= . . AB AE
Since BE is the external bisector of angle ~B of AABC, e EC (why?).
Thus 35 _30+EC ;
20 EC
. EC =40

Theorem 2.5.7: In aright triangle, if an altitude is drawn to the hypotenuse, then

I. The triangle is divided into two similar right triangles and which are also similar to each other.

I1. The altitude is the mean proportional between the segments of the hypotenuse.

I11. Either leg is the mean proportional between the hypotenuse and the segment of the hypotenuse adjacent to the leg.
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Proof: Let AABC be a right triangle with right angle at C and CD be altitude to the hypotenuse AB.

A

Figure 2.5.8

i) Then «ACD and ZCBD are congruent as they are complements of the same angle ZCAB. similarly
ZCAD = /BCD . Thus AABC ~ AACD and AABC -~ ACBD by AA.Then AACD -~ ACBD

ii) From AACD ~ ACBD, it follow that, % = % . Thatis CD? = AD.BD

iii) From AABC ~ ZACD it follows that, ﬁ :£
C AD
That is AC? = AB.AD . From AABC ~ ZCBD, we have % = E_([:) .

Thatis BD? = AB.BD

2.6. Pythagorean Theorem

In mathematics, the Pythagorean Theorem is a relation in Euclidean geometry among the three sides of a right triangle
(right-angle triangle)

In terms of areas, it states that in any right triangle, the area of the square whose side is the hypotenuse (the side opposite
the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right
angle).

Euclid’s version of Pythagorean Theorem: The sum of the areas of the squares on the legs (a, b) equals the area of the
square on the hypotenuse(c).

The theorem can be written as an equation relating the length of the sides a, b, and ¢ often called the Pythagorean equation
a® +b% =c? where c represents the length of the hypotenuse, and a, b represent the lengths of the other two sides.

These two formulations show two fundamental aspects of this theorem: it is both a statement about areas and about lengths.
The Pythagorean Theorem has been modified to apply outside its original domain. A number of these generations are found in
more advanced mathematics courses including extension to many-dimensional Euclidean spaces, to spaces that are not
Euclidean, to objects that are not right triangles, and indeed, to objects that are not triangles at all, but n-dimension solids.

Theorem 2.6.1: (Pythagorean Theorem)

Let AABC be aright triangle with right angle at vertex C. The square of the hypotenuse of a right triangle is equal to the
sum of the square of the other two sides.

Figure 2.6.1

Proof: Let AABC be aright triangle with right angle at C. To show that BC2+ AC? = AB?. Drawaltitude CDto AB.
Then from theorem (2.4.1) (iii) we have

AC? +BC? = (AB).(AD) + (AB).(BD)
= AB(AD + BD)
=AB.AB As A-D-B
- AB? =BC? + AC?
Theorem 2.6.2: (Converse of Pythagorean Theorem)
If a®2+b%=c?, then Zc isa right angle.
Proof:
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Figure 2.6.2

2

We are given with a® +b% =c®. Constructa right angle at point Fon rays FG and FH.

Define point E e FH such that FE=a, and define point D e FG such that FD =b. Then ADEF is a right triangle

By the Pythagorean Theorem f2=d?+e? =a’+b? =c?. Thismeanthat f=c and hence by SSS. AABC = ADEF.
Hence £C =ZF =90.

Definition 2.6.1 (Trigonometry)

Let AABC be a right triangle with right angle at vertex C, and let @ = ZCAB . Then if 6 is a acute, we define

sin@:% and cos&:%. If @ is obtuse, then let 0 =180-6 and define sin@=sin® and cosé =cosé

Also, define sin0=0 and cos0=1; sin90=21and cos90=0

Theorem 2.6.3: (Pythagorean identity)

sin 0+ cos? =1

Proof: Exercise

Theorem 2.6.4: (law of Sines)

Let AABC be any triangle with sides a, b, c opposite vertices A, B, C. Then a b ¢

sin ZA B sin ZB - sinZC

Proof: Exercise
Theorem 2.6.5: (Law of cosines)
Let AABC be any triangle with sides a, b, c opposite vertices A, B, C. Then

c? =a® +b% —2abcos £C

Proof: Exercise

Euclid, of Course, did not state the Pythagorean Theorem in terms of the sum of the squares of the edges; to do so would
have required algebra, which was not invented for another thousand years after Euclid. Instead, the theorem was expressed in
terms of area.

Theorem 2.6.6: (Euclid’s version of the Pythagorean Theorem)

The area of the square on the hypotenuse of a right triangle is equal to the sum of the squares on the legs.

Theorem 2.6.7: In any triangle, the product of a base and the corresponding altitude is independent of the choice of the
base.

Restatement: Given AABC. Let AD be the altitude from Ato BC and let BE be the altitude from Bto AC . Then
AD.BC =BE.AC

»
3]

P
7
7
e

Figure 2.6.3

Proof: Suppose that E=C and D =C, as shown in the figure. Then ~D=~E and ABEC = AADC, because both
are right angles Therefore ABEC ~ AADC
Hence BE,BC ~ AD, AC. Thus % = % and AD.BC =BE.AC which was to be proved.

If E=C, then AABC is a right triangle with its right angle C and we also have D=C.
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E=C a B
Figure 2.6.4

Theorem 2.6.8: For similar triangles, the ratio of any two corresponding altitudes is equal to the ratio of any two
corresponding sides.

Restatement: Suppose that AABC ~AABC . Let h be the altitude from A to BC, and let h' be the altitude from

A to BC .Then 1= AB
h AB
Proof:

A A

| |

In /\
| |

t Il

D B C D B C
Figure 2.6.5

Let AD and AD be the altitudes whose lengthsare h and h.If D=B ,then D =B, and there is nothing to prove.

If not, AABD ~AAB'D  and the theorem follows.
Theorem 2.6.9: The area of a right triangle is half the product of the length of its legs.
Proof:

Figure 2.6.6

Given AABD, with the right angle at C. Let D be the point such that ADBC is a rectangle.
By the additivity postulate, area (0 ADBC ) = area(AABC) + area(AABD)
By the rectangle formula, area (o ADBC) =ab

Therefore 2area(AABC) =ab and area

Theorem 2.6.10: The area of the triangle is half the product of any base and the corresponding altitude.

area(AABC) = % ab

B B B
h | |
I n ho |l
| |
ai jm i
AD b C A D c D A C
Figure 2.6.7

Proof: Given AABC. Let D be the foot of the perpendicular from B to AC ; let AC=b and let BD=h (as in each of the
figures).
There are essentially, three cases to consider.

1. If A=D, then AABC isthe right triangle and ABC =%bh , by theorem 1.
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2. A-D-C. Let AD=Db and DC =h,. by theorem 1, BDA= %blh, BDC = %bzh.
By the additivity postulate AABC = ABDA+ABDC

Therefore ABC = %blh +%b2h :%(bl +by)h = %bh, this was to be proved
3.D-A-C.let b = AD by theorem () Area(ABDC) :%(b' +b)h.

Also, by theorem Area(ABDA) = %(b' +b)h.
By the additivity postulate AABC = ABDA+ ABDC
Therefore, ABC = BDC —BDA= %(b' +b)h— %b'h = %bh this was to be proved

Theorem 2.6.11: If two triangles have the same altitude, then the ratio of their areas is equal to the ratio of their bases.
This theorem follows immediately from the area formula. If the triangles AABC and ADEF have bases by,b, and the

1
asc_ ™" by

2 this was to be proved. In the same way, we get the
27

corresponding altitude for each of them is h, then

following theorem.

Theorem 2.6.12: If two triangles have the same base, then the ratio of their areas is the ratio of their corresponding
altitudes. The next theorem is a corollary of each preceding theorems.

Theorem 2.6.13: If two triangles have the same base and the same altitude, then they have the same area.

Figure 2.6.8

Theorem 2.6.14: If two triangles are similar, then the ratio of their areas is the square of the ratio of any two corresponding

2
sides. That is if AABC ~ ADEF, then A;.C: a
DEF

b
Proof: if the altitude to AC=DF are h and h', as in the above figure , then we know from theorem()that
h a b c
hode f
1
2

2
[%j which was to be proved
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3. Hyperbolic Geometry

Introduction

Until the 19"century the Euclidean Geometry was the only known system of geometry which concerned with measurement,
concepts of congruence, parallelism and perpendicularity. Then early in that century, a new system dealing with the same
concepts was discovered. This new system was called Non-Euclidean System which contained theorems that disagreed with
the Euclidean Theorems. For instance, hyperbolic geometry, and elliptic geometry are some examples of Non-Euclidean
Geometry.

