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Abstract  Euclidean Geometry is a mathematical system attributed to Alexandrian Greek mathematician Euclid, which 

he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively 

appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been 

stated by earlier mathematicians, [1] Euclid was the first to show how these propositions could fit into a comprehensive 

deductive and logical system. [2] The Elements begins with plane geometry, still taught in secondary school (high school) as 

the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much 

of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1] For 

more than two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geometry had been 

conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any 

theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other 

self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An 

implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space 

is a good approximation for it only over short distances (relative to the strength of the gravitational field). [3] Euclidean 

geometry is an example of synthetic geometry, in that it proceeds logically from axioms describing basic properties of 

geometric objects such as points and lines, to propositions about those objects, all without the use of coordinates to specify 

those objects. This is in contrast to analytic geometry, which uses coordinates to translate geometric propositions into 

algebraic formulas. 
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1. Absolute Geometry 

1.1. Introduction  

We shall be concerned mainly with Geometry, like arithmetic, requires for its logical development only a small number of 

simple, and fundamental principles. These fundamental principles are called the Axioms Of Geometry. The choice of the 

axioms and the investigation of their relation to one another is a problem which, since the time of Euclid, has been discussed 

in numerous excellent memories to be found in the mathematical literature. 

Geometry is a science of shape, size and symmetry. While arithmetic dealt with numerical structures, geometry deals with 

metric structures. Geometry is one of the oldest mathematical disciplines and early geometry has relations with arithmetic. 

Geometry was also a place, where the axiomatic method was brought to mathematics: Theorems are proved from a few 

statements which are called axioms. 

Absolute Geometry is a geometry which depends only on the first four of Euclid’s postulates and not on the parallel 

postulates. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulates. 

Let us consider three distinct systems of things. The things composing the first system, well will call points and designate 

them by the letter A, B, C, those of the second, we will call straight lines designate them by the letters a, b, c, and those of the 

third system and we will call planes and designate them by the Greek letters , , ...   . The points are called the elements of 

linear geometry; the points and straight lines, the elements of plane geometry; and the points, lines, and planes, the elements 

of the geometry of space or the elements of space. 
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We think of these points, straight lines, and planes as having certain mutual relations, which we indicate by mean of such 

word as “are situated”, “between”, “parallel”, “congruent”, “continuous”, etc. the complete and exact description of these 

relations follows as a consequence of the axioms of geometry. These axioms may be arranged in five groups.  

Each of these groups expressed, by itself, certain related fundamental fact of our intuition.  

I. Axioms of incidence (connection) 

II. Axioms of betweenness (order) 

III. Axioms of parallel (Euclid’s axiom)  

IV. Axioms of congruence  

V. Axioms of continuity  

Although point, line and plane etc. do not have normal definition, we can describe them intuitively as follows.  

Point: We represent points by dot and designate them by capital letters. (See figure 1.1.1).  

Line: We represent lines by the indefinitely thin and long mark. Lines are designated by small letters. We regard lines as a 

set of points that can be extended as far as desired in either direction (See figure 1.1.2). 

Plane: We think of a plane as a flat surface that has no depth (or thickness). We designate planes by Greek letters , , ...  
and represent it by some appropriate figure in space. (See figure 1.1.3) 

 

Figure 1.1.1.  Point         Figure 1.1.2.  Line           Figure 1.1.3.  Line on a plane 

In this subsection the axioms completely and exactly describe the properties or characteristics that the undefined elements 

should possess. They also state the relationships that hold among the undefined terms and the existence of some of these 

elements. We shall see them one by one. 

1.2. Axioms of Incidence 

The axioms of incidence determine the properties of mutual disposition of points, lines and planes by the term “incident”. 

Statement such as “a point is incident with a line”, “a point lies on the line”, a line passes through a point” and a line contains 

a point” are assumed to be equivalent. Thus we can use them interchangeably.  

So if a point is incident with two lines then we say that they intersect at the point or the point is their common point. 

Analogues statement will be used for a point and a plane, and for a line and a plane.  

Convention: When numbers like “two”, “three” and “four” and so on are used in any statement of this material, they will 

describe distinct objects. For instance by “two planes”, “three lines”, “four points” we mean “two distinct planes”, “three 

distinct lines”, “four distinct points”, respectively. But by line 𝒎 and  𝒏, we mean 𝒎 and 𝒏 may represent different or the 

same line. The same true for points and planes. The group of the axioms of incidence includes the following: 

AI1: If 𝐴 and 𝐵 are two points, then there is one and only one line  that passes through them.  

 

Figure 1.2.1.  A Line through two points 𝐴 & 𝐵 

At least two points on any line (exactly one line through two points). This axiom asserts the existence and uniqueness of a 

line  passing through any two given distinct points A and B.  

Here  can be described as a line determined by the two points A and B. We denote the line passing through A and B by

AB .  

AI2: Given any three different no collinear points, there is exactly one plane containing them.  

For every plane there exists a point which it contains. 

It follows from AI2 that any three given distinct points not all on the same line determine a plane passing through the three 

points and there is no other plane different from this containing all the three given points. 

AI3: If two points 𝐴 and 𝐵 lie in a plane   then the line containing them lies in the plane   

 

Figure 1.2.2.  Two Points 𝐴 and 𝐵 on a plane 
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AI4: If two planes intersect, then their intersection is a line. 

AI5: a) There exists at least two points which lie on a given line. 

b) There exists at least three points which do not lie on a line  

(Every plane contains at least three non collinear points). 

 

Figure 1.2.3.  At least three non-collinear points 

c) There exists at least four points which do not lie on a plane. 

Now let us see some of the immediate consequences of this group of axioms. 

Theorem 1.2.1: If 1m  and 2m  are two lines, then they have at most one point in common. 

Proof: Suppose 1m  and 2m  have two points in common. Let these points be A and B. Thus both 1m  and 2m  passes 

through A and B. 

 

Figure 1.2.4.  Two Lines having a common point 

But this is impossible by AI1. Hence they cannot have two or more points in common. Therefore they have at most one 

point in common. 

Remark: From the above theorem it follows that two distinct lines either intersect only at one point or do not intersect. 

 

Figure 1.2.5.  Two Intersecting and Parallel Lines 

Theorem 1.2.2: Two planes meet in a line or they do not meet at all. 

Proof: Suppose two planes 1  and 2  have a point P in common. Then 1  and 2  have one more point Q in 

common by AI4. Thus P and Q lie on 1  and P and Q lie on 2 . But P and Q determine a unique line, say h , by AI1. So 

line h  lies on both 1  and 2  (why?), that is every point on line h  is common to both 1  and 2 . 

Further they cannot have any other point not on h  in common. (What will happen if they have such a point in common?). 

Therefore they meet in a line if they have a point in common otherwise they do not meet. 

Definition 1.2.1: Three or more points are called collinear if and only if they lie on the same line. 

Definition 1.2.2: 

a) Points that lie in the same plane are called coplanar points. 

b) Lines that lie on the same plane are called coplanar lines. 

Notation: If P, Q and R are three non collinear points on a plane   then we denote   as PQR. 

Theorem 1.2.3 Two intersect lines determine one and only one plane. 

Proof: Left for students as an exercise. 

Activity: Answer the following questions and the give a formal proof of theorem 1.2.3  

i. How many lines are given? 

ii. Are they assumed to be intersecting? 

iii. What do we need to show? 

iv. How many points do two intersecting lines have in common? Why? 

v. Is there a point on each of these lines different from their common point? Why? 

vi. How many points do we need to determine a unique plane? 

Example 1.2.1  

a) Prove that a line and a point not lying on it determine one and only one plane. 

b) Show that there are at least four planes. 
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Solution: 

a)  Given a line  and a point P not lying on . We need to show that there is one and only one plane containing P and 

. By AI5 (a),  contains at least two points say X and Y. Points X, Y, and P are no collinear (Why?). Thus they 

determine a unique plane   containing them. Moreover  lies completely on   (why?). so, we can conclude that 

P and  determine plane   uniquely. 

b)  By AI5 (c), there are at least four points that are not coplanar. Let us designate these points by X, Y, Z and W. Any three 

of them are not collinear (why?). Thus we have four planes namely X Y Z, X Y W, X Z W and YZW. This completes 

the proof. 

Example 1.2.2:  

Prove that if the line intersects a plane not containing it, then the intersection is a single point. 

 

Proof: Let L be a line intersecting a plane E. We have given that L E  contains at least one point P; and we need to 

prove that L E  contains no other point Q. Suppose that there is a second point Q in L E . Then L PQ  by theorem 

1.2.1 and also PQ  by AI3. Therefore, L lies in E which is contradicts the hypothesis for L. 

Activity: prove that a plane and a line not lying on it cannot have more than one point in common. 

1. Show that there are at least 6 lines. 

2. Develop model for the system described by the axioms of incidence. 

(An interpretation satisfying all the five axioms) 

1.3. Distance Functions and the Ruler Postulate 

For most common day-to-day measurement of length, we use rulers, meter stick, or tape measures. The distance and ruler 

postulates formulize our basic assumptions of these items into a general geometric axiomatic system. The Ruler postulate 

defines a correspondence between the points on a line marking on a meter stick and the real numbers (units of measurement) 

in such a manner that the absolute value of the difference between the real numbers is equal to the distance between the points 

(measurement of the length of an object by the meter stick matches our usual Euclidean distance) 

The Ruler placement postulate basically says that it does not matter how we place a meter stick to measure the distance 

between two points; that is, the origin (end of the meter stick) does not need to be at one of the two given points. 

The Ruler Postulate 

The points of a line can be placed in a correspondence with the real numbers such that: 

i.  To every point of the line there corresponds exactly one real number. 

ii. To every real number there corresponds exactly one point of the line. 

iii. The distance between two distinct points is the absolute value of the difference of the corresponding real numbers. 

Note that the first and second conditions of the Ruler Postulate imply that there exist a one-to-one and onto function. As a 

reminder, we write the definitions for one-to-one and onto function. 

Definition 1.3.1 A function f  from A to B is onto B if for any b in B there is at least one such that ( )f a b . 

Definition 1.3.2 A function f  from A to B is one-to-one (1-1) if ( ) ( )f x f y  then 𝑥 = 𝑦 for any 𝑥 and 𝑦 in A. (note 

that the contra positive of this definition can be used in writing proofs.) 

Definition 1.3.3 the line segment determined by A and B, denoted by AB , is the set of points P such that P is between A 

and B and the end points A and B. In other words the (line) segment (joining A and B) is  ,AB A B 

 𝑃: 𝑃 𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵  

Definition 1.3.4 The length of segment AB  denoted by AB is the distance from A to B. call the points A and B end points 

of AB ., 

Definition 1.3.5 for two segments AB  and AC AB BC AB BC   . 

(I.e. AB  is congruent to AC ) 

Axiom 1.3.1 (Ruler Postulate) 

For every pair of points P, Q there is a number PQ called distance from P to Q. for each line  there is one to one mapping 



 Applied Mathematics 2019, 9(3): 89-161 93 

 

:f R  such that ( )f P x  and ( )f Q y  then PQ x y   is the value of the distance.  

Definition1.3.6 Let Þ be the collection of all points. A distance (coordinate) function d is mapping from Þ × Þ into 

ℛsatisfying the following conditions: 
1. The mapping d is a function, I.e. each pair of points in Þ × Þ assigned one and only one negative real number. 

2.  , ( , )d P Q d Q P  (for all 𝑃, 𝑄 ∈  Þ) 

3.  , 0d P Q   if and only if P=Q 

Theorem 1.3.1 (Triangle Inequality) 

 , ( , ) ( , )d P Q d P R d R Q   

Existence postulate 1.3.1: The collection of all points from a non-empty set with more than (i.e at least two) points. 

Lemma 1.3.1 Given any two points 𝑃, 𝑄 ∈  Þ  then there exist line containing both P and Q. 

Proof: We have two cases (either 𝑃 = 𝑄 or 𝑃 ≠ 𝑄) 

If  𝑃 ≠ 𝑄, then there is exactly on line PQ  such that P and Q both line  (incidence postulate)  

If 𝑃 = 𝑄, then by the existence postulate there must be a second point 𝑅 ≠ 𝑃 and by incidence postulate there is a unique 

line  that contains both P and R. Since,  𝑃 = 𝑄, then  𝑄 ∈ ℓ. Hence there is a line  that contains both P and Q. 

Definition 1.3.7 A metric is a function 𝑑: Þ × Þ ↦ ℜ  (where Þ is the set of all points) that satisfies: 

1.  , ( , )d P Q d Q P  (for all 𝑃, 𝑄 ∈  Þ) 

2.  , 0d P Q   (for all 𝑃, 𝑄 ∈  Þ) 

3.  , 0d P Q   if and only if P=Q 

Theorem 1.3.2: Distance is a metric. 

Proof: let P and Q be points. Then we need to show that each of the following hold: 

 𝑃𝑄 = 𝑄𝑃 

 𝑃𝑄 ≥ 0 

 𝑃𝑄 = 0 ⇔ 𝑃 = 𝑄 

By lemma 1.3.1 there is line  that contains both P and Q. By the ruler postulate; there is a one to one function 

:f R . Let ( )x f P  and ( )y f Q  such that the distance is given by  

( ) ( )PQ f P f Q x y     

To see (a), 

PQ x y y x QP      

To see (b) 

0PQ x y    

To see (c) 

First suppose that PQ=0. Then  

0 PQ x y    

 x y   

 P Q   

Where the last step follows because 𝑓 is one-to-one. To verify the converse of (c) suppose that  

P Q . Then ( )x f P = ( )f Q y  so that 0PQ x y    which verifies the converse of (c). 

Example1.3.1: Let  1 1,P x y ,  2 2,Q x y , Then      
2 2

2 1 2 1,d P Q x x y y    . To show that this is a metric, 

calculate 

     
2 2

2 1 2 1,d P Q x x y y       
2 2

1 2 1 2 ( , )x x y y d P Q      

This Verifies Property (1). 

To get property (2), observe that the value of the square root is a non-negative number, hence the square root is defined and 

positive or zero.  

For property (3), first assume P=Q. then      
2 2

1 1 1 1, ( , )d P Q d P P x x y y     . 

This shows that (P=Q) implies  , 0d P Q  . Then  
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   
2 2

1 2 1 2 0x x y y     

   
2 2

1 2 1 2 0x x y y     

If either 1 2 0x x   or 1 2 0y y 
 

then the right hand side of equation 1.1 is non-zero. Hence 1 2x x  and 1 2y y , 

which means P=Q. Thus  , 0d P Q   implies P=Q. 

Example 1.3.2: In the Cartesian plane any (non-vertical) line  can be described by some equation y mx b   and any 

vertical line 𝑥 = 𝑎. Show that an arbitrary line in the Euclidean plane satisfies the ruler postulate. 

Solution:  

Let 2( , ) 1f x y x m   if  is non-vertical, and set ( , ) ( , )f x y f a y y 
 
if is vertical. 

To see that f is a distance (coordinate) function and that this works, we need to consider each case (vertical and 

non-vertical) separately and to show that f  is 1-1, onto, and satisfies 

( ) ( )PQ f P f Q   

In each case, suppose first that  is non-vertical, and define f . 

(a)  To show that f is one-to-one, let  1 1,P x y ,  2 2,Q x y  and suppose that ( ) ( )f P f Q  

Then 2
1 1x m  2

2 1x m  

Since 21 0m  it can be cancelled out, giving 1 2x x  Thus  

1 1 2 2y mx b mx b y      

Hence, f  is one-to-one ( ( ) ( ))P Q f P f Q    

(b)  To show that  𝑓  is onto, pick and z R  define 
21

z
x

m



  

and  𝑦 = 𝑚𝑥 + 𝑏 . Then 𝑃 𝑥, 𝑦  𝜖 ℓ  and 

 𝑓 𝑃 = 𝑓 𝑥, 𝑦 = 𝑥 1 + 𝑚2 = 𝑧. Thus 𝑓 is onto. 

(c)  To verify the distance formula, let  𝑃 =  𝑥, 𝑦  𝜖 ℓ and 𝑄 =  𝑥, 𝑦  𝜖 ℓ. Then 𝑦1 = 𝑚𝑥1 + 𝑏  and  𝑦2 = 𝑚𝑥2 + 𝑏 .  

Hence, ( , )PQ d P Q  

2 2
2 1 2 1( ) ( )x x y y     

2 2
2 1 2 1( ) ( )x x mx b mx b       

2 2
2 1 2 1( ) ( ( ))x x m x x     

2
2 11 m x x    

2 2
2 11 1x m x m     

2 1y y   

( ) ( )f P f Q   

Thus, if  is not a vertical line, f  is a coordinate function. 

Now suppose that  is a vertical line with equation x a and define :f R by ( , )f a y y . 

(a)  To show that f  is one-to-one, let 1( , )P a y   and 2( , )Q a y  , where P Q , hence 1 2y y  and

1 2( ) ( )f P y y f Q   . Which show that f  is one-to-one ( ) ( )P Q f P f Q    

(b)  To show that f  is onto, let y R  be any number. Then ( , )P a y   and ( )f P y . Hence,  is onto. 

To verify the distance formula, 1( , )P a y  and 2( , )Q a y .  

Then, ( , )PQ d P Q  

2 2
2 1( ) ( )a a y y     

2
2 1( )y y   
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2 1y y   

( ) ( )f P f Q   

The following theorem tells us that we can place the origin of the ruler at any place we want, and orient the ruler in any 

direction we want. 

Theorem 1.3.3: (Ruler Placement Postulate) 

For every pair of distinct points P, Q there is a coordinate function :f PQ R  such that ( ) 0f P   and ( ) 0f Q  . 

Lemma 1.3.2: Let :f R  be a coordinate function for  and let c R . Then :g R  given by 

( ) ( )g p f P c   is also a coordinate function for  

Proof: We need to show three things: g is one-to-one, onto and ( ) ( )PQ g P g Q   

a)  Suppose ( ) ( )g p g Q . Then ( ) ( )f p c f Q c   . So ( ) ( )f p f Q . Since, f  is one-to-one, P=Q. Thus, 

( ) ( )g p g Q P Q   . So g is one-to-one. 

b)  Let x R . Since, f  is onto, there exist P  such that ( )f p x c  . So that ( ) ( )g P f p c x   . Hence for all

x R , there exist P  such that ( )g P x . Thus, g is onto. 

Activity: Verify the distance formula for the above lemma, i.e. show that ( ) ( )PQ g P g Q    

Lemma 1.3.3: Let :f R  be a coordinate function. Then, ( ) ( )g x f x  , is a coordinate function. 

Proof: We need to show three things: g is one-to-one, onto and ( ) ( )PQ g P g Q   

a.  Let ( ) ( )g P f P  . Suppose that ( ) ( )g P g Q . Then ( ) ( )f Q f P    hence P=Q. hence g is one-to-one. 

b.  Let x R . Since, f  is onto, there is some point P  such that ( )f p x   hence, there exist P  such that

( )g P x   there is some point P  such that ( )g p x . 

Hence, g is onto. 

The last property is left as an activity. Thus, 𝑔 is a coordinate function. 

Activity: 

1. In lemma 1.3.3 shows the last property. 

2. Show that the Euclidean distance function d satisfies the triangle inequality. 

Now let us prove theorem 1.3.3 

Proof: (theorem 1.3.3) 

Pick any two distinct points P Q . By the incidence postulate there is a line PQ . By the ruler postulate there exists 

a coordinate function :g R . Define ( )c g P  . And define :h R  by ( ) ( )h x g x c  . Then h is a coordinate 

function by lemma 1.3.1. Since ( ) 0h P  , it must be the case that ( ) 0h Q   because h is one-to-one. We have two cases to 

consider. ( ) 0h Q   Or ( ) 0h Q  . If ( ) 0h Q  , then set ( ) ( )g P h P  and the theorem is proven. 

If ( ) 0h Q  , define :g R  by ( ) ( )g R h R  , which is a coordinate function by lemma 1.3.2. Since, 

( ) ( ) 0g P h P    and ( ) ( ) 0g Q h Q   , we see that g has a desired properties. Fig. 1.3.1 circles that intersect in the real 

plane do not necessarily intersect in the rational plane. 

  

Figure 1.3.1.  Two intersecting lines 

The following examples illustrate why rulers (hence distance) requires real numbers and no rational numbers. 

Example 1.3.3: The distance between the point (1, 0) and (0, 1) in Þ is  2  

Example 1.3.4: Find the intersection of the line y x  and the unit circle using whatever knowledge you may already 

have of circles and triangles. 

-2

-1

2

1
p Q

43210-1-2



96 Kassahun Tesfaye Agzew:  Fundamental Concepts of Geometry  

 

Example 1.3.5: Let (0,0)P   and (2,0)Q  . The circle of radius 2 centered at P and Q do not intersect in 2Q  ( Q  is a 

rational numbers). Their intersection in ℜ2 is (1, ± 3) (fig. 1.3.1) 

Remark! The Euclidean distance on ℜ2  where  ℜ  is the set of real numbers is given by

2 2
2 1 2 1( , ) ( ) ( )d P Q x x y y     for 1 1( , )P x y

 
and 2 2( , )Q x y for 1 2 1 2, , ,x x y y  real numbers. 

Activity:  

Let L be a vertical line aL . Then 𝑃□𝐿𝑎  implies that ( , )P a y for some y. Define the standard ruler : af L R  by

( , )f a y y
.
 Let L be a line ,m bL . Then 𝑃□𝐿𝑚,𝑏  with ( , )P x y  implies that y mx b  . Define the standard ruler 

,: m bf L R by 2( ) ( , ) 1f P f x y x m   . 

In the Cartesian plane: 

a. Find the Euclidean distance between P=(2,5) and Q=(0,1). 

b. Find the coordinate of (2, 3) with respect to the line x=2. 

c. Find the coordinate of (2, 3) with respect to the line y=-4x=11. 

Remark! The distance function d satisfies the triangle inequality if  

( , ) ( , ) ( , )d A C d A B d B C   for all A, B and C. 

Example 1.3.6: consider the simplest non-vertical line 𝑦 = 𝑥. The points  0, 0 ,  1, 1 ,  2, 2  𝑎𝑛𝑑 (3, 3) are on the line. 

What is the distance from   0, 0  𝑡𝑜  1, 1 , From  1, 1  𝑡𝑜  2, 2 ?, From  1, 1  𝑡𝑜  3, 3 ? Note the standard ruler for this line 

is ( , ) 2f x y x . The coordinate for the four points determined by the standard ruler are 0,  2, 2 2 𝑎𝑛𝑑 3 2 respectively. 

Activity: By subtracting the appropriate coordinates of the ruler, can you obtain the distance between the points? 

Example 1.3.7: Let L be the line 2,3L  (i.e. a line with slope 2 containing the point (0, 3)) in the Cartesian plane with 

distance function d. show that if for an arbitrary point  𝑄 =  𝑥, 𝑦 ,  𝑓 𝑄 = 5𝑥, then show that f is a ruler for L. also, find the 

coordinate of R=(1,5). We first show f satisfies the ruler equation. 

Let 1 1( , )P x y  and ( , )Q x y be points in 2,3L . 

2 2
1 1( , ) ( ) ( )d P Q x x y y                                    why? 

2 2
1 1( ) ((2 3) (2 3))x x x x                         why? 

2 2
1 1( ) (2 2 )x x x x                                  why? 

2 2
1 1( ) 4( )x x x x                                   why? 

2
15( )x x                                       why? 

15 x x                                 why? 

15 5x x                                     why? 

( ) ( )f P f Q                                        why? 

This proves the ruler equation. 

Activity:  

A. Why is 𝑓 bijective? 

B. What is that inverse function? 

C. Given a real number r, set x=5r. then find y using the equation y=2x+3 

D. Find the coordinate of R 

1.4. The Axiom of Betweenness 

One of the simplest ideas in geometry is that of betweenness for points on the line. Here we use the undefined term 

“between” to establish some properties of an order relation among points on a line and plane. 

Definition 1.4.1: Let A, B and C is three collinear points. If AB BC AC  , then B is between A and C. 

Notation: Point B is between points A and C will be denoted as A-B-C. 

AB1: If point B is between points A and C, then A, B, C are three distinct points on a line and B is also between C and A. 

 

Figure 1.4.1 
Figure 1.4.1

CBA
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This axiom implies that the term ‘between’ is used only for points on a line and state that the relative position of points A 

and C does not affect B’s property of lying between A and C. 

AB2: If A and B are any two different points on a line h  then there exist at least one point C on h  such that A-C-B. 

This axiom guarantees the existence of at least three points on a line. 

AB3: If A, B and C are three collinear points then one and only one of them is between the others. AB3 states that for any 

three collinear points A, B and C, exactly one of the following is true: 

AB4: Any four point on a line can be labeled in an order A, B, C and D in such a way that 

A-B-C-D. As a result of AB4, we have:  

  

Figure 1.4.2.  Four Points on a line 

Definition 1.4.2: Let A and B be two points. The set of points on the line AB  that consists of points A and B, and all 

points between A and B is called a line segment determined by A and B. we denote it by AB . Points A and B are called end 

points of the line segment AB . Using set notation we write    : ,AB X A X B A B     

This means that for distinct points A, B, C; B is between A and C, and write A-B-C, if C AB  and AC+BC=AC 

Definition 1.4.3: Let O be a point on a line . A set of points containing of point O and all points which are on one and the 

same side of O is called a ray. Point O is called end point of the ray. We use point O and any other points say A, on the ray to 

name it. 

  

Figure 1.4.3                       Figure 4.4.4 

In short the ray (from A in the direction of B) is  :AB AB P A B P     

 

Figure 1.4.5.  Betweenness on a line segment (top), ray (middle), and line (bottom) 

Activity: 

1.  From the discussion we made so far, what do you conclude about the number of points on a line? Give justification for 

your answer? 

2.  In how many ways we can label four point P, Q, R and S on a line if P-Q-R is given. 

Exercises 

1. Explain why collinear is necessary in the definition of betweenness. 

2. Prove that a segment has a unique midpoint. 

Theorem 1.4.1: If A-B-C, then C-B-A. 

Proof: We must show that CB+BA=CA 

 CB+BA = BA+CA  why? 

 =AB+AC  why? 

 =AC     why? 

 =CA    why? 

Activity: 

1. Suppose the intersection of AB  and CD  is CB . Is A-C-B-D? Explain your answer. 

2. In the Euclidean plane A-B-C if and only if there is a number 𝑡  with 0 < 𝑡 < 1 and 𝐵 = 𝐴 + 𝑡(𝐶 − 𝐴). 
A line  lying in plane  , divides the remaining points of the plane in two parts (called half planes), so that the line 

segment determined by two points in the same half planes doesn’t intersect , whereas the line segment determined by two 

points in different half planes intersect . 

DCBA

m
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Figure 1.4.6 

In fig.1.4.6, 1P  and 2P  are on the same half plane. But 1Q  and 2Q  are on different half planes. 

Theorem 1.4.2: Every segment contains at least one point different form its end points. 

Proof: Let A and B be end points of a segment AB . From AI5b, we have a point C not on line AB . Now taking A and C 

there exist a point D on the line through A and C such that A-C-D (AI2). Again by using AI2, we have a point E on line BD  

such that D-B-E. Now consider line EC . It divides a plane into two half planes thus points A and D are on different half 

planes and points B and D are on the same half planes. Hence, A and B are on different half planes. So AB  intersects EC  

at some point, say X. point X different from A and B (why?) and X is on AB . Consequently AB  contains at least one point. 

 

Figure 1.4.7 

Activity: 

1. Prove that if m  is a line then there exist at least three points in the plane containing m , which does not lie on m . 

2. Let A and B be two points. Does there exist a point X on the line through A and B such that A-X-B? 

Theorem 1.4.3: (Betweenness theorem for points)  

Let A, B, C be distinct points on the line. Let :f R  be a coordinate function for .  

Then A-C-B if and only if either ( ) ( ) ( )f A f C f B   or ( ) ( ) ( )f A f C f B   

Proof: Suppose that ( ) ( ) ( )f A f C f B  . Then  

( ) ( ) ( ) ( )AC CB f C f A f B f C      

 ( ) ( ) ( ) ( )f C f A f B f C     

 ( ) ( )f B f A   

 =AB 

So that A-C-B. A similar argument holds in ( ) ( ) ( )f A f C f B  . 

Now consider the converse. Assume that A-C-B so that AC+CB=AB, i.e. ( ) ( ) ( ) ( ) ( ) ( )f C f A f B f C f B f A     . 

But by algebra, we also have ( ) ( ) ( ) ( )f C f A f B f C   ( ) ( )f B f A  . Hence, ( ) ( ) ( ) ( )f C f A f B f C  

( ) ( )f B f A  . Now let ( ) ( )u f C f A   and ( ) ( )v f B f C  . Then u v u v   . From algebra we know that this 

means that either u or v is both positive and both negative. Assume the converse. If u>0 and v<0, then this gives u-v=u+v 

which implies v=0 or ( ) ( )f B f C : But C and B are distinct points so ( ) ( )f B f C ; if u<0 and v>0, then u+v=u+v which 

implies u=0 or ( ) ( )f A f C  which is impossible because A and C are distinct points. Since u and v have the same sign,  

then both ( ) ( )f C f A and ( ) ( )f B f C  have the same sign. If both ( ) ( ) 0f C f A   and ( ) ( ) 0f B f C  , then 

( ) ( )f C f A  and ( ) ( )f B f C so that ( ) ( ) ( )f B f C f A   If both ( ) ( ) 0f C f A   and ( ) ( ) 0f B f C  , then 

( ) ( )f C f A  and ( ) ( )f B f C  so that ( ) ( ) ( )f B f C f A   

Corollary1.4.1: If A, B, C is distinct collinear points then exactly one of them lies between the other two. 

Proof: Since A, B, C are distinct then they correspond to real numbers x, y, z. Then this is properties of real numbers, 

exactly one of x, y, and z lies between the other two. 