Non-Euclidean Geometry is not Euclidean Geometry. The term is usually applied only to the special geometries that are
obtained by negating the parallel postulate, but, keeping the same the other axioms of Euclidean Geometry.

Since the first 28 postulates of Euclid's Elements do not use parallel postulate, then these results will also be valid in our



138 Kassahun Tesfaye Agzew: Fundamental Concepts of Geometry

first example of non-Euclidean Geometry called hyperbolic geometry.

Remember that one of Euclid's unstated assumptions was that lines are infinite. This will not be the case in our other
version of Euclidean Geometry called elliptic geometry and so not all 28 propositions will hold there (for example, in elliptic
geometry the sum of the angles of a triangle is always more than two right angles and two of the angles together can be greater
than two right angles, contradicting proposition 17).

Hyperbolic geometry is the geometry you get by assuming all the postulates of Euclid, except the fifth one, which replaced
by its negation.

3.1. The Poincare Model

In this section we shall assume that there is a mathematical system satisfying the postulates of Euclidean Plane Geometry,
and we shall use Euclidean Geometry to describe a mathematical system in which the Euclidean parallel postulate fail, but in
which the other postulates of Euclidean Geometry hold.

Consider a fixed circle C in an Euclidean Plane. We assume that, merely for the sake of convenience, that C is a unit circle.

Let E be the interior of C.

Consider the following figure:

Figure 3.1.1

By hyperbolic circle we mean a circle C* which is orthogonal to C. When we say that two circles are orthogonal to each
other, we mean that their tangents at each intersection point are perpendicular. If this happens at one intersection point R, then
it happens at the other intersection point S. But, we shall not stop to prove this; this chapter is purely descriptive and proofs
will come later.

The points of our hyperbolic plane will be the points of the interior E of C. By hyperbolic line we mean:

1. The intersection of E and a hyperbolic circle, or

2. The intersection of E and a diameter of C.

It is a fact that

Every two points of E lie on exactly one hyperbolic line. *

We are going to define a kind of “Plane geometry” in which the “plane” is the set E and the lines are the hyperbolic lines.
In our new geometry we already know what is meant by point and line. We need next to define distance and angular measure.
For each pair of points X, Y, either on C or in the interior C, let XY be the usual Euclidean distance.

Notice that if R, S, T, and U are as in the above figure, then R and S are not points of our hyperbolic plane, but they are
points of the Euclidean plane that we started with. Therefore, all of the distances TS, TR, US, UR are defined, and * tells us
that R and S are determined when T and U are determined.

There is one and only one hyperbolic line through T and U, and this line cuts the circle C in the points R and S. We shall use
these four distances TS, TR, US, UR to define a new distance d (T, U)in our” plane” E, by the following formula:

TR
log. ox

us

d(T, V) =

Evidently we have the following:
d is a function which can be defined as

dExE —» R

Let us now look at the ruler postulate in chapter 1. On any hyperbolic line L, take a point U and regard this point as fixed.
For every point T of L, let
TR
f(T) =log. 4%
us
That is, f (T) is what we get by omitting the absolute value signs in the formula for d (T, U). We now have a function,

L —» R
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Where L is a hyperbolic line
We shall now show that f is a coordinate system for L.
If V is any other point of L, then

VR

f(V)=log. ¥

us

Let x=f (T) and y=f (V). Then

TR VR TR
lx —y| = |log, T+ — log, +5| = |log, +3-|. Since the absolute value of the difference of the logarithms is the absolute
Us Us Vs

value of the logarithm of the quotient of the fractions.

Therefore, |x —y| = d(T, V), which means that our new distance function satisfies the ruler postulate.

Since the ruler postulate in chapter one holds, the other distance postulates automatically hold.

We define betweenness, segment, rays, and so on, exactly as in chapter one. All of the Theorems of chapter one also hold in
our new geometry. Because the new geometry satisfies the postulates on which the proofs of the theorems were based.

It is rather easy to convince yourself that the plane-separation postulate holds E.

To discuss congruence of angles, we need to define an angular-measure function. Given “hyperbolic angle” in our new
geometry, we form an angle in the old geometry by using the two tangent rays:

Figure 3.1.2

We then define the measure m<BAC to be the measure (in the old sense) of the Euclidean angle < 'BAC’.

It is a fact that the resulting structure [E, L, d, m] satisfies all the postulates of chapter one, including the SAS postulate.
The proof of this takes time, however, and it requires the use of more Euclidean Geometry than we know so far.

Granted that the postulates hold, it follows that the theorems also hold. Therefore, the whole theory of congruence, and of
geometric inequalities, applies to the Poincare model of hyperbolic geometry.

C

Figure 3.1.3

On the other hand, the Euclidean parallel postulate obviously does not hold for the Poincare model. Consider, for example
a hyperbolic line L which does not pass through the center p of C (figure 3.3). Through p there are infinitely many hyperbolic
lines which are parallel to L.

3.2. The Hyperbolic Parallel Postulate

Hyperbolic geometry (also called Lobachevskian geometry) is the kind represented by the Poincare model. In such
geometry, when the familiar parallel postulate fails, it pulls down a great many familiar theorems with it. A few samples of
the theorems in hyperbolic geometry which are quite different from the analogous theorems of Euclidean Geometry follow.

1. No quadrilateral is a rectangle. In fact, if a quadrilateral has three right angles, the fourth angle is always acute.

2. For any triangle, the sum of the measures of the angles is always strictly less than 180°.

3. No two triangles are ever similar, except in the case where they are also congruent.

The third of these theorems means that two figures cannot have exactly the same shape, unless they also have exactly the
same size. Thus, in hyperbolic geometry, exact scale models are impossible.

In fact, each of the above three theorems characterizes hyperbolic geometry.

If the angle-sum inequality, n<A+m<B+m<C< 180° holds, even for one triangle, then the geometry is hyperbolic; if the
angle sum inequality holds, even for one triangle, then the geometry is Euclidean and similarly for (1) and (3).

This has a curious consequence in connection with our knowledge of physical space. If physical space is hyperbolic, which
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it may be, it is theoretically possible for the fact to be demonstrated by measurement. For example, suppose that you measure
the angles of a triangle with an error less than” 0.0001” for each angle. Suppose that the sum of the measures turns out to be
179°59'59.999" . The difference between this and 180° is 0.001”. This discrepancy could not be due to errors in
measurement, because the greatest possible cumulative error is only “0.0003”. Our experiment therefore, proves that the
space that we live in is hyperbolic.

On the other hand, no measurement however exact can prove that the space is Euclidean. The point is that every physical
measurement involves some possible error. Therefore, we can never show by measurement that an equation, r+s+t=180°,
holds exactly; and this is what we would have to do to prove that the space we live in is Euclidean.

Thus, there are two possibilities:

1. The Euclidean parallel postulate does not hold in physical space, or

2. The truth about physical space will never be known.

The Hyperbolic parallel postulate: Given a line L and a point P not on L, there are at least two lines L' and L’ which

contain P and are parallel to L.
L
>'<
L
L

Figure 3.2.1

3.3. Closed Triangles and Angle Sum

In this section we deal specifically with the hyperbolic case. To avoid confusion, throughout this chapter, we shall mention
the hyperbolic parallel postulate in every theorem whose proofs requires it.

p
N
A °B

Figure 3.3.1

If PD is parallel to AB, then APABD is called a closed triangle.

Note that every closed triangle is an open triangle, but under hyperbolic parallel postulate the converse is false, because
through P there is more than one line parallel to AB.

Closed triangles have important properties in common with genuine triangles.

Theorem 3.3.1: The Exterior Angle Theorem

Under hyperbolic parallel postulate, in every closed triangle, each exterior angle is greater than its remote interior angle.

That is, if PD is parallel to AB and Q-A-B, then <QAP> £P.

ﬁ&

Q A B

Figure 3.3.2

Figure 3.3.3

Proof:

If ADPAB is an isosceles triangle, this is obvious. Here, if hyperbolic parallel postulate holds, then 2P and <PAB are
acute angles (because ¢ (a) £90° for every a), and therefore, QAP is obtuse angle. ADPAB is equivalent to an isosceles
open triangle ADPCB, and this open triangle is also closed:
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R P
u® s® tad
q° 14 ¢l
QA C B
Figure 3.3.4

If C=A, there is nothing to prove. For the case A-C-B, let the degree measures of the various angles be as in the figure.
Then P > r, because ¢ (a) < 90° and P + q + s < 180°, by theorems in chapter one.
Therefore, t=180°-q= p+s>r+s, and t>r+s, which proves half of our theorem.
To prove that the other half, we need to show that u > g. This follows from
t=180°—q>180°— u=r+s.
We found, in chapter one, that the critical function ¢ was non- increasing. That is, if a’ > a, then ¢ (a’) <c (a). Using the
exterior angle theorem, we can shorten this result.

Figure 3.3.5

Theorem 3.3.2: Under hyperbolic parallel postulate, the critical function is strictly decreasing. That is, if a’ >athen c(a’)
<c (a).

Proof:

In the above figure 3.9, AP=a and AP'=a, PDAB and P'D'AB , so that PDP'D’ .

Therefore, AD'P'PD is a closed triangle. Therefore, ¢ (a) >c (a'), this was to be proved.

Theorem 3.3.3: Under hyperbolic parallel postulate, the upper base angles of a saccheri quadrilateral are always acute.

c(a)® M Q

o

Figure 3.3.6

We already know, from chapter one, that they are congruent, and cannot be obtuse.

In the figure, BQ and CP are the critical parallels to AD through B and C.

Therefore, m2£ABQ=c (a) =m«DCP, as indicated. Applying the exterior angle theorem to the closed triangle PCBQ, we
see that t>s.

Therefore, t +c (a) >s + ¢ (a).

Therefore, s +¢ (a) <90°, which proves our theorem.

B D

-~

A C
Figure 3.3.7

Theorem 3.3.4: Under hyperbolic parallel postulate, in every right triangle ABC, we have

mzA + mzB + mzC 2« 180°.
Proof: Suppose not. Then, if £ZA is the right angle, 2B and 2C must be complementary angles. Take point D on the

opposite side of BC from A, so that ~ BCD = « ABC and CD=AB. Then AABC = ADCB by SAS; and quadrilateral
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ABDC is a Saccheri quadrilateral. This is impossible, because 2D is a right angle.
Theorem 3.3.5: Under hyperbolic parallel postulate, for every triangle ABC, we have
mzA + mzB + mzC £ 180°.

s°t

AT 90" D 907" C
Figure 3.3.8

Proof:
Let AC be a longest side of AABC, and let BD be the altitude from B to AC. Then
r+s+90°« 180° andt+ u +90°2 180°.
Therefore, r + (s + t) + uz 180°, which proves the theorem.
Soon we shall see that under hyperbolic parallel postulate this theorem has a true converse:
For every number x2 180° there is a triangle for which the angle sum is x. Thus, 180° is not an upper bound for the angle
sums of triangles, but is precisely their supremum.

3.4. The Defect of a Triangle and the Collapse of Similarity Theory

The defect of AABC is defined to be 180°-mz£A - msB - m«C. The defect of AABC is denoted by §AABC. Under
hyperbolic parallel postulate we know that the defect of any triangle is positive, and obviously it is less than 180°. (Later we
shall see that the converse holds: every number between 0° and 180° is the defect of some triangle.)

The following theorem is easy to check, regardless of under hyperbolic parallel postulate.

Theorem 3.4.1: GivenAABC, with B— D — C. Then §AABC = §AABD + §AADC

Figure 3.4.1

It has, however, an important consequence.
Theorem 3.4.2: Under hyperbolic parallel postulate, every similarity is congruence. That is,
If AABC ~ADEF, then AABC = ADEF.

Figure 3.4.2

First we take G on AB so that AG =DE; and we take H and AC so that AH = DF. We then have AAGH = AEDF, by SAS;
therefore, AAGH ~AABC

If G =B, then H = C, and the theorem follows. We shall show that the contrary assumption G=B and H+ C (as shown in
the figure) leads to a contradiction.

Let the defects of AAGH ~AGHC, and AGBC be d;,d, and d5 respectively, as indicated in the figure; let d be the
defect of AABC. By two applications of the preceding theorem, we have: d=d; + d, + d3. This is impossible, because the
angle congruence’s given by the similarity AABC ~AAGH tell us that d =d;.

The additivity of the defect, described in theorem 3.4.1, gives us more information about the critical function. What we
know so far is that

1. 0 < c(a) <90 forevery a > 0, and

2. ¢ decreasesas a increases.

There remains the question of how small the numbers ¢ (a) eventually become when a is very large. We might have either
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of the following situations:

¥y =c(x)

Figure 3.4.3

In each case, e= inf{c (a)}, that is, the greatest lower bound of the numbers c (a). In each case, it follows from (2) that
lim, _,., c(a)=e. To prove the following theorem, therefore, we need merely show that e>0 is impossible.

Theorem 3.4.3: lim,_, c(a) = 0.

Proof:

Suppose that ¢ (a)>e>0 for every a.

1Wer Q,

Py

1 el L

BN S N

Figure 3.4.4

The markings in the figure should be self-explanatory. For each n, m intersects ﬁf because e<c (n). The right
triangles AP, P,,,Q, 1 all are congruent, and therefore have the same defect d,. Consider now what happens to the defect
d, of AP,B,R, where, nisincreased by 1. In the figure below, the letters in the interiors of the triangles denote their defects.
We have:

SAR,RRy1 =dn +,
SAP,P,R,.1 = d, +x,
dn+1 :(dn + y) + (do + X),

Prd

/
o YF, \ \=L Rpey

Figure 3.4.5

By theorem 3.4.1 in each case, Therefore, d,,,1 > d, +d,

Thus, d,>d; +d,, d3 > d,+d,>d; + 2d,.

And by induction, we have d,, > d;+ (n-1)d,,.

When n is sufficiently large, we have d,, > 180°, by the Archimedean postulate.this is possible, because the defect of a
triangle is 180° minus the angle sum. Therefore, ¢ (a) > e > 0 is impossible, which was to be proved.

Consider now what happens to the measure r (a) of the base angles of an isosceles right triangle, as the length a of the
legs becomes large.



144 Kassahun Tesfaye Agzew: Fundamental Concepts of Geometry

ra)°

c(a)reg)°r(a)®

aa

Figure 3.4.6

B

| ar(ay

Figure 3.4.7

Here, BD/AC. Therefore, we always have r (a) <c (a). Therefore, lim, ., c(a) = 0.

Let us now make the figure symmetrical by copying AABC on the other side of AB. ForADBC, the angle sum is 4r(a).
Therefore, the defect 180° — 4r(a) can be made as close to 180° as we please; we merely need to take a sufficiently large.
Thus, 180° is not merely an upper bound of the numbers which are the defects of triangles; 180° is precisely their supremum.

Theorem 3.4.4: For every number x<180° there is a triangle whose defect is greater than x.

4. The Consistency of the Hyperbolic Geometry

Under this chapter, we shall show that the Poincare Model satisfies all the postulates of hyperbolic geometry. In the
analysis of the model we will depend, on Euclidean geometry, and so our consistency proof will be conditional. At the end of
the chapter we shall know not that the hyperbolic postulates are consistent, but merely that they are as consistent as the
Euclidean postulates.

4.1. Inversions of a Punctured Plane

Given a point A of a Euclidean plane E and a circle C with center at A and radius a. The set E-A is called a punctured plane.
The inversion of E-A about C is a function,
f: E-A & E-A,
defined in the following way. For each point P of E-A, let P'=f(P) be the point of AP for which

L

Figure 4.1.1

2
(Thus, for a=1, we have AP‘=$.). Since % = a, we have the following theorems.

Theorem 4.1.1: If Pe C, thenf (P) = P.

Theorem 4.1.2: If P is in the interior of C, then f(P) is in the interior of C, and conversely.
Theorem 4.1.3: For every P, f(f(P)) =P.

That is, when we apply an inversion twice, this gets us back to wherever we started.

Proof:
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F(P) Is the point of AP for which Af(P) = %, and f(f(P)) is the point of the same ray for which Af(fP) =
2 2
= AP

Af(P) 4%/,
Therefore, f(f(P)) = P.
Theorem 4.1.4: If L is aline through A, then f(L —A) =L — A.
Here by f(L — A) we mean the set of all image point f(P), where P € A. In general,
If K< E— A, then f(K)={P = f(P)/P € K}.