Corollary 1.4.2: Let A, B, C be points such that B AC . Then A B C AB AC     
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Proof: By theorem 1.4.5 one of the following holds 

( ) ( ) ( )f A f B f C                                      (1.1) 

( ) ( ) ( )f A f B f C                                      (1.2) 

If 1.1 holds, then ( ) ( ) ( ) ( )AB f B f A f C f A AC      

If 1.2 holds, then ( ) ( ) ( ) ( )AB f A f B f A f C AC      

To prove the converse, suppose that AB AC . By the corollary one of A, B, C lies between the other two. We have three 

possibilities A-B-C, B-A-C or A-C-B 

But B-A-C is not possible B AC  and B is distinct from A. so suppose A-C-B. Then either ( ) ( ) ( )f A f C f B   or

( ) ( ) ( )f A f C f B  . If ( ) ( ) ( )f A f C f B  , then ( ) ( ) ( ) ( )AC f C f A f B f A AB       . So AB AC  this is 

contradiction. 

If ( ) ( ) ( )f A f C f B  , then ( ) ( ) ( ) ( )AC f C f A f B f A AB      this is also contradiction. Hence A-C-B is not 

also possible. All that is left is A-B-C. 

Definition 1.4.4: The point M is the midpoint of the segment AB if A-M-B and AM=MB. 

Theorem 1.4.4: If A and B are distinct points then there exist a unique point M that is a midpoint of AB. 

Proof: To prove existence, let f be a coordinate function for the line AB , and define  

( ) ( )

2

f A f B
x


  

Since, f  is onto, there exist some point M AB  such that ( )f M x . Hence, 2 ( ) ( ) ( )f M f A f B   or 

( ) ( ) ( ) ( )f M f B f A f M   . Thus, AM=MB. To see that A-M-B, let  min ( ), ( )a f A f B  and  max ( ), ( )b f A f B . 

Since A and B are distinct then a b  and we have 
2

a b
x


  with a<b. hence 

2

2

b
x b   and 

2

2

b
x a   giving 

a<x<b. hence, either ( ) ( ) ( )f A f M f B   or ( ) ( ) ( )f A f M f B  . By theorem 1.4.3 A-M-B. To verify the uniqueness, 

let 'M AB , where 'M M  and ' 'AM M B . Suppose that ( ) ( )f A f B . 

Then both the following holds: ( ) ( ) ( )f A f M f B   and '( ) ( ) ( )f A f M f B  . Furthermore, since M  and 'M  

are midpoints. ' '1
( ) ( ) ( ) ( )

2
f A f M AM AB AM f A f M      . Since ( ) ( )f A f M  and '( ) ( )f A f M , this 

gives '( ) ( ) ( ) ( )f M f A f M f A    or '( ) ( )f M f M . Since f  is one to one then M = 'M , which proves uniqueness 

when ( ) ( )f A f B . If ( ) ( )f A f B , then the inequalities are reversed and we get ( ) ( )f A f M  and '( ) ( )f A f M  

which leads to ( ) ( )f A f M = '( ) ( )f A f M . Hence, M = 'M  by the same argument. Thus, the midpoint is unique under 

all cases. 

Definition 1.4.5: The union of three line segments AB , BC  and AC  are formed by three non collinear point A, B and 

C is called a triangle. The points A, B and C are called vertices and segments AB , BC  and AC  are called sides. 

We denote triangle with vertices A, B, C as ABC  

  

Figure 1.4.8 

Theorem 1.4.5: If a line in the same plane of a triangle does not pass through any vertex of a triangle and intersects one of 

its sides then it intersects one and only one of the other two sides. 

Proof: Let ABC be a triangle and  be a line lying in the plane determined by A, B and C. suppose  does not pass 

through any of A, B,C and intersects side AB. Then A and B are in different half-planes with respect to , Since  does not 

pass through C, point C is in one of the two half planes. If C is in the same half plane with A then  does not intersect AC , 

but intersect BC  by AII5 (as B and C are in different half planes in this case). If C is in the same half plane with, B and  
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does not intersect BC , but intersect AC  by AII5 (as A and C are in different half planes in this case). Consequently, in both 

cases intersect one and only one of the sides AC and BC of the triangle. 

Activity: 

1.  Restate theorem 1.4.4 using the undefined term “between” 

2.  Prove: If A and B are two points on a line m then there exist at least three points which lie on m and are between A and 

B. 

3.  Prove: If A, B, C are three non collinear points and D, E are points such that A-B-D, B-E-C, then the line through D and 

E has a point in common with AC  

Remark: 

1.  We know that a line contains at least two points by AI5. Now by using AB2 and theorem 1.4.4 repeatedly we get the 

following result: a line contains infinitely many points. 

2.  As a line lying in a plane divides the plane into two parts called half planes, any point of a line divides the line into two 

parts. We call them half lines. 

Let O be any point on line h. then we say that point A and B of h are on different sides of O if A-O-B, otherwise we say that 

they are on the same side of O. 

Activity: 

1. Examine possible cases in which two different rays can intersect. 

2. Give your own definition for an angle. After having done this, compare your definition with that given below. 

1.5. The Plane Separation Postulation 

Intuitively, we know that a line divides a plane into halves. These two halves are called half-planes. We will take this 

observation as an axiom. 

Definition 1.5.1: A set of points S is convex if for every ,P Q S , the entire segment PQ S . 

  

Figure 1.5.1 

Axiom 1.5.1 (Plane separation postulation)  

For every line  the points that do not lie on  from two disjoint convex non-empty sets 1H  and 2H  called 

half-planes bounded by  such that if 1P H  and 2Q H  then PQ  intersects . 

              

PQ  intersects the line because P and Q are 

in different half planes. 

The shaded region represents half plane denoted by 

,RH  that is half plane formed by line  and point R. 

Figure 1.5.2 

We can see that this postulate gives rise to the following notion. If both E and F lie in the same set (i.e. in the same 

half-plane determined by 1), then the line segment EF does not intersect 1.  

In this case we say that E and F lie on the same side of 1. More specifically, the plane separation postulate tells us the 

following (see fig. 1.5.2). 

1 2H H =the whole plane minus  

1 2H H    

1 1( , ) ( )E F H EF H    and ( )EF    

2 2( . ) ( )C H H CH H    and ( )CH    

Figure 1.5.1

Convex Not convex

R
C

B

A
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Thus, 1P H  and 2Q H PQ     

Definition 1.5.2: Let  be a line and A a point not on . Then we use AH  to denote the half-plane of that contains A. 

When the line is clear from the context we will just use notation AH . 

Definition 1.5.3: Two points A, B are said to be on the same side of the line  if they are both in the same have-plane. 

They are said to be on opposite sides of the line if they are in different half planes.  

In figure 1.5.2 points P and Q are on opposite sides of , while point P and F are on the same sides of . In terms of this 

notation, we can restate the plane separation postulate as follows. 

Axiom 1.5.2: (Plane Separation Postulate) 

Let  be a line and A, B be points not on . Then A and B are on the same sides of  if and only if AB    and 

are on opposite sides of  if and only if AB     

Definition 1.5.4: Two rays AB and AC  having the same endpoint A are opposite rays if AB AC  and 

BC AB AC   

 

Figure 1.5.3 

Definition 1.5.5: An angle is the union of two non-opposite rays AB  and AC  having the same endpoint, and is denoted 

by BAC  or CAB . The point A is called the vertex of the angle and the two rays are called the sides of the angle. 

Definition 1.5.6: Let A, B, C be points such that the rays AB AC  are not opposite. The interior of BAC  is 

, ,H AC C AB
H H  (i.e. the intersection of the two half-planes) 

 

Figure 1.5.4.  The interior of the angle BAC  is the intersection of the two half planes and shaded darker 

Definition 1.5.7: Three points A, B, C are collinear if there exists a single line  such that A, B and C all lie on . If no 

such line exists, then the points are non-collinear. 

Corollary 1.5.1: If A, B and C are non-collinear, then the rays AB  and AC are neither opposite nor equal. 

Definition 1.5.8: Let A, B and C is non-collinear points. Then the triangle ABC  is the union of the three segments  

ABC AB BC CA     

The points A, B and C are called the vertices of the triangle, and the segments AB , BC  and AC  are called the sides of 

the triangle. 

Theorem 1.5.1: (Pasch’s theorem) 

Let ABC  be a triangle and suppose that  is a line that does not include A, B or C. then if  intersects AB  then it 

also intersects either BC  or AC . 

 

Figure 1.5.5.  Any line that intersects AB  must intersect either CA  or BC  

Proof: Suppose that  intersects AB  and does not include any of the vertices A, B or C. let 1H  and 2H  be the two 

half planes determined by . Then the points A and B are in opposite half planes by the plane separation postulate and by 

hypothesis. 

B

CA
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Suppose 1A H  and 2B H  (this is just notation; we could have made the alternative assignment without any loss of 

generality) then either 1C H  or 2C H . 

If 1C H , then B and C are in opposite half- planes. So BC  intersects  by the plane separation postulate. 

Alternatively, if 2B H , then A and C are in opposite half- planes. So BC  intersects  by the plane separation 

postulate. AC  

Activity: What needs to be added so that we can define the interior of triangle ABC? 

1.6. Angular Measures 

Recall that an angle is the union of two rays with common end point. The common end point is called the vertex; the two 

rays are called sides of the angle. (See fig.1.6.1) 

  

Figure 1.6.1 

Notation: The angle which is the union of the two rays  and  is denoted as  or . 

Definition 1.6.1: 

i. The interior of an angle  is the intersection of 

a. The half plane determined by the line  which contains B and  

b. The half plane determined by the line  which contains A.(see figure 1.6.2) 

The interior of an angle  will be denoted by int( )  

ii. The exterior of an angle  is the set of all points which are neither on  nor int ( ). The exterior of 

an angle  will be denoted by ext( ). (see figure 1.6.3)  

  

Figure 1.6.2           Figure 1.6.3 

Remarks: 

1.  A line segment formed by any two points in the  does not intersect  

(That is it lies completely in this region). A line segment whose one end point lies in the  
2.  In a triangle, an angle will be referred to as being included between two sides when its sides contain those sides of the 

triangle. A side will be referred to as being included between two angles when its end points are the vertices of those 

angles of the triangle. 

In view of this, in , ,  and  are two sides and the included angle, while ,  and  are two 

angles and the included sides. Can you mention two more triplets of 

i. Two sides and the included angle 

ii. Two angles and the include side. 

Theorem 1.6.1: (Angle addition theorem) 

If  and  are angles such that G and H are in the  and  respectively. 

 and  then . 

Proof: Suppose  And  with G in the . And H in the  

To show that  

Figure 1.6.1

O

A

B

OA OB BOA ˆ AOB

BOA ˆ

OA

OB

BOA ˆ BOA ˆ

BOA ˆ BOA ˆ BOA ˆ

BOA ˆ BOA ˆ

A

B

O

int(AOB) int(AOB)

O
B

A

)ˆint( BOA BOA ˆ

)ˆint( BOA

ABC AB Â AC AB Â B̂

CBA ˆ FED ˆ )ˆint( CBA )ˆint( FED

HEDGBA ˆˆ  FEHCBG ˆˆ  FEDCBA ˆˆ 

HEDGBA ˆˆ  FEHCBG ˆˆ  )ˆint( CBA )ˆint( FED

FEDCBA ˆˆ 
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Figure 1.6.4 

Consider  and ray . Then by axiom of angle construction, there exists a point I on the half plane determined by 

line  containing H and F such that . Moreover, we have only one and only one ray  satisfying this 

condition.  

  

Figure 1.6.5 

Now since G is in the  and , there exists a unique ray  with J in the  such 

that  and . Why? 

So, (hypothesis of the theorem) and . Thus,  and  cannot be two distinct rays 

by axiom of angle construction, as H and J are on the same half plane determined by  and . 

That is  and  represents the same ray. Points F and I are on one and the same half plane determined by  and 

. (Why?). Again from , and  is the same as that of , it follows that  and 

 represent the same ray by (why?). Hence, . Therefore,  by AC4 (as 

and )  

Theorem 1.6.2: (Angle subtraction theorem) 

If  and  are angles such that point G in the , point H in the ,

and , then  . 

Proof: Left as an exercise. 

Activity: 

1.  In fig. 1.6.6, , and . Prove that . Use SAS theorem, angle 

addition and subtraction theorems. 

 

Figure 1.6.6 

2.  You are familiar with certain pairs of angles like adjacent angles, supplementary angles, vertically opposite angles and 

so on using the undefined terms, axioms and theorem so far discussed give your own definition for each of them. 

Definition 1.6.2: Two angles are said to be adjacent if and only if they have the same vertex, one side in common and 

neither contains an interior parts of the other. 

Definition 1.6.3: Two angles which are congruent, respectively, to two adjacent angles whose non-common sides form a 

straight line are called supplementary angles. Each of a pair of supplementary angles is called the supplement of the other. 

    

Figure 1.6.7 
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 ˆABC  and ˆDEF  are supplementary angles. 

When do you say that two adjacent angles are supplementary? 

Definition 1.6.4: Non adjacent angles formed by two intersecting lines are called vertical angles. 

Definition 1.6.5: An angle is said to be a right angle if and only if it is congruent to its supplementary angle. An angle 

whose two sides form a straight line is called straight angle. 

Illustration: In fig. 1.6.8, if lines  and  intersect at O, then  and  are adjacent angles, 

and  are supplementary angles,  and  are vertical angles and  is a straight angle. Can you list 

some more pairs of adjacent, supplementary and vertical angles? 

 

Figure 1.6.8 

So far we examined different relationships that exist between line segments and between angles. Some of these 

relationships are expressed in terms of the undefined terms “between” and “congruence”.  

In the following groups of axioms we will investigate further relationships between angles and between line segments in 

terms of the notion of equality. For this we first raise the following question: what is wrong if we say  

i.  

ii.  

1.7. Axioms of Congruence  

So far we have seen two groups of axioms. These are axioms of incidence, order axiom. Each consists of a number of 

axioms that characterize the undefined terms (e.g. point, line and plane) using the undefined relations ‘incident’, “between” 

and so on. By using these axioms, we have stated and proved some properties concerning the undefined terms and the 

relations that exist among them. In the same manner we continue our discussion on Euclidean geometry with a study of the 

ideas of congruence. The undefined term congruence will be examined relative to segments, angles and triangles. 

Notations: We use the symbol “  ” to mean is congruent to and “≢” not congruent. 

AC1:  

a) If AB  is a line segment then AB AB  (Reflexivity) 

b) If AB  and CD , are line segment such that AB CD , then CD AB  (symmetry) 

c) If AB , CD  and EF are line segments such that AB CD  and CD EF , then AB EF  (Transitivity) 

AC2: If A, B, C, D, E, F are points such that A-B-C, D-E-F, AB DE  and BC EF  then AC DF  .  

(Axiom of addition of segment) 

 

Figure 1.7.1 

AC3: If AB  is a line segment and C is a point on a line  then there exists on  on one side of C exactly one point D 

such that AB CD . (Axiom of segment construction). Whenever we have given a line segment XY  and a point W on a 
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CDAB 
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line , AC3 enables us to conclude the existence of a unique line segment WZ  on either of the two sides of W on  such 

that XY WZ . That is if U and V are on the same side of W on such that XY WU  and XY WV , then U and V must 

represent the same point i.e. U=V.  