Itis also easy to see that "if P iscloseto A, then P’ isfar from A, and conversely; the reason is that - is large when AP

is small." In studying less obvious properties of inversion, it will be convenient to use both rectangular and polar coordinates,
taking the origin of each coordinate system at A.
The advantage of polar coordinates is that they allow us to describe the inversion in the simple form. f: E— A< E - A
(r,0) & (s,0)
Where
az az
S = - and r = "
In rectangular coordinates we have, P = (x,y) = (rcos,rsind), f(P) = (uv) = (scosb, ssinh),
Where r and s are related by the same equation as before evidently.
Justas u? + v? = 52
x2 + yz = 72
These equations will enable us to tell what happens to lines and circles under inversions. We allow the cases in which the
lines and circles contain the origin A, so that they appear in E-A “as punctured lines” and “punctured circles.” Thus, we shall
be dealing with four types of figures, namely, lines and circles, punctured and unpunctured. For short, we shall refer to such
figures as k-sets. The rest of this section will be devoted to the proof that if K is a k-set, then so also is f (K). Let us look first,
however, at a special case.
Let K be the line x=a.

2

Va

/ #()
\\ ’

Figure 4.1.2

Then K is the graph of the polar equation rcos8 = a
2
Since r = “? where f(r,8) = (s,0), it follows that f(K) is the graph of the condition

a2

?6059 =aq, s+0

Or s = acosé, s+ 0
s2 = ascos0, s#0

In rectangular form, this is
w?+vi=auu+v?+ 0.
Replacing u and v by x and y (to Mach the labels on the axes), we see that f(K) is the graph of
x2—ax+y? =0, x>+y2#0
And is hence the punctured circle with center at (%, 0) and radius % Thus, f has pulled the upper half of the line K on to
the upper semicircle, and the lower half on to the lower semicircle. It is to see that points far from the x-axis either above or
below go on to points near the origin.
More generally, we have the following theorem.
Theorem 4.1.5: If Kiis a line in E-A, then f (K) is a punctured circle.
Proof: Since we can choose the x-axis any way we want, we are free to assume that K is the graph of a rectangular equation
x=b>0
And hence of a polar equation
rcosd = b > 0.
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As before, setting r = “S—Z we conclude that f(K) is the graph of

aZ
76059 = b, s#0
2_a?
s —TSCOSQ
Or
2
uz—%u+v2=0, ut4+v2£0
2
Oruz—%u+v2=0, x2+y2#0

2 2
Therefore, f(K) is a punctured circle, with center at (;—b, 0) and radius ;—b

It is easy to see that (1) every punctured circle is described by the above formula for some choice of b and some choice
of the axes. Therefore, (2) every punctured circle L is= f(K) for some line K. Theorem 3 tells us that f(f(P)) =P for P.
Therefore,

fW =f(fK) = K.

Thus, we have the following theorem.

Theorem 4.1.6: If L is a punctured circle, then f(L) isalinein E — A.

We now know, from theorem 4, that under f, punctured lines go on to punctured lines; and we know, by theorem 5 and 6,
that lines go on to punctured circles and vice versa. Now we must see what happens to circles.

Theorem 4.1.7: If Misacirclein E — A,then f(M) isalineinE — A.

Proof: M is the graph of a rectangular equation

x*+y?+Ax+By+C =0,
Where, C# 0 since the circle is not punctured.
In polar form, this is
x2 4 Axcosf + Brsinf + C = 0,

2
Since r = a? this tells us that f(M) is the graph the equation

a4 2 2

a
— t+A—cosb + B—sinb + C = 0.
S S S
Or a* + Aa®scos6 + Ba?ssinf + Cs?> =0,
Or a* + Aa’u + Ba*v + C(u? + v?) =0,
Replacing u and v by x andy, to match the labels on the axes, we get an equation for f(M) in the form
Z 4 2+Aa2 +Ba2 +a2 =0
X y c X C y c = U.
2

The graph of f(M) is a circle; this circle is punctured, because “? #0

Theorem 4.1.8: If K is a k-set, then sois f(K).

4.2. Cross Ratio and Inversions
We recall, from chapter 1, the definition of distance in the Poincare model.

R

S

Figure 4.2.1

If T and U are points of the hyperbolic line with end points R, S on the boundary circle C, then the non-Euclidean distance
is defined by the formula.

TR /TS
UR /US

The fraction whose logarithm gets taken in this formula is called the cross ration the quadruplet R, S, T, U, and is
commonly denoted by (R,S,T,U).

~ TR/,
Thus, (R, A, T,U) = logUR/
us

d(R,U) = |log
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P1P3.PyPy
P1P4.PyP3

We shall show that inversions preserve the cross ratio. In the following theorem, f is an inversion of a punctured plane
E — A about a circle with center at A and radius a, as in the preceding section.

Theorem 4.2.1: If P:=P'; = f(P)(i = 1,2,3,4), then

(Py, Py, P, Py) = (P, P, P5', P,)
Proof: For each i from 1 to 4, let the polar coordinates of P; be (r;,6;). By the usual polar distance formula, we have

P,P? =12 + 12 — 21,75 cos(6; — 6)).

And changing the notation slightly, we have (P, P,, P;,P,) =

, 2
Now P; = (s;,6,) = (;-,6))

Therefore,
(P, P,,P;, P )2 — [r12 + T32 — 2173 COS(Bl - 93)][1'22 + 7'42 - 27"27"4_(92 - 94)]
1, 12,173, F4 [r12 4+ 1,2 — 217y cos(0; — 0,)][1p2 + 132 — 21,713(6, — 65)]
And
at  at at ot at
[T_Z + 1"_2 - ZWCOS(H]_ — 93)] [1"_2 + T'_z - ZWCOS(GZ — 94)]
(P, P, Py P, =L 3 1’3 2 4 274
1.2 .,83 ,14 7 7 7 7 7 7
[a_ 2 —2-—cos(6; — )] [a__l_a__ 22 _cos(6, — 65)
n’ ol n Lo 2 T2 ToT3 279

2 .2 _..2 2
To reduce the second of these fractions to the first, we multiply in both the numerator and denominator by ”r;#

This theorem will tell us, in due course, that inversions applied to the Poincare model are isometries, relative to the
non-Euclidean distance.

4.3. Angular Measure and Inversions

A re-examination of Section 4.1 will indicate that the image of an angle under inversion is never an angle. The point is that
every angle in E-A has at least one side lying on a non-punctured line and the image of a non-punctured line is always a
punctured circle. Therefore, the following theorem doesn’t mean it might seem to mean.

Figure 4.3.1

Theorem 4.3.1: If A and Q are non-collinear, then
P' = f(P)and Q' = f(Q),m2APQ = m£AQ'P’

Proof: Consider APAQ and AQ'AP'. They have the angle £ A in common. Since
2 2

ap =2 daQ =2
=ap A0 =5

We have AP.AP = AQ.AQ = a?,
So that
AP  AQ
AQ' AP’
By the SAS similarity, APAQ similar to AQ'AP’
Note the reversal of order of vertices here. Since ZAPQ and £AQ'P' are corresponding angles, they have the same
measure.

Figure 4.3.2
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In the figure above, P' = f(P) and Q' = f(Q) as before. Here we have
u=180—-—a-—-r
=(180—-1r)—«a
=S—aQ.
Therefore, s = u — a.
The order of s and u depends on the order in which P and P’ appear on the ray. If P and P’ are interchanged, then we
should interchange s and u, gettingu — s = a.

Thus, in general we have |s —u| = a.
Consider next the situation illustrated in the figure below:

Figure 4.3.3
Here B is the center of a circular arc; b is a line intersects in the arc at P; b isatangentray at P:R, P = a. We assert that

lim,_,omz£R,PQ = m4SPQ.

Proof:
The first step is to show that lim,_,m£R, = PS = 0.
Consider now a circular arc QS with end point at a point Q.

Figure 4.3.4

For small positive numbers a, let R, be the point of the arc for which QR, = a.
Let Q'S’ be the image of QS;thatis Q'S = f(QS);
Let Q'R' be the tangent ray at Q.
We assert that ZAQ'R' = TQR.
To see this, we observe that m 2TQR, and m£AQ'R,' is the s and u that we discussed just after Theorem 4.3.1.
Therefore,
|mATQRa - mLAQ'Ra’| =a
Now
lir% msTQR, = m4TQR,
a—
and
lir% msAQ'R,'= mzAQR/,
a—
Therefore, lim,_o[m4TQR, — m£TQR — m£AQ'R'].