AC4:  

a) If ˆABC  is an angle then ˆ ˆABC ABC  (Reflexivity) 

b) If ˆABC  and ˆDEF are angles such that ˆ ˆABC DEF  then ˆ ˆDEF ABC  (symmetry)  

c) If ˆABC , ˆDEF , ˆGHI are angles such that ˆ ˆABC DEF  then ˆ ˆDEF GHI , then ˆ ˆABC DHI  (Transitivity) 

AC5: If ˆABC  is an angle and  is a line on any plane and ED  is a ray on  the there is one and only one ray EF

whose all points except E lie on one of the two half-planes determined by  such that ˆ ˆABC DEF . (Axiom of angle 

construction) 

Given ˆABC  and ray ED  on line  (see fig. 1.7.2). There exists exactly one angle on each side of  congruent to

ˆABC . That is it is not possible for ˆABC  to be congruent to ˆDEF  and ˆDEG , where F and G are on the same half-plane 

determined by , unless F=G. (see fig. 1.7.3) 

 

 Figure 1.7.2                                         Figure 1.7.3 

AC6: If ABC  and DEF , AB DE , ˆ ˆABC DEF  and BC EF , then ˆ ˆBAC EDF  and. That is then ˆ ˆA D  

and ˆ ˆC F  

   

Figure 1.7.4 

By using the axioms of congruence we will prove several theorems concerning congruence of segments, angles and 

triangles. We first prove two theorems about congruence of segments. 

Theorem 1.7.1: If A, B, C, D, E, and F are points such that A-B-C, D-E-F, AB DE  and AC DF  then BC EF . 

Proof: Suppose BC  is not congruent to EF . Then by AC3 there exist a point G on ray EF different from E and F such 

that BC EG . Hence either E-G-F or E-F-G. in both cases we have D-E-G. Now from AB DE , BC EF , A-B-C and 

D-E-G it follows that AC DG  by AC2. But AC DF  by assumption. So G=F by AC3. Thus we have F G  and 

F G  (contrary). Therefore, the supposition BC  is not congruent to EF  is false. Consequently, BC EF . 

 

 

Figure 1.7.5 

Theorem 1.7.2: If A, B, C, D, E are points such that A-B-C and AC DE , then there exists exactly one point X such that 

AB DX  and D-X- E. 

Proof: Suppose A, B, C, D, E are points such that A-B-C and AC DE . Then AB  is not congruent to DE  by AC3 as 

DE AC  and B, C are on the same side of A on line AC . 

 

 

Figure 1.7.6 
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Thus there exists a unique point X on ray DE  such that AB DX  by AC3. Again by using AC3 there exists a point G on 

the line through D and E such that D-X-G and BC XG . But A-B-C, D-X-G, AB DX , BC XG  implies AC DG . 

From AC DE , AC DG  and G, E are on the line through D and E on the same side of D it follows that E=G by AC3. 

Therefore, there exists exactly one point X such that AB DX  and D-X-E. one can prove the following statement by using 

theorem 1.7.1 and 1.7.2. we state it as a corollary, as it is an immediate consequence of the two theorems. 

Corollary 1.7.1: Given two congruent segments XZ  and PR . If Y is any point on XZ  different from X and Z then 

there exists a unique point Q on PR  different from P and R such that XY PQ  and YZ QR  

Proof: Left for students. 

Activity: 

1. Explain why the following statements are not necessarily true. 

a.  If PQ ST  and QR TU , then PR SU  

b.  AIV3 asserts that there is exactly one line segment on a given line that is congruent to a given line segment. 

c.  Given angle ˆDEF  and a line h containing point O. then we have at most two angles whose vertex is O and 

congruent to ˆDEF . 

2. Complete the proof of the above corollary 

1. XZ PR ………………..hypothesis 

2. X-Y-Z…………………….hypothesis 

3. ………………..by theorem 1.7.2 and steps 1 and 2 

4. ………………..     ……………… 

Therefore, ………………… 

Now let us deal with some basic points about congruent triangles. We shall discuss more about triangles in chapter two. 

Recall that a triangle is defined as a set of points that lie on three segments which are formed by three non collinear points. 

That is if A, B and C are three non collinear points then ABC  is the union of the segments AB , BC  and CA . So every 

triangle has three vertices, three sides and three angles. Thus we can establish a one-to-one correspondence among the 

vertices, sides and angles of any two given triangles ABC and DEF. we denote this by ABC DEF   and we have the 

following correspondence 

1.8. Congruence between Triangles 

So far, we have proved a theorem called side angle side (SAS) congruence theorem. In this section we will prove theorems, 

like SAS, that are concerned with conditions which cause one triangle to be congruent to another triangle. These theorems, 

which deal with conditions for triangle congruence, will be used to establish several theorems in this material. First let us 

restate SAS theorem. 

Restatement: (Side angle side theorem) 

If two sides and the including angle of one triangle are congruent, respectively, to two sides and the including angle of 

another triangle, then the triangles are congruent. 

Theorem (ASA) 

If two angles and the including side of one triangle are congruent, respectively, to two angles and the including angle of 

another triangle, then the triangles are congruent. 

Proof: let ABC  and DEF  be triangles such that ,CAB FDE  ,ABC DEF  and AB DE . We need to 

show ABC DEF    

   

Figure 1.8.1 

For this suffices to show that . (Why?). Now consider . Then there exists a unique point G on the ray

 such that  by AC2. Thus in and , we have ,  and 

. So by SAS, which in turn implies, , by definition of congruence of 
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triangles. Since ,  and  and are on the same half plane determined by 

, ray  must be the same as  by AC5 and hence G=C as they are on the same line on the same side of B. 

therefore we have (as and G=C),  and  (hypothesis). Consequently, 

, by SAS. 

Theorem 1.8.2: (SSS) 

If the three sides of one triangle are congruent, respectively, to the three sides of another triangle then the triangles are 

congruent. 

Proof: Let ABC and DEF be triangles such that, , and . To show that

 

   

Figure 1.8.2 

On the half plane determine by not containing D, there exists a point H such that  by AC5. Mark point 

on  so that , this is possible by axiom of segment construction (AC2) Further why? 

Thus in and we have ,  and  which implies 

 by SAS. It then follows from the definition of congruence of triangle that , 

 and . Now since  and , and  are 

isosceles. Hence  and  (base angle of isosceles triangles are congruent). So, 

, by angle addition theorem. But, and hence  by AC4. Thus from,

,  and  it follow that  by SAS. 

Theorem 1.8.3: If two angles of a triangle are congruent then the sides opposite these angles are congruent. 

Activity: 

1.  Let ABC   be isosceles such that AB AC  and D is the midpoint of BC . Use SSS congruence theorem to show 

that AD BC  and AD  is the bisector of ˆBAC  

2.  Prove theorem 1.8.3 by using ASA theorem. 

The proof of the following theorem follows identically the same pattern as that used for proof of the SSS theorem. 

Theorem 1.8.4: (RHS) 
If the hypotenuse and a leg of a right triangle are respectively congruent to the hypotenuse and a leg of another right 

triangle then the two triangles are congruent. 

Proof: Exercise 

Illustration: In fig. 1.8.3 D is the midpoint of BC , DE DF , DE AC  and DF AB  . Prove that AB AC . 

Proof: ˆDFB  is a right angle as DF AB  and ˆDEC  is a right angle as DE AC . Thus DFB  and  are 

right angle with right angles at F and E. moreover,  by assumption and  as D is the midpoint of

. Therefore, DFB DEC   , by, RHS and hence ˆˆDBF DCE  by definition of congruence of triangles. That is 

ˆˆCBE BCA . 

 

Figure 1.8.3 
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Activity: Prove that the perpendicular line segment from the vertex to the base of an isosceles triangle  

a.  Bisect the vertex angle  

b. Divides the base in to two congruent segments 

We are left with one theorem on congruence of triangles. Before dealing with this theorem, we state and prove a theorem 

about a line perpendicular to a given line through a given point not on the given line. Suppose  is a line and P is a point not 

on . By parallel axiom there exists a unique line through P parallel to . What about a line through P perpendicular to ? 

Theorem 1.8.5: If m  is a line and A is a point not on m , then there exists exactly one line which contains A and is 

perpendicular to m . 

Proof: Suppose m  is a line and A is a point not on m . First let us show that there exists at least one line through A 

perpendicular to m . Since a line contains at least two points, there exists a point B and C on m . Since A is not on m , BA  

and BC  are two different rays. Thus by angle construction axiom there exist a point E on the half plane determined by m

not containing A such that ˆ ˆABC EBC . 

  

Figure 1.8.4                       Figure 1.8.5 

By segment construction axiom there exist point D on BE  such that BA BD . ˆ ˆABC DBC  as rays BD  and BE  are 

identical. Since A and D are on different half planes determined by m , AD  intersects m at some point F. now there are two 

possibilities: 𝐹 = 𝐵 or F B  

Case 1: If F=B, then AF m     Case 2: If F B , then AF m  

   

Figure 1.8.6 

(You will be asked to prove case 1 and 2, as an activity.) 

From the above step it follows that, there exist at least one line through A perpendicular to m . Thus it remains to show that 

there does not exist more than one line which contains A and perpendicular to m . To do this, suppose ℎ (whose existence is 

shown above) is a line through A perpendicular to m  at O. 

Now, let 
'h  be any other line through A perpendicular to m  at Q different from O. Then there exists a point 'A  on  ℎ 

such that A-O- 'A  and 'AO AO  (why?). Points Q, A, 'A  are not collinear, (why?). 'AOQ AOQ    by SAS and 

hence 'ˆ ˆAQO AQO . But ˆAQO  is a right angle as 
'h m  at Q. so ' ˆAQO  is also a right angle. This implies A, Q, 'A  

lie on the same line contraction to that A, Q and 'A  are not collinear. 

 

Figure 1.8.7 

Therefore there does not exist a line 
'h  through A different from ℎ perpendicular to m . Consequently only one line 

exists through A perpendicular to m . In this theorem, the given point is not on the given line. What about if the given point is 
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on the given line? In this case also we have the same result. We put it below as a theorem. 

Theorem 1.8.6: Through the given point on a given line there exists one and only one line that is perpendicular to the given 

line. 

Proof: Left as an exercise. 

Activity: Complete the proof of theorem 1.8.5 (prove case 1 and 2) 

Theorem 1.8.7: (RHA) 

If the hypotenuse and a non right angle of one right triangle are respectively congruent to the hypotenuse and a non right 

angle of another right triangle then the two triangles are congruent. 

Proof: Let ABC and XYZ be two right triangles with right angle at C and Z respectively such that AB XY  and 

ˆ ˆABC XYZ . 

 

Figure 1.8.8 

Exercise: Complete the proof (theorem 1.8.7) 

Activity: 

1. In fig 1.8.9, AB AC  and ˆˆDBC DCB . Prove that AD  bisects ˆBAC . 

 

Figure 1.8.9 

2. In fig 1.8.12, CD AB , BE AC  and CD BE . Prove that AD AE . 

 

Figure 1.8.10 

1.9. Geometric Inequalities 

This section deals with comparison of segments and angles. The concepts of betweenness for points and congruence for 

segments can be combined to develop a definition which can be used for comparing segments. This definition can be used, 

along with some preceding theorems, to obtain several theorems pertaining to the comparison of segments. Angles can be 

compared in much the same manner as that of line segments. Let us see how this is possible. 

Recall that, we have seen that: 

Two line segments are equal in length if and only if they are congruent. 

Two angles are equal measure if and only if they are congruent. 

But in this section we focus on line segments of unequal length and angles of unequal measures. For this we put the 

following definition about inequalities of line segments and angles. 

Definition 1.9.1: 

a)  Segment AB  is said to be less than segment CD  if and only if there exists a point E such that C-E-D and AB CE . 

b)  Angle ˆABC  is said to be less than angle ˆDEF  if and only if there exists a ray EG  such that G is in the ˆint( )DEF

and ˆ ˆABC GEF . 
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Figure 1.9.1 

Notations:  

 AB  is less than CD  is symbolized as AB<CD. 

 ˆABC  is less than ˆDEF  is symbolized as ˆABC < ˆDEF . 

If AB<CD we also write CD>AB and read as CD is greater than AB. The same is true for angles. 

Remarks: 

1. In comparing two segments AB  and CD , we have only the following three possibilities and exactly one of them is true. 

a. AB<CD 

b. AB=CD 

c. AB>CD 

2. in comparing two angles ˆABC  and ˆDEF , we have only the following possibilities and exactly one of them is true: 

a. ˆABC < ˆDEF  

b. ˆABC   ˆDEF  

c. ˆABC > ˆDEF  

Now by using definition 1.9.1 and previously proved theorems let us investigate some facts about comparison of line 

segments and angles. 

Theorem 1.9.1: an interior angle of a triangle is less than each of its remote exterior angles. 

Proof: Suppose ABC is a triangle. Consider a exterior angle ˆBAC . Then by AB2, there exists a point D and G on AC  

and AB , respectively such that A-C-D and A-B-G. Also there exist points F and E on BC  such that F-B-C and B-C-E (see 

fig.1.9.2). 

 

Figure 1.9.2 

By definition 1.9.1 beach of ˆABF , ˆCBG , ˆBCD and ˆACE  is a remote exterior angle of ˆBAC . We show that

ˆ ˆBAC ABF , the others can be shown analogously. Now we have only three possibilities while comparing ˆBAC  and 

ˆABF : 

i. ˆ ˆBAC ABF  

ii. ˆ ˆBAC ABF  

iii. ˆˆABF BAC  

Suppose ˆ ˆBAC ABF , then AC  is parallel to BC  (why?). But AC  and BC  are not parallel as they intersect at C. 

thus the supposition is false. Therefore, ˆBAC  is not congruent to ˆABF . 

Suppose ˆˆABF BAC , there exists a point H in the ˆint( )BAC  such that ˆˆABF BAH . Again this implies AH BC

(why?). But this is impossible as ray AH  intersects sides BC  of ABC  at some point J different from B and C. thus the 

supposition is false. Therefore, ˆABF  is not less than ˆBAC . Since ˆBAC  is not congruent to ˆABF  and ˆABF  is not less 

than ˆBAC , we have ˆ ˆBAC ABF  analogously, it can be shown that ˆ ˆBAC ACE , ˆ ˆBAC CBG  and ˆ ˆBAC BCD . 

Therefore, an interior angle of a triangle is less than each of its remote exterior angles. 
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Activity: Let O be any point inside ABC . Prove that ˆ ˆBAC BOC . 

Theorem 1.9.2: If two sides of a triangle are not congruent then the angles opposite these sides are not congruent and the 

lesser angle is opposite the lesser sides. 

Proof: Suppose ABC is a triangle with AB ≢ AC . Then, ˆABC ≢ ˆACB  otherwise h AB AC .  

 

Figure 1.9.3 

Now since AB AC , either 𝐴𝐵 < 𝐴𝐶  or 𝐴𝐶 < 𝐴𝐵 . Then there exist a point D on AB  such that AC AD  by 

definition 1.9 1a. ACD  is isosceles as AC AD  and hence ˆ ˆACD ADC . But, ˆ ˆACD ACB  definition 1.9.1b. 

Moreover ˆAD C is an exterior angle of CDB and hence ˆ ˆABC ADC by theorem 1.9.1. Thus from ˆ ˆACD ADC ,

ˆ ˆACD ACB  and ˆ ˆABC ADC  it follows that ˆ ˆˆABC ACD ACB  . Therefore, ˆˆABC ACB . Analogously, it can be 

shown that if AB<AC then ˆ ˆACB ABC . Thus we have proved that an angle opposite to the smallest side is smallest.  

Theorem 1.9.3: If two angles of a triangle are not congruent then their opposite sides are not congruent and the lasser side 

is opposite the lasser angle. 

Proof: Suppose ABC is a triangle with ˆABC  ≢ ˆACB . Then either ˆABC < ˆACB  or ˆACB < ˆABC . 

Case 1: Suppose ˆABC < ˆACB . To prove that AC<AB. 

If AB AC  then ˆABC ˆACB , contrary to the supposition ˆABC < ˆACB . Thus AB  is not congruent to AC . 

If AB<AC then ˆACB < ˆABC  (by theorem 1.9.2), which is contrary to the supposition  

ˆABC < ˆACB . Thus AB<AC is not true. 

Therefore neither AB AC  nor AB<AC. Consequently AC<AB. 

Case 2: Suppose ˆACB < ˆABC . To prove that AB<AC. 

If AB AC  then ˆACB  ˆABC , contrary to the supposition ˆACB < ˆABC . Thus AB  is not congruent to AC . 

If AC<AB then ˆABC < ˆACB  (by theorem 1.9.2), which is contrary to the supposition  

ˆACB < ˆABC . Thus AC<AB is not true. 

Therefore neither AB AC  nor AC<AB. Consequently AB<AC. 

Remarks: 

 The angle opposite the greatset side is the greastest angle. 

 The side opposite the greatset angle is the greastest side. 

Thus in an obtuse triangle, the greatest side is opposite to the obtuse angle; in a right triangle the hypothenuse is the greatest 

side. 

Definition 1.9.2 The distance of a line from a point which is not on the line is the length of the perpendicular line segment 

from the pont to the line. 

 

Figure 1.9.4 

Theorem 1.9.3; (Triangle inequality) 

The sum of the lengths of any two sides of a triangle is geater than the lenth of the third side. 

Proof: Let ABC be triangle. We need to show that BA+AC>BC, BA+BC>AC and BC+AC>BA. We show only 

BA+AC>BC. The other can be shown in similar manner. 

C

BDA
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Figure 1.9.5 

Extend BA  to some point X on AB  such that B-A-X and AX AC . This is possible by axiom of segment construction. 

Join C and X. Since AX AC ˆˆAXC XCA . ˆ ˆXCA XCB  by definition of angle comparison. Thus, ˆˆAXC XCB  (i.e

ˆˆBXC XCB ). Now, in BCX  we have BC<BX. But BX=BA+AX (as A, B, X are colinear and B-A-X). BX=BA+AC as 

AX AC . Therefore, BC<BA+AC. 

Exercise 

1.  Prove that if two sides of one triangle are congruent to two sides of another triangle but the measures of the included 

angles are unequal then the lengths of the third sides are unequal in the same order. 

2.  Prove that if two sides of one triangle are congruent to two sides of another triangle but the lengths of the third sides are 

unequal then the measures of the angle included between the piars of congruent sides are unequal in the same order. 

3.  Prove that the difference of the lenths of any two sides of a triangle is less than the third side. 

1.10. Sufficient Conditions for Parallelism  

Two lines are parallel if they lie in the same plane but do not intersect. We shall use the abbreviation 1 2/ /L L  to mean that 

the lines the lines 1L  and 2L  are parallel. Later, as a matter of convenience, we shall say that two segments are parallel if 

the lines that contain them are parallel. We shall apply the same term to a line and a segment, a segment and a ray, a ray and 

so on. The Euclidean parallel postulate will be introduced in the next chapter, and used thereafter, except in the chapter on 

non-Euclidean geometry. The postulate, in the form in which it is usually stated, say that given a line and a point not on the 

line, there is exactly one line which passes through the given point and is parallel to the given line. 

 

Figure 1.10.1 

We shall see, however, from theorem 1.10.1 and 1.10.2, that half of this statement can be proved on the basis of the 

postulates that we already have.  

Theorem 1.10.1: If two lines lie in the same plane, and are perpendicular to the same line, then they are parallel. 

Restatement: Let 1L , 2L  and 𝑇 be three lines, lying in a plane E, such that 1L T  and 2L T , then 1 2/ /L L  

 

Figure 1.10.2 

Proof: Suppose that 1L  and 2L  intersect T at point Q and P, respectively. Suppose that 1L  and 2L  are not parallel, 

and let R be the point at which they intersect. Then there are two perpendiculars to T through R; and this is a contradiction. 

Why? 

Theorem 1.10.2: Given a line and perpendicular line, there is always at least one line which passes through the given point 

and is parallel to the given line. 

A

X

CB

1L

2L
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Proof: Let L be the line, let P be the point, and let E be the plane which contains them. Then there is a line T in E which 

passes through P and is perpendicular to L. then there is a line 'L  in E which passes through P and is perpendicular to T. by 

the preceding theorem it follow that '
1 / /L L , which was to be proved. There is an easy generation of theorem 1.10.1, which 

we shall get too presently. In the figure below, T is a transversal to the lines 1L  and 2L  

 

Figure 1.10.3 

More precisely, if 1L , 2L and 𝑇 are three lines in the same planes, and T intersects 1L  and 2L  in two different points P 

and Q, respectively, then T is a transversal to 1L  and 2L  

In the figure below 1  and 2 are alternate interior angles: and 3  and 4  are alternate interior angles.  

 

Figure 1.10.4 

More precisely, 

1.  If T is transversal to 1L  and 2L , intersecting 1L  and 2L  in P and Q, respectively, and  

2.  A and D are points of 1L and 2L  respectively, lying on opposite sides of T, then APQ  and PQD  are alternate 

interior angles.  

Theorem 1.10.3: Given two lines and a transversal. If a pair of alternate interior angles is congruent, then the lines are 

parallel. 

In the figure below, 1  and '1 are corresponding angles, 2  and '2  are corresponding angles and so on. 

 

Figure 1.10.5 

Definition 1.10.1: If x  and y  are corresponding angles, and z  and y  vertical angles, then x  and z  

are corresponding angles. 

Given two lines and a transversal. If a pair of angles is congruent, then the lines are parallel. 

Example: prove that if m   and n  , then either m n or / /m n  

Solution: let ,m  and 𝑛 be three lines such that m   and n  . We must prove that either m n  or / /m n . Let A 

be the point at which  and m intersect and let B be the point at which  and n intersect (definition of perpendicular lies). 

There are two cases: either A=B or A B . If A B , then m n  by the uniqueness of perpendiculars  

1.11. Saccheri Quadrilateral  

2L

1L

2L

1LT
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Definition 1.11.1: Let A, B, C, D be points, no three of which are collinear, such that any two of the segments , ,

,  either have no point in common or only have an endpoint in common. Then the point A, B, C, D determine a 

quadrilateral, denoted by □𝐴𝐵𝐶𝐷. The points A, B, C, D are called the vertices of the quadrilateral. The segment ,

, ,  are called the sides of the quadrilateral. The diagonals of □𝐴𝐵𝐶𝐷 are the segment  and . 

Two quadrilaterals are congruent if all four corresponding sides and all four corresponding angles are congruent. 

Fig. 1.11.1: □𝐴𝐵𝐶𝐷 is a convex quadrilateral with diagonals  and ;  □𝐸𝐹𝐺𝐻 is non-convex quadrilateral with 

diagonals  and ; □𝐼𝐽𝐾𝐿 is not quadrilateral, although □𝐼𝐾𝐽𝐿 (not shown) is a quadrilateral. 

 

Figure 1.11.1 

Definition 1.11.2: □𝐴𝐵𝐶𝐷 is convex if each vertex is contained in the interior of the angle formed by the three other 

vertices (in their cyclic order around the quadrilateral). 

Definition 1.11.3: Let □𝐴𝐵𝐶𝐷  be convex. Then its angle sum is given by the sum of the measures of its interior angles: 

         BACD m ABC m BCD m ABC m BCD          

Theorem 1.11.1: (Additively of Angle Sum) 

Let □𝐴𝐵𝐶𝐷 be convex quadrilateral with diagonal . Then      ABCD ABD BDC       

 

Figure 1.11.2.  The angle sum of quadrilateral is equal to the sum of angle sums of the triangles defined by either diagonal 

Proof: Apply the angle addition postulate to each of the angle that is split by a diagonal to get  

 ABCD         

 

   r           

   ABD BDC      

Definition 1.11.4: The defect of a quadrilateral is   □𝐴𝐵𝐶𝐷 = 360 −   𝐴𝐵𝐶𝐷  

Theorem 1.11.2: (The additively of defect for convex quadrilateral) 

If □𝐴𝐵𝐶𝐷 is convex quadrilateral, then   □𝐴𝐵𝐶𝐷 =  

Proof: Apply theorem 1.11.1. 

Corollary 1.11.1: If □𝐴𝐵𝐶𝐷 is convex, then  (□𝐴𝐵𝐶𝐷) ≤ 360  

Proof: Apply theorem 1.11.1. 

Definition 1.11.5: □𝐴𝐵𝐶𝐷 is called a parallelogram if and . 

Theorem 1.11.3: Every parallelogram is convex. 

Proof: Left for reader. 

Theorem 1.11.4: let ABC  be a triangle and D and E points such that A-D-C and A-E-C. Then □𝐵𝐶𝐸𝐷 is a convex 

quadrilateral. 

Proof: Left for reader. 
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Theorem 1.11.5: □𝐵𝐶𝐸𝐷 if and only if the diagonal have an interior point in common (i.e. they intersect, but not at an 

endpoint)  

Proof:  

( ) Assume □𝐵𝐶𝐸𝐷  is convex. Then by the definition of convexity C is the interior of . Then 

; call the point of intersection E, where B-E-D, by similar argument there is a point  

where A-F-C. Since AC and BD  are distinct (they corresponds to opposite side of quadrilateral), they can meet in at most 

one point, we must have E=F. Hence the diagonals intersect at E. Since A-F-C and B-E-D, the intersection is not at end point. 

( )  Let □𝐵𝐶𝐸𝐷 be a quadrilateral with E AC BD  with A-E-C and B-E-D. Since A-E-C, A and E are on the same 

side of the line CD . Similarly, since B-E-D, B and E are on the same side of the line CD . Hence A and B are on the same 

side of CD  (Plane separation postulate), i.e 
,B CD

A H . Recall that 
,B CD

H  is a half plane determined by line CD  and 

point B not on CD  (i.e 
,B CD

H  is a half plane containing point B). By a similar argument A and D are on the same side of 

BC , i.e, 
',D DC

A H . Hence
,B CD

A H
',D DC

H , and thus A is in the interior of BCD . By a similar argument, each of 

the other vertices is in the interior of its opposite angle. Hence by definition of convexity, the quadrilateral is convex. Assume 

□𝐵𝐶𝐸𝐷 is a convex quadrilateral (i.e assume that R is false). Then AC BD  , i.e the diagonals of □𝐵𝐶𝐸𝐷 share an 

internal point. Hence □𝐵𝐶𝐸𝐷 is not a quadrilateral. 

Example 1.11.1 Show that every parallelogram is convex. 

Solution: let □𝐴𝐵𝐶𝐷 be a parallelogram (hypothesis). We must prove that □𝐴𝐵𝐶𝐷 is a convex quadrilateral. Since 

AD BC  by definition of parallelogram, it follow that AD BC   by definition of parallel. Hence, A and D lie on the 

same side of BC  (plane separation postulate). 

In the same way, the fact that AB CD  can be used to prove that A and B lie on the same side of CD . Thus, is in the 

interior of BCD  (definition of angle interior). The remaining conditions left as an activity. Therefore, □𝐴𝐵𝐶𝐷 is convex. 

Activity: In the above example: 

a) Show that B is in the interior of CDA  

b) Show that C is in the interior of DAB  and  

c) Show that D is in the interior of ABC  

Theorem 1.11.6: If □𝐴𝐵𝐶𝐷 is a non-convex quadrilateral then □𝐴𝐶𝐵𝐷 is a quadrilateral. 

Proof: Since □𝐴𝐵𝐶𝐷 is a quadrilateral no three of the point A, B, C, D are collinear. Since □𝐴𝐵𝐶𝐷 is a quadrilateral

BC AD  . Since □𝐴𝐵𝐶𝐷 is not a convex then AC , BD  are disjoint (the diagonals do not intersect). Thus segments AC ,

CB , BD and DA  share at most their endpoints. Hence □𝐵𝐶𝐸𝐷 is a quadrilateral. 

Definition 1.11.6: □𝐴𝐶𝐵𝐷 is a Saccheri quadrilateral if 
090ABC BAD     and AD=BC, segment AB is called the 

base and segment DC  is called the summit. 

 

Figure 1.11.3 

Theorem 1.11.7: The diagonals of the Saccherei Quadrilateral are congruent. 

Proof: Consider triangle ABD  and ABC . Since BC=AD, AB=AB and 90A B   , the triangles are congruent. 

Hence BD AC  

Theorem 1.11.8: The summit angles of a Saccheri Quadrilateral are congruent. 

Proof: Repeat the argument in the previous proof, but with upper-half triangles. The triangles are congruent by SSS-they 

share the same top, the diagonals are congruent; and the sides are congruent. Hence the corner angles are congruent. 

Definition 1.11.7: A Lambert quadrilateral is a quadrilateral in which three of the interior angles are right angles. 

Corollary 1.11.2: Let □𝐴𝐵𝐶𝐷 be a Lambert quadrilateral. Then it is convex. 

Proof: It is a parallelogram and all parallelograms are convex 

DAB

 ACBD FACBD 

D C

BA
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1.12. The Angle Sum Inequality for Triangles 

If we only assume Euclid’s first four postulates, along with the axiom of incidence, congruence, continuity and 

betweenness, the angle sum of a triangle is always less than or equal to 180. This geometry is called neutral (or absolute) 

geometry. We will also consider some important consequence of this theorem. 

Theorem 1.12.1: (Exterior Angle Inequality) 

The measure of an exterior angle of a triangle is greater than the measure of either remote interior angle. 

Proof: Given ABC , extend side BC  to ray BC  and choose the point D on this ray so that B-C-D. We claim that 

m ACD m A    and m ACD m D   . Let M be the midpoint of AC  and extend the median BM  so that M is the 

midpoint of BE  . 

 

Figure 1.12.1 

Then AMB and CME  are congruent vertical angles and AMB CME   by SAS. Consequently, 

m ACE m CAB   . Now, E lies in the half-plane of A and CD , since A and E are on the same side of CD . Also, E lies in 

the half plane of D and AC  since D and E are on the same side of AC . Therefore E lies in the interior of ACD  , which 

is the intersection of these two half-planes. Finally, ACD ACE m ECD m ACE m CAB m A           
Activity: In the above theorem (theorem 1.12.1) prove the case m ACD m B    

Corollary 1.12.1: The sum of the measures of any two interior angles of a triangle is less than 180. 

Proof: Given ABC , extend side BC  to BC  and choose points E and D on BC , so that E-B-C-D (See figure 1.12.2) 

 

Figure 1.12.2 

By theorem 1.12.1, m A m ACD   , m B m ACD   , and m A m ABE   . By adding m C m ACB    to both 

sides of the first two inequalities, and by adding m B m ABC    to both sides of the third we obtain  

180m A m C m ACD m ACB         

180m B m C m ACD m ACB         

180m A m B m ABE m ABC         

Theorem 1.12.2: If two lines are cut by a transversal and pair of alternate interior angles are congruent, then the lines are 

parallel. 