But, the absolute value of the quantity indicated in square brackets is equal to @ and a — 0.
Therefore, m£TQR = m£AQ'R’.
Given two intersecting circles or lines, the tangent rays give us “tangent angles” like this:
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Figure 4.3.5

By the preceding result, we have the following theorem.
Theorem 4.3.2: Under inversions, corresponding tangent angles are congruent. That is, if AB and AC are arcs with a

tangent angle of measure r, then their images f(4AB) and, f(AC) have a tangent angle of measure r. Similarity for an arc
and a segment or a segment and a segment.

Proof: Left for reader.

4.4. Reflections across L-Lines in the Poincare Model

We recall that the points in the Poincare model are the points of the interior E of a circle C with center at P; the L-lines
are:

1. The intersection of E with lines through P and
2. The intersection E with circles C' orthogonal to C.

«

Figure 4.4.1

If L is hyperbolic line of the first type, then the reflection of E across L is defined in the familiar fashion as a one
correspondence: f:E < E Such that for each point Q of E, Q and f(Q) are symmetric across L.

If L is hyperbolic line of the second type, then the reflection of E across L is the inversion of E about C'.

To justify this definition of course we have to show that if f is an inversion about a circle C'

Orthogonal to C, then f(E) =E. But, this is not difficult to show. In the next few theorems, it should be understood that f
is an inversion about C'; C' has center at A and intersects C orthogonallyatRand S:and L =EnC"

Figure 4.4.2

Theorem 4.4.1: f(C) = C.

Proof: f(C) is a circle. This circle contains R and S because f(R) =R and f(S)=S. By Theorem 2 of the
preceding section, f(C) and C' are orthogonal. But there is only one circle C which crossesC’orthogonally at R and S. It is
clear that P must be the center of any circle. Therefore, f(C) = C, this was the required.

Theorem 4.4.2: f(E)=E.

Proof: Let X be any point of E. Then AX intersects C at points T and U. Since f(C) =C we have
U=f(T)and T = f(U), but, inversions preserve betweenness on rays starting at A. Therefore, f(TU) =TU and
f(X) €E. Thus, f(E) CE.

We need to show conversely that E < f(E). This is trivial: given that f(E) € E we have f(f(E)) c f(E). Since
f(f(E)) = E, this gives E c f(E).

Theorem 4.4.3: If M is hyperbolic line, then so also is f(M).

Proof:
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M is the intersection £ N D where D is either a circle orthogonal to E or a line orthogonal to C. Now f(D) is
orthogonal to C and is a line or circle (punctured or unpunctured). Let D’ be the corresponding complete line or circle.
Thus, D' = f(D),or D' = f(D) U A.

Then

f(M) = f(D)NE = D'n E,Which is hyperbolic line.

We recall that hyperbolic angle is the angle formed by two “ray” in the Poincare model.

Figure 4.4.3

The measure of hyperbolic angle is the measure of the angle formed by the tangent rays. We now sum up nearly all of
the preceding discussion in the following theorem.

Theorem 4.4.4: Let f be a reflection across E and hyperbolic line. Then

1. fis a one-to-one correspondence E < E

2. f preserves the non-Euclidean distances between points

3. f preserves hyperbolic lines

4. f preserves measures of hyperbolic angles

For hyperbolic lines of the first type passing through P all this is trivial because in this case f is an isometry in the
Euclidean sense. It therefore preserves distances of both types lines, circles, orthogonally, and angular measure. For
hyperbolic lines of the second type conditions 1 to 4 follows from the theorems of this section and the preceding two
sections.

4.5. Uniqueness of the hyperbolic lines Through Two Points

Given the center P of C, and some other point Q of E. We know that P and Q lie on only one straight line in the
Euclidean Plane. Therefore, P and Q lie on only one hyperbolic line of the first kind. But P doesn’t on any hyperbolic line
of the second kind. The reason is that on the right triangle ARP in the figure, the hypotenuse AP is the longest side. It
follows that the hyperbolic line through two points of E is unique, in the case where one of the points is P.

Figure 45.1

To prove that uniqueness always holds we need the following theorem.
Theorem 4.5.1: For each point Q of E there is a reflection f such that f(Q)=P.

Figure 4.5.2

Proof:
We start by the method of wishful thinking. If the inversion f about C' givesf(Q) = P, then

2
AP ==,
AQ
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We recall that the radius PR=1. Let K=QP, and let x be the unknown distance AP (figure 4.13)

OR

Suppose that L passes through P, and let its end points on C be R and S. For every point Q of L, Let f(Q) = log, T;QS
PS

= log, g—’; (Because PR=PS).

Let QS=x. Then QR=2-QS=2-x, and we have f(Q) = log, .
Obviously f is a function L — R in to the real numbers. We need to verify that f is a one-to-one correspondence
L — R. Then we need to show every real number K is equal to f(Q) for exactly one point Q. Thus, we want k =
2—x
log, —

X

Or

k _ _ 2
Or (e*+1x =2 Or X ==

For Every K there is exactly one such x, and 0<x<2 as it should be. Therefore every k is equal to f(Q) for exactly one
point Q of L.

We have already checked that when the coordinate system f defined in this way, the distance formula d(T,U) =
|f(T) — f(U)| is always satisfied.

Before proceeding to generalize the following theorem we observe that the formulas give us some more information.

X Xz X3 9

R @ [#>3 2 S

Figure 4.5.3

The figure x; = QS fori=1,2,3. It is easy to check that zx;x is a function. Its derivative is —xiz <0 and the

logarithm is an increasing function.

Therefore, if x; < x, < x5 as in the figure, it follows that f(Q;) < f(Q,) < f(Q3), and conversely. We recall that
betweenness is defined in terms of distance and one point of a line is between two others if and only if its coordinate is
between their coordinates.

Theorem 4.5.2: Let Q1 Q,, Q3 be points of hyperbolic line through P. Then @, — Q3 under the non-Euclidean distance
ifand only if Q; Q,,and Q3 are in the Euclidean plane.

Theorem 4.5.3: Every hyperbolic line has a coordinate system.

Proof:

Given hyperbolic line L. If L contains P, we use theorem 4.6.1. If not, let Q be point of L; let g be a reflection such that
9(Q) =P; let L'=g(L) and let f:L' < R be a coordinate system for L’. For each point T of L, let f'(T) = f(g(T)).

That is, the coordinate of T is the coordinate of the corresponding point g(T) of L'. Since f and g are one-to-one
correspondences, so also is their composition f(g). Given points such as T, and U of L. We know that d(T,U) =
d(g(T), g(U) because inversions preserve the non-Euclidean distance. This in turn is equal to

|f(g(T)) — f(g(U))|. Because f isa coordinate system for L'.

Therefore, d(T,U) = |f'(T) — f'(U)] this was to be proved.

Theorem 4.5.4: Every hyperbolic line through P separates E in to two sets H, and H; such that

1. H; and H, are convex sets

2. 1f QeH; andR €H,, then QR intersects L.

Here QR means of course the non-Euclidean segment,

Figure 4.5.4

Proof:

We know that the Euclidean line containing L separates the Euclidean Plane in to two half-planes H; and H,'. Let
H,; and H, be the intersections H;' N E and H, N E as indicated in the figure.

Suppose that Q,R € H; and suppose that QR intersects L in a point S. Let f be an inversion E < E about a circle
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with center A on the line containing L such that f(S) =P. Then f (QR) is hyperbolic line through P and f (Q) and f (R) belong
to H;. Since Q-S-R, in the non-Euclidean sense, because f preserves the non-Euclidean distance.

Therefore, f(Q) — P — f(R) in the Euclidean sense, which is impossible because f(Q) and f(R) are in the same
Euclidean half-plane.

It follows that in the same way that H; is a convex set. Thus, we have verified half of the proof.
Suppose now that Q € H; and R € H,. Let C’ be the Euclidean circle that contains the hyperbolic line QR.

Figure 4.5.5

Then L contains a point S of the Euclidean segment from Q to R and S is in the interior of C’. It follows that the
Euclidean line containing L intersects C’ in points, one of which is a point T of L. Now we must verify that Q-T-R in
non-Euclidean sense. [Hint: Use an inversion f:E < E,H; < H;,H, < H,,T < P, and then apply theorem 4.6.2.]

To extend this result to hyperbolic lines in general, we observe that:

Theorem 4.5.5: Reflections preserve betweenness. Because, they preserve lines and distance.

Proof: Left for reader.

Theorem 4.5.6: Reflections preserve segments. Because, they preserve betweenness.

Proof: Left for reader.

Theorem 4.5.7: Reflections preserve convexity. Because, they preserve segments.

Proof: Left for reader.