Proof: We prove the contra positive. Assume that lines  and m  intersect at the point R, and suppose that a transversal t

cuts line  at the point A and cuts line m  at a point B. let 1  and 2 be a pair of alternate interior angles. Then either

1 is an exterior angle of ABR  and 2  is a remote interior angle or vise versa. 

 

Figure 1.12.3 

In either case 1 2m m    by the exterior angle inequality (theorem 1.12.1) 

Theorem 1.12.3: (Saccheri-legendre theorem) 

The angle sum of a triangle is less than or equal to 180. 

Proof: Assume, in the contrary that the angle sum of 180ABC p   , for some 0p  . Construct the midpoint M of side

AC , then extend BM  its own length to point E such that  

D
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B-M-E. Note that ABM CEM   by SAS.  

Therefore, the angle sum of ABC =angle sum of ABM  +angle sum of BMC  

 =angle sum of CEM +angle sum of BMC  

 = angle sum of BEC  

Furthermore, m BEC m ABE   . Therefore, either 
1

2
m BEC m ABC   or 

1

2
m EBC m ABC   . Thus, we may 

replace ABC  with BEC , having the same angle sum as ABC  and one angle whose measure is less than or equal to 

1

2
m ABC . 

 

Figure 1.12.4 

Now repeat this construction in EBC . If 
1

2
m EBC m ABC   , construct the midpoint N of CE  and extend BN  its 

own length to point F such that B-N-F. Then BEC  and BFC  have the same angle sum and either 

1

2
m BFC m EBC   or 

1

2
m FBC m EBC   . Replace EBC  with FBC  having the same angle sum as ABC  and 

one angle whose measure is 
1

4
m ABC  . On the other hand, if 

1

2
m BFC m ABC   , do same construction with N as the 

midpoint of BC  and replace EBC  with FEC . Continue this process indefinitely; the Archimedian property of real 

numbers guarantees that for sufficiently large n, the triangle obtained after the nth iteration has the same angle sum as ABC  

and one angle whose measure is 
1

2n
m ABC p   , in which case the sum of its other two angles is greater than 180° 

contradicting corollary 1.12.1  

Example 1.12.1: Prove that the sum of the measure of two interior angles of the triangle is less than or equal to the measure 

of the remote of their remote exterior angle. 

Solution: Let ABC  be a triangle and let D be appoint on AB  such that A-B-D (hypothesis). We must prove 

     m BCA m CAB m CBD      

  

In the figure above, we know that       180m CBA m ABC m BCA       (saccheri-legedre theorem). We also now 

that     180ABC CBD     (Linear pair theorem). Hence, from algebra 

       180m CAB m BCA m ABC m CBD        . 

Definition 1.12.1: The defect of ABC  is 
0180ABC m A m B m C         

Corollary 1.12.2: Every triangle has non-negative defect. 

Proof: If 
0 0180 0ABC m A m B m C         , then the angle sum of 

0180ABC   contradicting theorem 1.12.3. 

Theorem 1.12.4: (Additivity of defect) 

Given any triangle ABC and any point D between A and B, ABC ACD BCD     

 

Figure 1.12.5 
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Proof: Since, ADC and BDC are supplementary, 
0180m CDA m CDB    . Since, DC is in the interior of 

ACB , ACB m ACD m BCD     . 

Therefore, 
0 0180 180ACD BCD m ACD m CDA m DAC m BCD m CDB m DBC                 

  0360 ( )m ACD m BCD m DBC m CDA m CDB m DAC              

 
0180 m ABC m BAC m CDA        

 ABC . 

Corollary 1.12.3: Given any triangle ABC  and any point D between A and B, the angle sum of 
0180ABC   if and 

only if the angle sums of ACD  and BCD  both equal 180°. 

Proof: If the angle sum of both ACD and BCD  equal
0180 , then

00ACD BCD   . by theorem 1.12.4, 

00ABC   so that the angle sum of 
0180ABC  , 

00ACD BCD    . But, by corollary 1.12.2, 
00ACD  and

00BCD  . Therefore, 
00ACD BCD    and both angle sums equal

0180 . 

Theorem 1.12.5: If there is a triangle with angle sum
0180 , then a rectangle exists. 

Proof: Consider a triangle ABC  with angle sum180°, by corollary 1.12.1, the sum of the measures of any two interior 

angles is less than 180°, so at most one angle is obtuse. Suppose A  and B  are acute and construct the altitude CD , we 

cliam that A-D-B. But if not, then either D-A-B or A-B-D. Suppose D-A-B and consider DAC  

 

Figure 1.12.6 

Then the remote interior angle CDA  has measure 90°, which is greater than the measure of that exterior angle CAB , 

contradicting the theorem 1.12.1, assuming the A-B-D leads to a similar contradiction, proving the claim. Then by corollary 

1.12.3, 
00ADC BDC    . Let us construct a rectangle from right triangle BCD . By the congruence axioms, there is 

a unique ray CX  with X on the opposite side of BC  from D such that CBD BCX   , and there is a unique point E on 

CX  such that CE BD  

 

Figure 1.12.7 

Then CBD BCE    by SAS; therefore, BCE is a right triangle with 
00BCE   and right angle at E. also,       

since
090m DBC m BCD    , substituting corresponding parts gives m EBC  and 

090m BCD  and

090m DBC m EBC    . Furthermore, since alternate interior angles EBC and DBC  are congruent CE DB  by 

theorem 1.12.2. Therefore, B is an interior point of ECD . By the same argument CD ED  and C is an interior point of

EBD . Therefore, 
090m ECD m EBD     and □𝐶𝐷𝐸𝐵 is a rectangle. 

Theorem 1.12.6: If a rectangle exists, and then the angle sum of every triangle is 180°. 

Proof: We first prove that every right triangle has angle sum 180°. Given a rectangle, we can use the Archimedian property 

to lengthen or shorten the side and obtain a rectangle □𝐴𝐹𝐵𝐶 with sides AC and BC of any prescribed length. Now given a 

right triangle 
' ' 'E C D , construct a rectangle □𝐴𝐹𝐵𝐶 such that 

' 'AC D C  and 
' 'BC E C . There is a unique point D on 

AC  and a unique point e on BC  such that 
' ' 'ECD E C D    as shown in figure 1.12.8 

X
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Figure 1.12.8 

We claim 
00ABC  . If not, then 

00ABC   by corollary 1.12.2 and consequently 
090m ABC m BAC    .  

But, 
090m CBF m ABC m ABF       and 

090m CAF m BAC m BAF      .  

Therefore, 
090m ABF m ABC    090m BAF m BAC     so that 

0 0180 90ABF m ABF m BAF        

0 090 (90 )m ABC    0(90 )m BAC    

m ABC  
0 090 0m BAC    

Contradicting the corollary 1.12.2 and proving the claim. Now by repeated application of corollary 1.12.3 we have 
00BCD   and 

00ECD  . But 
' ' 'ECD E C D    implies 

' ' ' 00E C D  . Thus, every right triangle has zero defects. 

Now by the construction in theorem 1.12.5, an arbitrary triangle ABC  can be appropriately labeled so that its altitude CD

lies in the interior of ABC  and subdivides the triangle into two right triangles (see figure 1.12.9), each having zero defect. 

Thus, 
00ABC   by corollary 1.12.3. 

 

Figure 1.12.9 

Corollary 1.12.4: a rectangle exists if and only if every triangle has angle sum 180° 

1.13. The Critical Function 

In this subunit, we shall make heavy use of the incidence and separation theorems. Convenience, we briefly restate two of 

them: 

The postulate of pasch:  

Given ABC  and a line L (in the same plane). If L intersects AB  at a point between A and B, then L also intersects 

either AC  or BC . 

 

Figure 1.13.1 

The Crossbar Theorem: If D is in the interior of BAC , then AD  intersects BC .  

 

Figure 1.13.2 

F

E

B

CDA
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Given a line L and an external point P. let A be the foot of the perpendicular from P to L, and let B be any other point of L 

(fig. 1.13.3). For each number r between 0 and 180 there is exactly one ray PD , with D on the same side of AP  as B, such 

that m APD r   

 

Figure 1.13.3 

Obviously, for some numbers r PD  will intersect AB . (For example, take r m APB  ). For 90r  , PD  will not 

intersect AB . Let 𝐾 =  𝑟: 𝑃𝐷     𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝐴𝐵       . Then K is nonempty, and has an upper bound. Therefore K has a supremum. 

Let 0 supr K . The number 0r  is called the critical number for P and AB . The angle APD  with measure equals 0r  

is called the angle of parallelism of AB and P. 

Theorem 1.13.1: If 0m APD r  , then PD  does not intersect AB . 

Proof: Suppose that PD  intersect AB  at Q.  

 

Figure 1.13.4 

If R is any point such that A-Q-R, then 0m APD r   so that 0r  is not an upper bound. 

Theorem 1.13.2: If 0m APD r   then PD  intersects AB . 

 

Figure 1.13.5 

Proof: Since 0 supr K  and 0m APD r  , it follows that m APD  not an upper bound of K. therefore, some r in K is 

greater than m APD . Let 'D  be such that 
'm APD r  . Then 'PD  intersects AB  in a point of F. but PD  is in the 

interior of 'APD . Therefore by the crossbar theorem PD  intersects AF . Therefore PD  intersects AB . Thus there is a 

certain “critical ray” PD , with 0m APD r  ; PD  does not intersects AB . But if F is in the interior of APD , then PF  

does not intersect AB . (if F is in the interior of APD , we shall say that AF  is an interior ray of APD ) 

 

Figure 1.13.6 

Note that 0r  was defined in terms of P, A and B. It turns out, however, that 0r  depends only on the distance AP. 

F
FF

P

D

A
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Theorem 1.13.3: Let P, A, B and also 'P , 'A , 'B  be as in the definition of the critical number. If ' 'AP A P , then the 

critical numbers 0r  and '
0r  are the same 

 

Proof: Let  : ..int sec ...K r PD er ts AB  and let  ' ' ' ': ..int sec ...K r P D er ts A B . If r K , let Q be the point where 

PD  intersects AB , and let 'Q
 

be the point of ' 'A B  for which ' 'AQ AQ . Then 
' ' 'm A P D r   (why?) Therefore

'r K  Thus 'K K ; and similarly 'K K . Therefore 'K K . And 'sup supK K . We now have a function 

0AP r . We shall denote this function by c, and call it the critical function. Thus, for every 𝑎 > 0, 𝑐(𝑎) denotes the critical 

number corresponding to AP=a. thus PD  intersects AB  when ( )m APD c a  , but PD  does not intersects AB  when 

( )m APD c a 
 

 

Figure 1.13.8 

we shall now investigate the function c. 

1.14. Open Triangle and Critically Parallel Rays 

Given rays AB , PD , and the segment AP , no two of these figure being collinear. Suppose that B and D are on the same 

side of AP , and that AB // PD .  

Then PD PA AB   is called an open triangle, and is denoted by DPAB .  

  

Figure 1.14.1 

Here, when we write AB // PD , we mean that the lines are parallel in the usual sense of not intersecting one another. 

Suppose now that DPAB  is an open triangle and every interior ray of APD  intersects AB : 

 

Figure 1.14.2 

We then say that PD  is critically parallel to AB , and we write PD / AB . Here the single vertical stroke is supposed to 

suggest that PD  is parallel to AB , which no room to spare. 

Note that PD and AB  do not appear symmetrically in this definition. Thus if PD / AB , it does not immediately follow 

that AB / PD . Note also that the relation PD / AB  (as we have defined it) depends not only on the “directions” of the two 

rays, but also on the initial points. 

P D

BA
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Figure 1.14.3 

Thus if PD / AB  (as we have defined it) depends not only on the initial points. Thus if PD / AB , we cannot conclude 

immediate that 'P D / 'A B . We shall see, however, in the next few theorems, that the conclusion is true. 

Theorem 1.14.1: If PD AB , and C-P-D, then CD AB
 

 

Figure 1.14.4 

Proof: Let CE  be an interior ray of ACD , and suppose that CE  does not intersect AB . By the exterior angle 

theorem, we know that APD ACD  . Therefore, there is an interior ray PF  of APD such that DPF DCE   . 

Therefore PF CE . Therefore, PF  does not intersect AB , because these rays lie on opposite sides of CE . This 

contradicts the hypothesis PD AB . 

Theorem 1.14.2: If PD AB , and P-C-D, then CD AB  

 

Figure 1.14.5 

We give the proof briefly. Suppose that there is an interior ray CE  of ACD  such that CE  does not intersect AB . 

Let F be any point of CE -C, and take G so that P-F-G. Then  

1. F is in the interior of APC  

2. PF  does not intersect AB  

3. PG  does not intersect AB  

4. PF  does not intersect AB  

Statement (1) and (4) contradict the hypothesis PD AB . 

Two rays R  and 'R  are called equivalent if one of them contains the other. We then write R ~ 'R . Obviously the 

symbol ~ represents an equivalence relation. Fitting together the preceding two theorems, we get: 

Theorem 1.14.3: If R AB , and R  and 'R  are equivalent, then 
'R AB . Somewhat easier proofs show that the relation 

PD AB  depends only on the equivalence class of AB . We leave these proofs to you. 

Theorem 1.14.4: If 1 2R R , '
1R ~ 1R  and '

2R ~ 2R , then 
' '
1 2R R  

Given PD AB , let C be the foot of the perpendicular from P to AB , and let PC=a 
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Figure 1.14.6 

Then PD CB  (providing, of course, that B is chosen so that A-C-B, as in the fig.). Therefore ( )m CPD C a  . Now on 

the side of PC  that contains B there is only one ray PD  for which ( )m CPD C a  . Thus we have: 

Theorem 1.14.5: The critical parallel to the given ray, through a give external point, is unique. Two open triangles are 

called equivalent if the rays that from their sides are equivalent. An open triangle DPAB  is called isosceles if P A    

 

Figure 1.14.7 

Theorem 1.14.6: If PD AB , then DPAB  is equivalent to an isosceles open triangle which has P as a vertex. 

 

Figure 1.14.8 

Proof: Since PD AB , the bisecting ray of APD  intersects AB  in a point Q. By the crossbar theorem, the bisecting 

ray of PAB  intersects PQ  at a point R. let S, T, and U be the feet of the perpendicular from R to PD , AB  and AP . 

Then RU RT  and RU RS . Therefore RS RT  and RST RTS   . Hence (by addition or subtraction) 

DST BTS    and DSTB  is isosceles. To make P a vertex, we take V on the ray opposite to TB , such that TV=SP. 

 

Figure 1.14.9 

Theorem 1.14.7: Critical parallelism is a symmetric relation. That is, if PD AB , then AB PD  

Proof: By theorem 1.14.4 and 1.14.6, we may suppose that DPAB  is an isosceles open triangle: 

 

Figure 1.14.10 

U

P S

R
!

!

D

B

QTA

S

T

P

V

E

F!

P D S!

B Q
A



124 Kassahun Tesfaye Agzew:  Fundamental Concepts of Geometry  

 

Let AE  be any interior ray of PAB . Let PF  be an interior ray of APD , such that DPF BAE   . Then PF  

intersects AB  at a point Q. It follow that AE  intersect PD  at the point S where PS=AQ. 

Theorem 1.14.8: If two nonequivalent rays are critically parallel to a third ray, then they are critically parallel to each 

other. 

Restatement: If AB CD , CD EF , and AB  and EF  are not equivalent, then AB EF . 

1.  Suppose that AB  and EF  lie on opposite sides of CD . Then AE  intersects CD , and by theorem 1.14.4 we can 

assume that the point of intersection is C. 

 

Figure 1.14.11 

Let AG  be any interior ray of EAB . Then AG  intersects CD  at appoint H. take I so that C-H-I and take J so that 

A-H-J. Then HI EF , by theorem 1.14.4; and HJ  is an interior ray of EHI . Therefore HJ  intersects EF  at appoint 

K. therefore AG  intersects EF , which was to be proved. 

2.  If CD  and EF  are on opposite sides of AB , then the same conclusion follows. Here we may suppose that

AB EC A  , for the same reasons as in the first case. Through E there is exactly one ray 'EF  critically parallel to

AB , by the result in case (1), 'EF CD . Since critical parallels are unique 'EF EF  and EF AB , which was to be 

proved. 

 

Figure 1.14.12 

Given three nonintersecting lines, it can easily happen that every two of them are on the same side the third. Therefore the 

conditions AB CD , CD EF  are not enough for our purpose; to get a valid proof, we need to use the full force of the 

hypothesis 'AB CD , CD EF . We shall show, under these conditions, that  

3.  Some lines intersects all three of the ray AB , CD , EF . (surely this will be enough) 

 

Figure 1.14.13 

If A and E are opposite sides of CD , then AE  intersects CD , and (3) follows. Suppose, then that  

a.  A and E are on the same sides of CD . If A and D are on the same side of EC , then CA  is an interior ray of C , so 

that CA  intersects EF , and (3) follows. If A lies on CE  then (3) holds. We may therefore suppose that. 

DC

A

B

F
E
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b.  A and D are on opposite sides of CE . Therefore AD  intersects CE  at a point G. take H so that C-D-H. Then 

DH AB . By the exterior angle theorem HDA C  . Therefore there is an interior ray DI  of HDA  such that

HDI C   . Then DI CE  but DI  intersect AB  at a point J. Now CE  intersects AD  at G. therefore CE  

intersects another sides of ADJ . Since CE  does not intersect DJ , CE  intersect AJ  at a point K. now (3) 

follows; the line that we wanted is CE . 

Exercises 

By the interior of an open triangle DPAB , we mean the intersection of the interiors of P  and A . If a line intersects 

the interior of an open triangle, does it follow that the line intersects one of the sides? Why or why not? 

1. The same question, for the case where PD AB   

2. In a Euclidean plane, if a line intersects the interior of an angle, does it follow that the line intersects the angle? 

2. Euclidean Geometry 

Though in schools most students learn plane geometry/Euclidean geometry, there are actual many different types. These 

different types were developed by other mathematicians who developed theories and research that may have contradicted the 

work of other. But, here our concern is Euclidean geometry which is based on rules called postulates as stated below. It is 

different from other geometries, such as absolute/neutral geometry, hyperbolic geometry, elliptic geometry and the like 

where no parallel lines exist, because of the parallel postulate. E of  

Euclid’s Axioms of geometry: The Euclidean geometry is based on the following postulates  

Postulate 1: We can draw a unique line segment between any two points. 

Postulate 2: Any line segment can be continued indefinitely. 

Postulate 3: A circle of any radius and any center can be drawn. 

Postulate 4: Any two right angles are congruent.  

Postulate 5: Let 𝑙 and 𝑚 be two lines cut by a transversal in such a way that the sum of the measures of the two interior 

angles on one side of 𝑡 less than 180. Then 𝑙 and 𝑚  intersect on that side  𝑡. 

2.1. Euclidean Parallel Postulate and Some Consequences 

The parallel postulate was the most controversial of Euclid’s postulate for geometry. Many mathematicians felt that it 

should be possible to deduce the parallel postulate from Euclid’s other postulates. It was later proved to be impossible to 

deduce the parallel postulate from the other postulates, efforts to do so led the invention of various non-Euclidean geometries 

in which the parallel postulate is violated. Here below it will be given the statement of Euclidean parallel postulate and some 

of its consequences. 

Definition 2.1.1: Two distinct lines are parallel if they have no points in common. We also say that any line is parallel to 

itself. 

The word parallel simply means that two lines have no points in common. It doesn’t say anything about being in the same 

direction, or being equidistance from each other, or anything else. 

Euclidean parallel postulate: For every line  𝑙 and for every point P that does not lies on  there is exactly one line 

 such that P is on  and . The parallel postulate in its equivalent form: 

[P](Play fair’s Axiom): For each point P and each line  𝑙 , there exist at most one line through P parallel to 𝑙. Indeed, in 

Euclid’s development of geometry; this is not an Axiom, but, a theorem that can be proved from the axioms. However, some 

mathematicians like to take the statement [P] as an axiom instead of using Euclid’s parallel postulate. As a result, it is very 

important to explain in what sense we can say that Euclid’s parallel postulate is equivalent to fair’s play axiom. Since the 

parallel postulate plays such a special rule in Euclid’s geometry, let us make a special point of being aware when we use this 

postulate, and which theorems are dependent on its use. Let us recall neutral geometry the collection of all postulates and 

common notations except parallel postulate together with all theorems that can be proved without using parallel postulate. If 

we take neutral geometry, and add back the parallel postulate, then we recover the ordinary Euclidean geometry and we can 

prove [P] as a theorem. 

Euclid has proved, using the parallel postulate, that the angle sum in triangle is always two right angles. This property of 

triangles is equivalent to the parallel postulate, that is one can also prove that the converse implication, that if the angle sum is 

assumed to be two right angles, then the parallel postulate follows. Thus, proving the parallel postulate is equivalent to 

proving the angle theorem. 

Theorem 2.1.1: Given two lines and a transversal. If the lines are parallel, then each pair of alternate interior angles are 

congruent. 



AB  
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Figure 2.1.1 

Proof: There is exactly one line '
1L  through P, for which the alternate interior angles are congruent, and by theorem in 

chapter one, we have 
'
1 2L L . Since there is only one such parallel line, we have '

1 2L L . Therefore, 1 2    this was to 

be proved. 

The proof of the following theorem is entirely analogous.  

Theorem 2.1.2: Given two lines and a transversal. If the lines are parallel, then each pair of corresponding angles is 

congruent. The inequality 180m A m B m C       now becomes an equation. 

Theorem 2.1.3: In any triangle ABC  we have 180m A m B m C      . 

 

Figure 2.1.2 

Proof: let L be the parallel to AC  through B. Let D and E be points of L such that D-B-E and such that D and A are on the 

same side of BC . Then 2m m B m DBC      and 
01 180m DBC m    . Therefore, 1 2 180m m B m      . By 

theorem 2.1.1 1m m C    and; 2m m A   ; Therefore 180m A m B m C      . This was to be proved. 

Theorem 2.1.4: The acute angles of a right triangle are complementary. 

Theorem 2.1.5: Every Saccheri quadrilateral is a rectangle. 

  

Figure 2.1.3 

Proof: By theorem 2.1.1 1 2m m   . Since AB=DC and AC=AC, it follows that BAC DCA   . Therefore, 

m B m D   , is a right angle. The proof that C  is a right angle is obtained merely by permuting the notations. Thus we 

have finally shown that rectangles exist. Note that in this proof we are using a figure to explain the notation. If the reader (or 

the writer) sees no other way to explain, say, the idea of alternate interior angles, then it is worthwhile to fight our way 

through the problem as we did in the previous chapter. But once we done this, we have earned the right to speak in the 

abbreviated language of pictures. A quadrilateral is a trapezoid if at least one pair of opposite sides are parallel ( It is 

sometimes required that the other pair of sides be nonparallel, but this is artificial, just as it would be artificial to require that 

an isosceles triangle be nonequidrilateral ). If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral 

is a parallelogram. If two adjacent sides of a parallelogram are congruent, then the quadrilateral is rhombus. The proofs of the 

following theorems are omitted. (They are not much harder to write than to read.)  

2.2. Equivalent Form of the Euclidean Parallel Postulate 

In this section we consider some statements that are equivalent to Euclid’s parallel postulate. When says that two 

statements are equivalent in this sense we mean that if we add either statement to the axioms of neutral Geometry, we can 

prove the other statement. It does not mean that the two statements are precisely logically equivalent. 

Euclidean parallel postulate: For every line  and for every point 𝑃 that does not lie on  there is exactly one line 𝑚 

such that P m  and m . 
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Equivalent Axiom (Euclid’s Fifth Postulate) 
Let  and 𝑚 be two lines cut by a transversal in such a way that the sum of the measures of the two interior angles on 

one side of 𝑡 is less than 180. Then  and 𝑚 intersect on that side of  𝑡. 

Euclid’s Fifth postulates states that if 180   , then  intersects 𝑚 at a point C that is on the same of 𝑡 as   and 


 

 

Figure 2.2.1 

Proof: (Euclid’s fifth postulate is equivalent to the Euclidean Parallel Postulate) 

( ) [The Euclidean Parallel Postulate  Euclid’s fifth postulate] 

Let 𝑙, 𝑚, 𝑡, 𝛼, 𝛽 be as indicated in figure 2.1, i.e, construct the lines 𝑙, 𝑚 and 𝑛 as shown; then 180   . There is a 

line 𝑛 through 𝛽 such that 180    (by the protractor postulate). By the linear pair theorem, then 180    and 

180   .  

Hence, 180 180 360 ( ) 360 180 180...........................(*)                  

Thus, both pairs of non-alternating interior angles formed by 𝑡  sum to 180. By assumption 180  
 

substituting 

equation (*) gives 180 180    ,   . In particular, since   , then m n . Since 180     , n  (alternate 

interior angle theorem). Since m n  this means 𝑚  is not parallel to  (this is because we are assuming the Euclidean 

parallel postulate, that there is only one line through B that is parallel to  ). Since 𝑚  is not parallel to , they intersect at 

a point C, and there must be such a point C on the same side of 𝑡 as the angles   and  . This is Euclid’s fifth postulate. 

( ) [Euclid’s fifth postulate  Euclidean parallel postulate] 

See proof that Euclid’s fifth postulate implies the Euclidean parallel postulate. 

 

Figure 2.2.2 

Assume Euclid’s fifth postulate. Let  be a line and P be a point such that p . Drop a perpendicular line from P to , 

and all the foot of the line Q. Construct m  through P such that m PQ . By the alternate interior angles theorem, m . 

Assumer n m  is a second line through P such that n . Then PQ  is a transversal to 𝑛 and . Since, n m  the 

interior angles 90   and 90  . Since, they form a linear pair 90   . Hence one of  ,   is less than 90 and 

another is greater than 90. By Euclid’s fifth postulate, lines 𝑛 and  meet on whichever side of PQ  the smaller of angles 

  and   lies. Thus, 𝑛 is not parallel to . Hence there is only one line through P that is parallel to . Hence, the 

Euclidean parallel postulate follows from Euclid’s fifth postulate. 

2.3. The Euclidean Parallel Projections 

We know that the perpendicular from a point to a line always exists and is unique. Furthermore, the parallel projection 

theorem is one consequence of Euclidean Parallel Postulate. We will discuss the general notion of parallel projection in plane 

as follows. And we also show that parallel projection preserves betweens, congruence and ratios, let us first consider the 

special case indicated in the following figure, and treated in next the theorem. 

Theorem 2.3.1: Every parallel projection is a one-to-one correspondence. 

Proof: Given ':f L L  the projection of L onto 'L  in the direction T (see figure 2.3.1). Let g be the projection L onto 

'L  in the direction of T. Obviously g reverses the action of L. that is if '( )P g P , then ' ( )P f p ,: 
'L L . Therefore 𝑓 
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is a one-to-one correspondence 
'L L , which was to be proved (another way of putting it is to say that every point 'P  of 

'L  is equal ( )f P  for one and only one point P of L.) 

 

Figure 2.3.1 

Theorem 2.3.2: Parallel projection preserve betweeness. 

Restatement: Let ':f L L  be a parallel projection. If P-Q-R on L, then ' ' 'P Q R   on 'L  

 

Figure 2.3.2 

Here, of course ' ( )P f P , ' ( )Q f Q and ' ( )R f R  

Proof: Let TP, TQ, TR be as in the definition of a parallel projection, so that P Q RT T T . Then R and 'R are on the same 

side of QT , because 'RR  does not intersect QT . Similarly, P and 'P  are on the same side of QT . But P and R are on 

opposite sides of QT , because P-Q-R, and 'P  and 'R  are on opposite sides of QT . Therefore, ' 'P R  intersects QT  in a 

point X. since '
QT L , there is only one such point of intersection. Therefore, 'X Q . Therefore, 'Q  lies on ' 'P R , and 

' ' 'P Q R  , which was to be proved. 

2.4. Basic Similarity Theorem  

Here we will revise the preliminary notions that could be used in this section like ration and proportion while we study 

similarity of triangles. 

Definition 2.4.1: - A comparison of the magnitudes of two quantities of the same kind in the same unit is called a ratio. It 

is usually expressed as quotient of two numbers. For instance, if we are given lengths of two line segments as 16AB cm  

and 7DC cm , then the ratio of their lengths is 16:7. 

Definition 2.4.2: - Any equality of two ratios is called a proportion. 

Remark: 

  A proportion is usually expressed as 
a c

b d
  or : :a b c d  

  The constant ratio 
a c

k
b d

   is called the proportionality constant 

 (Common values of each ratio) 

  If three quantities , ,a b c  are such that, 
a b

b c
  then b  is called a mean proportional between a  and c . Thus, if 

b  is the mean proportional between a  and c , then 
2b ac . 

Ratio of segment of a line: Let p  be a point on the line segment AB . 

If A P B  , then AB  is said to be divided internally at p  in the ratio :AP PB . 
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Figure 2.4.1 

If P A B   or A B P  , then AB  is said to be divided externally at p  in the ratio :AP PB  (See figure below ii 

and iii)  

 

Theorem 2.4.1: If a line parallel to one side of a triangle intersects the other two sides (at points that divides the sides 

internally), then it divides each of these sides in segments which are proportional. 

Let us investigate some important proportions that can be deduced from this theorem. 

In figure 2.4.2. Let ||DE BC . Then it follows that 

................................(1)
AD AE

DB EC


 

 

Figure 2.4.3 

But 1 1
AD AE AD AE AD DB AE EC

DB EC DB EC DB EC

 
        

   ................................................(2)
AB AC

DB EC
   

Also from (1), it follows that 1 1
DB EC DB EC AD DB AE EC

AD AE AD AE AD AE

 
        

   ................................................(3)
AB AC

AD AE
   

Theorem 2.4.2: (Basic Similarity theorem) 

If 1 2,l l  and 3l  are three parallel lines, with common transversal m  and n , then 
BC EF

AB DE


  

 

Figure 2.4.4 

Here 1 2,l l  and 3l  are parallel lines, with common transversal m  and n . We want to prove that 
BC EF

AB DE
  

Proof: Let m  and n  be transversals to 1 2,l l , 3l , where 1 2 3|| ||l l l . 