Theorem 4.5.8: The plane separation postulate holds in the Poincare model.

Proof:

Let L be any hyperbolic line and let Q be any point of L. Let f be a reflection such that

f(Q) = P;let L = f(L); and let H; and H,' be the half-planes in E determined by L. Let H, = f~'(H,) and H, =
fHHL).

f~1 is also a reflection and reflections preserve convexity. It follows that H; and H, are convex sets. This proves half
of the plane separation postulate for L. It remains to show that if R € H; and S € H,, then RS intersects L.

If " =f(R)andS = f(S), thenR' € H," and S € H,, so that R'S’ intersects L' at a point T'. Therefore, RS
intersects L at T = f~1(T").

Theorem 4.5.9: Reflections preserve segments Reflections preserve half planes.

That is, if H; and H, are the half planes determined by L, then f(H;) and f(H,) are the half planes determined by
f@).

Proof: Left for reader.

Theorem 4.5.10: Reflections preserve segments Reflections preserve interior of angles.

Proof:

The interior of £ABC is the intersection of

1. The side of AB that contains C

2. The side of AB that contains A

Since reflections preserve half planes, they preserve intersections of half planes.

We have defined the measure of non-Euclidean angle as the measure of the Euclidean angle formed by the two tangent
rays. We need to check whether this measure function satisfies the postulate of section 1.5. For angles with vertex at P this
is obvious. To verify it for angles with vertex at some other point Q, we throw Q on to P by a reflection f.

Now f preserves angles, angular measure, lines, and interior of angles. It is therefore trivial to check that if Postulates
M-1 through M-5 holds at P, then they hold at Q.

5. The Consistency of Euclidean Geometry

Our proof of the consistency of hyperbolic geometry, in the preceding chapter, was conditional. We should that if there is a
mathematical system satisfying the postulates for Euclidean geometry, and then there is a system satisfying the postulates for
hyperbolic geometry. We shall now investigate that if, by describing model for the Euclidean postulates. Here again our
consistency proof will be conditional. To set up our model, we shall need to assume that the real number system is given.
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5.1. The Coordinate Plane and Isometries

Definition 5.1.1: E = RxR, where R the real number system is called a Cartesian model

or coordinate system.

Then a point in a Cartesian model E is defined to be an ordered pair of real numbers.

Definition 5.1.2: A line in the Cartesian model E is a sub set of E which has the form

L={(x,y)/ Ax + By + C = 0,A? + B> > 0}

That is a line is defined to be the graph of a linear equation in x and y.

Definition 5.1.3: If P = (x4, y;) and Q = (x,, y, ), are two points in a Cartesian model E, then the distance between
these two points from analytic geometry is given by

d(P,Q) = /(x; — x1)? + (y2 — y1)?

We define betweenness in terms of distance. As usual, we abbreviate d(P, Q) as PQ.

Segments and rays are defined in terms of betweenness; and angles are defined when rays are known. It turns out that
setting up an angular measure function is a formidable technical chore. We hope, therefore, that the reader will settle for a
congruence relation = for angles, satisfying the congruence postulates for angles. This relation is defined in the following
way.

Recall that: A one-to-one correspondence f from a set A to a set B is a function

f:+A — B such that, for each b € B, there is a unique a € A for which f(a) = b. This is equivalent to the mapping
f:A = B being both one-to one and on to. In other words, we have a “pairing” between elements of A and elements of B.

Definition 5.1.4: An isometry is a one-to-one correspondence f: E — E p reserving distance.

Definition 5.1.5: Two angles 2ABC and £DEF are congruent if there is an isometry f:E — E such that f(2ABC) =
2DEF.

We have now given definitions, in the Cartesian model, for the terms used in the Euclidean postulates. Each of these
postulates thus becomes a statement about a question of fact; and our task is to show that all of these statements are true.

5.2. The Ruler Postulate

Recall the following:

1. The ruler postulate: Every line has a coordinate system.

2. A vertical line is a line which is the graph of an equation x = a.

3. Every non-vertical line is the graph of an equation y = mx + b.

4.1f x = a and x = b are equations of the same ling, then a = b.

5 Ify =m;x + b; andy = m,x + b, are equations of the same line, then m; = m, and b; = b,.

Definition 5.2.1: A coordinate system f on a line L is a one-to-one correspondence

f:L->R

Definition 5.2.2: Distance function

For each line L in the plane, fix a coordinate system f;:L — R. Then the distance function on the plane E is the function
d: ExE — R which assigns to any two points P,Q a real number d(P, Q) = PQ

Defined by
d(P,Q) = PQ = {If(P) Bﬁf?u)':‘ép +0

Theorem 5.2.1: Every vertical line L has a coordinate system.
Proof: Let x = a be the vertical line and for each point P = (a,y) of L, let f(P) =y
Then f is a one-to-one correspondence L < R. If P = (a,y;) and Q = (a,y; ), then
PQ =d(P,Q) = \/(a_a)z + (2 —y1)?
vz —y1)?

=y =yl

= |f(Q) — f(P)I, As desired.
Theorem 5.2.2: Every non-vertical line has a coordinate system.

e

(2. 72)

(x1.31)

Figure 5.2.1
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Proof: Let L be the graph of y = mx + b. If (x;,y;) and (x5, ¥,) € L, then it is easy to check that % =m,y, —
27X1

Y1 =m(x; — xq1).
And

PQ =d(P,Q) =/ (x; —x1)% + (y2 — ¥1)?

= |x; — x|y (1 + m?)
From this we see how to define a coordinate system for L. For each point P = (x,y) € L
Let f(P) = f(x,y) = xy/ (1 + m?)

Then for P = (x1,v1),Q = (x3,v3)
We have

PQ = |x; —x; [y (1 + m?)

= |x2\/(1+m2) - x1J(1+m2)|

=1f(@ - (P
as it should be.
These two theorems give us:
Theorem 5.2.3: In the Cartesian model, the ruler postulate holds.
Proof: Exercise

5.3. Incidence and Parallelism

Theorem 5.3.1: Every two points of the Cartesian model lie on a line.
Proof: Given P = (x1,y1),Q = (x2,¥5). If x; = x5, then P and Q lie on the vertical line

X=a=x.

If not, then P and Q lie on graph of the equation
Y2

y 3’1—x2_x1(x x1)

This is easily seen to be a line.

Theorem 5.3.2: Two lines intersect in at most one point.

Proof: Given L; and L, with L; # L, . If both are vertical, then they do not intersect at all. If one is vertical and the
other is not, then the graphs of

xX=ay=mx+b

Intersect at the unique point (a, ma + b). Suppose finally, that L, and L, are the graphs of

y=myx + by, y =myx + by.

If my # m,, very elementary algebra gives us exactly one common solution and hence exactly one intersection point. If
my = m,,then b; # b,, and the graphs do not intersect at all.

We have already observed that if L is the graph of y = mx + b, then for every two points (xy, y1), (3, y,) of L, we have

V2—N

— =m

X2 — X1

Thus, m is determined by the non-vertical line L. As usual, we call m the slope of L.

Theorem 5.3.3: Every vertical line intersects every non-vertical line.

Proof: Let L; be avertical line x = a and L, be non-vertical line = mx + b, then by theorem 2, L; and L, intersect at
the point (a, ma + by).

Theorem 5.3.4: Two lines are parallel if and only if (1) both are vertical, or (2) neither is vertical, and they have the same
slope.

Proof: Given L; # L, . If both are vertical, then L; Il L,. If neither is vertical, and they have the same slope, then the
equations

y=mx+ by, y =mx + b,. (by # by) have no common solution, and L; Il L, .

Suppose, conversely, that L; |l L, . If both are vertical, then (1) holds. It remains only to show that if neither line is vertical,
they have the same slope.

Suppose not. Then Ly:y = myx + by, Ly:y = myx + by (my.my)

We can now solve for x and y:

0 = (my —my)x + (by — by),

Solve for x we obtain
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by — b,
X =—-———
m; —m;
by — b,
= - —_— b
y ml(ml_m2>+ 1

We got this value of y by substituting in the equation of L;. But, our x and y also satisfy the equation of L,. This
contradicts the hypothesis L; Il L,.
Theorem 5.3.5: Given a point P = (x4,y;) and a number m, there is exactly one line which passes through P and has
slope = m.
Proof: The lines L with slope m are the graphs of equations y = mx + b.
If L contains (xq,y,), then b = y; — mx;, and conversely. Therefore, our line exists and is unique.
Theorem 5.3.6: In the Cartesian model, the Euclidean parallel postulate holds.
Proof: Given a line L and a point P = (xy,y;) noton L.
1. If L is the graph of x = a, then the line L": x = x; is the only vertical line through P, and by theorem 5.3.3, no
non-vertical line is parallel to L. Thus, the parallel line L through P is unique.
2. If Listhe graph of y = mx + b, then the only line parallel to L through P is the line through P with slope = m. This is
unique.

5.4. Translations and Rotations

By a translation of the Cartesian model, we mean a one-to-one correspondence
fiE o E:(x,y) o (x+ay+b).
Merely by substitution in the distance formula, and observing that a and b cancel out, we have:
Theorem 5.4.1: Translations are isometries.
If L is the graph of the equation
Ax + By + C = 0, then the points(x’,y') = (x + a,y + b) of f(L) satisfy the equation
Alx' —a)+ By —b)+C =0,
Or Ax +By +(=aA—bB+C)=0
This is linear. Thus, we have proven the theorem.
Theorem 5.4.2: Translation preserves lines.
Since translations preserve lines and distance, they preserve everything defined in terms of lines and distance.
Theorem 5.4.3: Translations preserve betweenness, segments, rays, angles, triangles, and angle congruences.
Rotations are harder to describe, because at this stage we have no trigonometry to work with. Let us first try using
trigonometry, wistfully, to find out what we ought to be doing, and then find a way to do something equivalent, using only the
primitive apparatus that we now have at our disposal in our study of the Cartesian model.

g (P)=(rees(0 + $)rsin(0 +4))

g st
.= R T
—+ = ——x
|
Figure 5.4.1

We want to rotate the Cartesian model through and angle of measure @. (Fig. 5.4.1)
Trigonometrically, this can be done by a one-to-one correspondence,
f:E o E,
defined as the labels in the figure suggest.
Now cos(6+¢) = cosfcos¢p — sinfsing
Let a = cos¢, b = sing

Now r = /x? 2 cosO = ——, sinf = =~
vty N Nrren
We can therefore rewrite our formulas in the form

frxy) e ()
Where x = rcos(0+¢)
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=,/x2+y2< —a - —— 2b>

JxZ+y JxZ+y
=ax — by
N o y x
And y' = x*+y? <\/x2+y2 at NEE Y b)
= ay + bx.

Any correspondence of this form, with a? + b? = 1, is called a rotation of the Cartesian model.

Theorem 5.4.4: Rotations preserve distance.

Proof: We have

P = (x1,¥1)

Q = (x2,¥2)

P' = f(P) = (ax; — byy, ay; + bx;)

Q" = f(Q) = (ax, — by,, ay, + bx;)

It is merely an exercise in patience to substitute in the distance formula, calculate

P'Q’, 5|mpl|fy W|th the ald of the equation a? + b? = 1, and observe that P'Q" = PQ. Solving for x and y, we get

x=ax +by,y=ay —bx

Comparing the formulas

x =ax—by,y =bx+ay
For f and the correspondmg formulas for f , We see that these have the same form:
x=ax —by,y=dy +bx Wherea—aandb —b.

Therefore, we have the following theorem.

Theorem 5.4.5: The inverse of a rotation is a rotation.

Proof: Exercise

Theorem 5.4.6: Rotations preserve lines.

Proof: Exercise

Proof: L is the graph of an equation

1. x=k,

2.y=k, Or

.y=mx+k)(m=%0)

In case (1), If f(L) is the graph of ax + by =k, where a and b are not both equal to zero, because a? + b? =
1.Therefore, L is a line.

In case (2), f(L) is the graph of ay’ — bx' = k, which is a line.

In case (3), f(L) isthe graph of ay’ — bx' = max +mby +k,

Or (ma+ b)x +(mb—a)y +k = 0.

If we had both (ma + b) =0,mb —a =0,

Then ma? +ab =0,mb%> —ab =0

So that m(a® + b?) = 0, and m = 0, contradicting our hypothesis.

As for translations, once we know that rotations preserve lines and distance, it follows they preserve everything that is
defined in terms of lines and distance.

Therefore, we have:

Theorem 5.4.7: Rotations preserve betweenness, segments rays, angles, triangles, and angle congruences.

We are going to use rotations in the Cartesian model in much the same way that we used reflections in the Poincare model,
to show that postulates for angle congruence hold. To do this, we shall need to know that every ray starting at the origin (0, 0)
can be rotated on to the positive end of the x-axis, and vice versa. By theorem 5.4.5, it will be sufficient to prove the following
theorem.

Theorem 5.4.8: Let = (xg , 0),xo > 0, let Q = (xy,y;), and suppose that

Xo = /X2 + ;2

Then there is a function f such that f(P) = Q

Figure 5.4.2
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The equation in the hypothesis says, of course, such P and Q are equidistant from the origin. As a guide in setting up such
a rotation, we note unofficially that we want to rotate E through an angle of measure ¢, where

X1
a=cos¢p = ——
V¥ +x?

b = sing = N

vyt +x?
Thus, the rotation oughttobe f:E < E
H(ny) o (x,Y) . ,
r_ _ — 1 _ 1
where x =ax — by N x N y
- _ Y1 X1
y =bx+ay= Vy12+x1? x Vy12+x1

Obviously, a? + b? = 1 in these equations, and so f is a rotation. And

f(x0,0) = (\/ ’Z‘i 7 %0, Zi zxo,) = (x1,y1) This is the result that we wanted.
Y1 X1 Y1 X1

5.5. Plane Separation

We shall show first that the plane separation postulate holds for the case in which the given line is the x-axis. It will then be
easy to get the general case.

Definition 5.5.1: A subset E* of the plane E is convex if, whenever P and Q are two points of E*, then the line
segment PQ joining P to Q is also contained in E*.

Definition 5.5.2: The two non-empty convex sets E* and E~ formed by removing the line L from the plane are called half
planes, and the line L is the edge of each half plane.

Let E* be the “upper half plane.” That is,

Et ={(x,y):y > 0}.

Theorem 5.5.1: E* is convex.

Proof: Remember that, if A, B, and C are points of a line, with coordinates x, y and z, such < y < z, then A-B-C. (This
was proved merely on the basis of the ruler postulate, and we can therefore apply it now). Since only one of the points A, B,
C is between the other two, the lemma has a true converse: if A-B-C,then x <y <z or z <y < x.

Consider now two points, A = (xq,¥1), C = (x,,y,) of E*.

A Y cC

B =(xzy5)
A
C
° o X

x x xz

Figure 5.5.1

We need to show that AC liesin E*. That is, if A-B-C, with B = (x3,y3), then y; > 0.

Obviously, for the case x; # x, we may assume that x; < x,, as in the figure; and for the case x; = x,, We may
assume that y; > y,.

In the first case, the line AC is the graph of an equation y = mx + b.

And has a coordinate system of the form f(x,y) = xvV1 + m?.

In the second case, the line is the graph of the equation x = x; and has a coordinate system of the form f(x,y) = y.

It is easy to check that in the first case f(4) < f(B) < f(C).

Sothat f(x,y) = V1+m?

x1 < x3 < X3

For m > 0.

mx; +b <mx3 +b <mx, + b;

For m < 0, the inequalities run the other way; but in either case y, lies between two positive numbers. In the second case
X1 = Xy, the same result follows even more easily.

Let E~ be the “lower half plane.” Thatis, E~ = {(x,y):y < 0}.

Since the function, f:(x,y) © (x,—y) isobviously an isometry, it preserves segments. Therefore, it preserves convexity.
Since f(E'1) = E~, we have the following.

Theorem 5.5.2: E~ is convex.

It is an easy exercise in algebra to show that if A = (x;,y,) € ET and B = (x,,y,) € E~, then AB contains a point (x, 0)
of the x-axis.

Theorem 5.5.3: E and the line y=0 satisfy that conditions for E and L in the plane separation postulate.
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Now let L be any line in E, and let A = (xy,y;) be any point of L. By a translation f, we can move A to the origin. By a
rotation g, we can move the resulting line on to the x-axis. Let

Hy =g ' f7'(E"), Hp = g7 f T (E7).

Since all of the conditions of the plane separation postulate are preserved under isometries, we have the following
theorems.

Theorem 5.5.4: E satisfies the conditions of the plane separation postulate.

Theorem 5.5.5: Isometries preserve half planes.

Proof:

Let H; be a half plane with edge L, and let H, be the other side of L. If f is an isometry, then f(L) is a lineL". Let
H, = f(Hy), Hy = f(H) , ,

Then H; and H, are convex, and every segment between two points f(A) of H; and f(B) of H, mustintersect f(L).
Therefore, H; is a half plane with L’ as edge.

From theorem 5.5.5 it follows that:

Theorem 5.5.6: Isometries preserve interior of angles.

That is, if | is the interior of 2ABC, then f(I) is the interior of f(£ABC).

5.6. Angle Congruence

We want to verify that angle congruence, defined by means of isometries of E onto itself, satisfies the postulate of angle
congruence, and also satisfies SAS. Only one of this verification is trivial.

Statement 1: For angles, congruence is an equivalence relation.

Proof:

1) £A = £A always, because the identity functions E < E is an isometry.

2) If LA = 2B, then £B = £A, because the inverse of an isometry is an isometry.

3) If LA = «£B, and £B = «C, then £A = «C, because the composition of the isometries for which 24 < 2B and
4B & £( is always an isometry for which A & 2B and 4B « £C is always an isometry for which 2A & «C.

The other verification is very difficult. We begin with a lemma.

Lemma 5.6.1: Let f be an isometry of E on to itself. If f(E*) = E*, and f(P) = P for every point P of the x-axis, then f
is the identity.

Proof:

Let A be the origin (0, 0),and let B = (1,0). Let Q = (a, b) beany point,and let f(Q) = (c,d). Then AQ = f(A)f(Q),
BQ = f(B)f(Q).

Taking the square of each of these distances, we get

a?+ b? =c?+d?,

(a—1?%+b%=(c—-1)*+d?

a’+b*—2a+1=c>+d*—2c+1,

So that a = c. Therefore, b?> = d?. Since f(E™) = E*, band d are both positive, both zero, or both negative.
Therefore, b = d. Thus, f(Q) = Q for every Q, which was to be proved.

Lemma 5.6.2 Let A be the origin; Let B = (a,0), (a > 0) be a point of the x-axis; and let C = (b,c),and D = (d,e),
be points of E* and E~ such that AC = AD,BC = BD.

Then there is an isometry f:E < E suchthat f(A) = A, f(B) =B,f(C) =D and f(D) = C.

Y

&€= (bc)
= (a0}

A X
D=(de)

Figure 5.6.1

Proof: We shall show that d=b and e=-c. The desired isometry f will then be the function (x,y) < (x, —y).
Given b? + c? = d? + e?,
(b—a)’+c?=(d—-a)’+e?
We have —2ab = —2ad. Since a > 0, this gives b = d. Therefore, c? = e?. Since ¢ > 0 and e < 0 we have e = —c.
Lemma 5.6.3: Given £ABC, there is an isometry f of E on to itself such that
f(BA) = BC and f(BC) = BA. That s, the sides of the angle can be changed by an isometry.
In the proof we may suppose that BA = BC, since A and C can always be chosen so as to satisfy the condition.
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(e
Figure 5.6.2

Let D be the midpoint of AC. Using a translation followed by a rotation, we get an isometry g: E < E such that g(ﬁ)
is the positive end of the x-axis (Fig. 6.7). First we translate B to the origin, and then we rotate.

By the preceding lemma there is an isometry h: E < E, interchanging A and €', and leaving B and D' fixed. Let
f=g"hg.

That is, f is the composition of g, h and g~*. Then f is an isometry; f(B) = B,

f(A) =C,and f(C) = A.

Figure 5.6.3

It is now easy to verify that the rest of our congruence postulates. Oddly enough, the easiest is SAS. We put this in the style
of a restatement.

SAS. Given AABC,AA'B'C’, and a correspondence,

ABC & A'B'C'.

If

1. AB=AB,2.4B=+B,3.BC =B'C,4.LA= 1A ,5.24C = 2C,6.AC = A'C’
A A

L 1

B B ¢
Figure 5.6.4

Proof:
By hypothesis 2, there is an isometry E < E, 2B < £B'. By Lemma 3, it follows that there is an isometry
fiE©oE,
:Bo B
:BA o BA
:BC & B'C’
If the given isometry moves £B on to 2B’ in the wrong way, then we follow it by an isometry which interchanges the
sides of 2B'. From 1 it follows that
A = f(Aand C' = f(C).
Therefore,2A" = f(2A),and £A" = £A; £C" = f(£C), 2C" = £C,and also
AC = A'C',f because is an isometry.
This proof bears a certain resemblance to Euclid’s proof of SAS by supposition.
Statement 2: The angle Construction Postulate: Let ZABC be an angle, let B'C bea ray and let H be a half plane
whose edge contains B'C’. Then there is exactly one ray B'A” with 4" in H such that LABC = 2A'B'C'.
We give the proof merely in outline. It should be understood that all of the functions mentioned are isometries of E on to E
and that the ray R is the positive x-axis.
1. Take f, sothat £;(B'C") = R
2. Take f, sothat f,(R) =R and f,f;(H) = E* (of course, if f;(H) isalready =E™*, we let f, to be the identity. )
3. Take g; sothat g;(BC) = R.
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4. Take g, sothat g,(R) =R and g,g,(A) isin E™T.
5. Let zx = f; ' f, 19,9, (¢ABC). Then zx isthe 2A'B'C' that we are interested.

6. Suppose that there are two rays B A" and B'A" satisfying these conditions.

EY|

K] N
Figure 5.6.5
Then
—T 7 " v
Lfi(B'A) = f,/1(B'A") = KM
Where K and M are in E* and KL and KM are different rays. Since 2LKN = £ABC = +MKN,
We have 2LKN = £MKN
Thus, there is an isometry f of E on to itself such that f(£LKN) = 2£MKN.
By Lemma 3, f can be chosen so that f(KN) = KN and f(KL) = KM. It follows that for each point P of the x-axis,
f(P) = P. Since isometries preserve half-Planes and f(L) isin E*, we have f(E*) = E.

By Lemma 1, it follows that f is the identity. This contradicts the hypothesis f(ﬁ) =KM # KL.
Statement 3: The angle addition postulate:

If

1. D is the interior of £BAC

2. D' is in the interior of £B'A'C’

3. 2.BAD = «B'A'D’

4, /DAC = «D'A'C’

5. £BAC = «B'A'C’

Figure 5.6.6

Proof:

1. By an isometry f we move AD on to R and B in to E*. For this we need a translation followed by a rotation and
perhaps a reflection (x,y) < (x, —y).
By an isometry g we move A'D' onto Rand B’ into E*.
3. By the uniqueness condition in the preceding postulate we know that
f(AB) = g(A'B) and f(AC) = g(A'C").
4. Therefore, f(£BAC) = g(«B'A'C"). Hence, 2BAC = +B'A'C’; the required isometry is g~ f.
Statement 4: The angle Subtraction Postulate:
If
1. D isthe interior of ZBAC
2. D' is the interior of 2B'A'C’

N

3. 2BAD = +B'A'D’

4. LBAC = £B'A'C', then

5. 2DAC = «D'A'C’

B B
D D
A C A (-:
Figure 5.6.7
Proof:

Let f be the isometry given by (4) so that ZBAC = £B'A'C'. By Lemma 3, we may suppose that f(4B) = A'B’ and
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f(AC) = A'C’. Then surely f(£BAD) = £BAD.
The uniqueness condition in C-7 therefore tells us that f(AD) = A'D’. Therefore, f(DAC) = +D'A'C’, and £DAC =

2D'A'C’ which was to be proved.
Exercise:

1.

Let L be aline and let A, B, and C be three distinct points of L with coordinates X, y, and z, respectively. If the point B
is between the points A and C, then the number y is between the numbers x and z.
Show that there are at least three points in a plane E which are not contained in any single line.
Given two distinct points P = (xq,y1) and Q = (x3,y,), then show that there is exactly one line L in a plane E
containing both points.
Suppose L is a line in the real Cartesian plane defined by the equation,
Ax+ By +C =0 and f:L — R? is the function given by
yif B=0

f(G) = xh+§ﬁ#3¢0

a. Provethat f is a coordinate system on L.

b. If every line L in R? is given the coordinate L as defined in (a), prove that the distance function defined on R? is
the standard distance studied in analytic geometry: d((x1,y1), (x2,¥2)) =/ (11 — ¥2)% + (%1 — x2)2.

Let L be a line and let A, B, C be three distinct points of L with coordinates x, y, z, respectively. Then the point B is

between the points A and C if and only if the number y is between the numbers x and z.
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