To show that 
AB DE

BC EF
  (see figure below) 

Join A with F and apply the above theorem in ACF  and FDA , to get 
AB AX

BC XF
  and 

FX FE

XA ED
  (X is the point of 

intersection of AF  and 2l ) 

But 
XF FX FE EF AX DE

AX XA ED DE XF EF
      
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AB DE

BC EF
   

NOTE: The theorem stated above is one of the basic theorems in proving similarity of two triangles. 

Theorem 2.4.3: if M and N are two points on sides XY  and XZ  of XYZ , respectively such that ||MN YZ , then 

XM MN XN

XY YZ XZ
   

Proof: By theorem 3, we have 
XM XN

XY XZ


 

 

Figure 2.4.5 

Now since N is not on the XY , there exists a unique line l  through N parallel to XY . Let this line intersect YZ  at O 

(see the above figure) then by theorem (1) 
XZ YZ

XN YO
  

That is 
XN OY

XZ YZ
 But OY NM  (why?). 

Hence, 
XN MN

XZ YZ
  

Therefore, 
XM MN XN

XY YZ XZ
   

Theorem 2.4.4: If points D and E are respectively on sides AB  and AC  of ABC  such that 
AD AE

AB AC
 , then

||DE BC . 

 

Figure 2.4.6 

Proof: Suppose DE  is not parallel to BC . Then by parallel axiom there exists a point F on AC  different from E such 

that ||DF BC . Hence 
AD AF

AB AC
  by theorem (1) 

But from the hypothesis of the theorem we have 
AD AE

AB AC
 . Thus 

AF AE

AC AC
  and hence AF=AE. This in turn implies

AF AE , contrary to axiom of segment construction as F E . Therefore the supposition DE  is not parallel to BC  is 

wrong. 

Consequently ||DE BC
 

2.5. Similarities between Triangles 

We will discuss the mathematical notion of similarity which describes the idea of change of scale that is found in such 

forms as map making, perspective drawing, photographical enlargement and indirect measurement of distance. In this section 

we will mainly discuss some important theorem that could be used to prove similarity of triangles. The proofs of similarity 

theorem are based on the use of basic similarity theorem. Recall from high school that geometric figures are similar when 

they have the same shape, but not necessary same size. 

Definition 2.5.1: Two triangles ABC  and DEF  are said to be similar, written as  
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ABC DEF   if and only if  

i. All three parts of corresponding angles are congruent  

ii. Lengths of all three pairs of corresponding sides are proportional. 

Note: To establish similarity of triangles, however, it is not necessary to establish congruence of all pairs of angles and 

proportionality of all pairs of sides. It also important to note that triangle similarity do require Euclid’s parallel postulate.  

Note:  

1)  If ABC  is similar to DEF , we denote this by ABC DEF  . 

2)  Similar triangles should always be named in such way that so that the order of the letters indicates the correspondence 

between the two triangles. 

3)  ABC DEF   if and only if  

i. 
,A D   ,B E   ,C F   and  

ii. 
AB BC CA

DE EF FD
   

4)  The common value of each ratio in (ii) is called proportionality constant. 

5)  Intuitively speaking, two triangles are similar if they have the same shape, although not necessary the same size. It 

looks as if the shape ought to be determined by the angles alone, and this is true. 

Theorem 2.5.1: The AAA similarity theorem. 

Given a correspondence between two triangles. If correspondence angles are congruent, then the correspondence is a 

similarity. 

Restatement: Given ABC , DEF and correspondence ABC DEF  

IF ,A D   ,B E   ,C F   then ABC DEF   

Proof: Let 'E  and 'F  be points of AB  and AC  as shown in figure 

By SAS, we have ,ABC DEF    

Therefore 'AE F E   Since ,B E   we have ' 'AE F B   ; thus ' ' ||E F BC  and A, ' ,F C 

Correspond to A, ' ,E  and B under parallel projection. 

Since parallel projection preserves ratios, we have 
' 'AE AF

AB AC
  

 

 

Figure 2.5.1 

In exactly the same, merely changing the notations, we can show that 
'AF EF

AC BC
  

Therefore, 
' 'AF EF AE

AC BC AB
   

Hence, corresponding angles are congruent and corresponding sides are proportional. By definition, ABC DEF   
Theorem 2.5.2: AA similarity theorem 

If two angles of one triangle are congruent to the corresponding two angles of another triangle, the triangles are similar. 

Proof: Let ABC  and XYZ  be two triangles such that A X    and B Y   . we need to show that 

ABC XYZ  . Since A X    and B Y   , then C Z   (why?). So it remains to show that the corresponding 

sides are proportional.  

   

Figure 2.5.2 

D

F

B C

A

Y Z

X



132 Kassahun Tesfaye Agzew:  Fundamental Concepts of Geometry  

 

If AB XY , then ABC XYZ   (why?) 

If C Z   , AB ≢ XY , then either AB XY  or XY AB . Without loss of generality assume that XY AB . Then 

there exists a point D on AB  such that A-D-B and AD XY . By axiom of angle construction there exists a point F on the 

half plane determined by AB  containing C such that ADF XTZ    

  

Figure 2.5.3 

Since ABC XTZ  , ADF ABC   by transitivity. Hence ||DF BC  (why?) 

Since ray DF  does not pass through the vertices of ABC  and does not intersect BC , it must intersect AC  at some 

point E. Thus, ADE XYZ    by ASA. Hence , ,AD XY DE YZ    and EA ZX . But ||DF BC  as E DF  and 

||DF BC . 

It then follows from theorem (3) that this in turn implies 
XY YZ ZX

AB BC CA
  . 

Therefore ABC XYZ    
Theorem 2.5.3: SAS similarity theorem 

Given a correspondence between two triangles. If two pairs of corresponding sides are proportional, and the included 

angles are congruent, then the correspondence is a similarity. 

Proof: Given two triangles ABC  and PQR  such that A P    and
AB AC

PQ PR
 .  

  

Figure 2.5.4 

To show that ABE PQR  . Since it is given that A P   , it is sufficient to show that B Q   . Let D and E be 

two points on AB  and AC  respectively such that AD PQ  and AE PR  (this is possible by axiom of segment 

construction). 

Then ADE PQR    by SAS 

Hence ADE PQR    

 

Figure 2.5.5 

From ,
AB AC

PQ PR
 AD PQ  and AE PR  it follow that ,

AB AC

AD AE
  

Thus, ||DE BC  by theorem (4) and hence ADE ABC   

D E

B C

A

B C

A

Q R

P

ED

B C

A

Q R

P
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SO ADE PQR    by transitivity therefore ABC PQR   by AA similarity as A P    and B Q    

Theorem 2.5.4: The SSS similarity theorem  

If two triangles are such that the corresponding sides are proportional, then the two triangles are similar. 

Proof: Left for reader. 

Theorem 2.5.5: The bisectors of an angle of a triangle divide the opposite side into segments which are proportional to the 

adjacent sides. 

Restatement: If in ,ABC AD  is the bisector of BAC  where D is point on ,BC  then 
AB BD

AC CD
  

Proof: Left as exercise. 

Theorem 2.5.6: If an external bisector of an angle of a triangle intersects the line containing the opposite side, then the 

point of intersection divides the opposite side externally into segment whish are proportional to the adjacent sides.  

Proof:  

  

Figure 2.5.6 

Let the external bisector of angle X  of XYZ  intersect the opposite side YZ at W (externally). 

Draw a line l  through W parallel to XZ . Then l and XY  are not parallel (why?). So they intersect at some point, say T. 

ZXW TWX   Since they are alternate interior angles. 

Also, ZXW TXW   so we have TXW TWX   by transitivity. Thus, XT=TW. 

Since || ,XZ TW  we have 
YW YT YT

WZ TX TW
  ……………………………. (1) 

From YTW ∽ YXZ  it follow that ,
YW YT TW

YZ TX XZ
  which implies that 

YT YX

TW XZ
 …….. (2) 

From (1) and (2) we conclude that .
YW YX

WZ XZ
  this completes the proof. 

Example: Let BE  and DC are angle bisectors of CBF  and ACB  respectively. If AD=21cm, AC=30cm, and 

BC=20cm, then find DB and EC. 

 

Figure 2.5.7 

Solution: Since CD  is the bisector of ,AC B
 AC AD

BC DB
 (why?) 

21 20
14

30

AD BC
DB

AC

 
     

Since BE  is the external bisector of angle B  of ,ABC  
AB AE

BC EC
 (why?). 

Thus 
35 30

,
20

EC

EC


  

40EC   

Theorem 2.5.7: In a right triangle, if an altitude is drawn to the hypotenuse, then  

I.  The triangle is divided into two similar right triangles and which are also similar to each other. 

II. The altitude is the mean proportional between the segments of the hypotenuse. 

III. Either leg is the mean proportional between the hypotenuse and the segment of the hypotenuse adjacent to the leg. 

X

T

W
ZY

F
B

D

C EA
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Proof: Let ABC  be a right triangle with right angle at C and CD  be altitude to the hypotenuse AB . 

 

Figure 2.5.8 

i)  Then ACD  and CBD  are congruent as they are complements of the same angle .CAB  similarly

CAD BCD  . Thus ABC ∽ ACD  and ABC ∽ CBD  by AA. Then ACD ∽ CBD  

ii)  From  ~ ACD CBD  , it follow that, 
CD AD

BD CD
 . That is 

2 .CD AD BD  

iii)  From ABC ∼ ACD  it follows that, 
AB AC

AC AD
  

That is 
2 .AC AB AD . From ABC ∼ CBD , we have 

AB BC

CB BD
 .  

That is 
2 .BD AB BD   

2.6. Pythagorean Theorem  

In mathematics, the Pythagorean Theorem is a relation in Euclidean geometry among the three sides of a right triangle 

(right-angle triangle) 

In terms of areas, it states that in any right triangle, the area of the square whose side is the hypotenuse (the side opposite 

the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right 

angle).  

Euclid’s version of Pythagorean Theorem: The sum of the areas of the squares on the legs (a, b) equals the area of the 

square on the hypotenuse(c). 

The theorem can be written as an equation relating the length of the sides a, b, and c often called the Pythagorean equation 
2 2 2a b c   where c represents the length of the hypotenuse, and a, b represent the lengths of the other two sides.  

These two formulations show two fundamental aspects of this theorem: it is both a statement about areas and about lengths. 

The Pythagorean Theorem has been modified to apply outside its original domain. A number of these generations are found in 

more advanced mathematics courses including extension to many-dimensional Euclidean spaces, to spaces that are not 

Euclidean, to objects that are not right triangles, and indeed, to objects that are not triangles at all, but n-dimension solids. 

Theorem 2.6.1: (Pythagorean Theorem) 

Let ABC  be a right triangle with right angle at vertex C. The square of the hypotenuse of a right triangle is equal to the 

sum of the square of the other two sides. 

 

Figure 2.6.1 

Proof: Let ABC  be a right triangle with right angle at C. To show that 
2 2 2 .BC AC AB   Draw altitude CD to AB . 

Then from theorem (2.4.1) (iii) we have  
2 2 ( ).( ) ( ).( )AC BC AB AD AB BD    

   ( )AB AD BD   

   .AB AB  As A-D-B 

2 2 2AB BC AC     

Theorem 2.6.2: (Converse of Pythagorean Theorem) 

If 2 2 2 ,a b c   then c  is a right angle. 

Proof:  

B

D

C

A
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Figure 2.6.2 

We are given with 
2 2 2 .a b c   Construct a right angle at point F on rays FG  and .FH  

Define point E FH  such that FE=a, and define point D FG  such that FD =b. Then DEF  is a right triangle 

By the Pythagorean Theorem 2 2 2 2 2 2.f d e a b c      This mean that f c  and hence by SSS. ABC  DEF . 

Hence 90.C F    

Definition 2.6.1 (Trigonometry) 

Let ABC  be a right triangle with right angle at vertex C, and let CAB   . Then if   is a acute, we define 

sin
BC

AB
   and cos

AC

AB
  . If   is obtuse, then let 

' 180    and define 
'sin sin   and 

'cos cos   

Also, define sin0 0  and cos0 1 ; sin90 1 and cos90 0  

Theorem 2.6.3: (Pythagorean identity) 
2 2sin cos 1    

Proof: Exercise 

Theorem 2.6.4: (law of Sines) 

Let ABC  be any triangle with sides a, b, c opposite vertices A, B, C. Then 
sin sin sin

a b c

A B C
 

  
 

Proof: Exercise 

Theorem 2.6.5: (Law of cosines) 

Let ABC  be any triangle with sides a, b, c opposite vertices A, B, C. Then 

2 2 2 2 cosc a b ab C     

Proof: Exercise 

Euclid, of Course, did not state the Pythagorean Theorem in terms of the sum of the squares of the edges; to do so would 

have required algebra, which was not invented for another thousand years after Euclid. Instead, the theorem was expressed in 

terms of area. 

Theorem 2.6.6: (Euclid’s version of the Pythagorean Theorem) 

The area of the square on the hypotenuse of a right triangle is equal to the sum of the squares on the legs. 

Theorem 2.6.7: In any triangle, the product of a base and the corresponding altitude is independent of the choice of the 

base. 

Restatement: Given ABC . Let AD  be the altitude from A to BC  and let BE  be the altitude from B to AC . Then 

. .AD BC BE AC  

 

Figure 2.6.3 

Proof: Suppose that E C  and D C , as shown in the figure. Then D E    and ,BEC ADC    because both 

are right angles Therefore BEC ∼ ADC  

Hence ,BE BC ∼ , .AD AC  Thus 
AD AC

BE BC
  and .AD BC .BE AC  which was to be proved. 

If E=C, then ABC  is a right triangle with its right angle C and we also have D=C. 

c

a

b

BC

A
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Figure 2.6.4 

Theorem 2.6.8: For similar triangles, the ratio of any two corresponding altitudes is equal to the ratio of any two 

corresponding sides. 

Restatement: Suppose that ABC ∼
' ' 'A B C . Let h  be the altitude from A  to BC , and let 

'h  be the altitude from 

'A  to ' 'B C . Then 
' ' '

h AB

h A B
  

Proof:  

 

Figure 2.6.5 

Let AD  and ' 'A D  be the altitudes whose lengths are h  and 
'h . If D B , then ' 'D B , and there is nothing to prove. 

If not, ABD ∼ ' ' 'A B D  and the theorem follows. 

Theorem 2.6.9: The area of a right triangle is half the product of the length of its legs. 

Proof:  

 

Figure 2.6.6 

Given ,ABD  with the right angle at C. Let D be the point such that ADBC is a rectangle.  

By the additivity postulate, area (□ ADBC ) ( ) ( )area ABC area ABD     

By the rectangle formula, area (□ )ADBC ab  

Therefore 2 ( )area ABC ab 
 and area 

1
( )

2
area ABC ab 

 

Theorem 2.6.10: The area of the triangle is half the product of any base and the corresponding altitude. 

 

Figure 2.6.7 

Proof: Given ABC . Let D be the foot of the perpendicular from B to AC ; let AC=b and let BD=h (as in each of the 

figures). 
 

There are essentially, three cases to consider.  

1. If A=D, then ABC  is the right triangle and 
1

2
ABC bh , by theorem 1. 

a

b

BE=C

A

b

aC B

DA

h

bA=D C

B

h

A D C

B

A

h

D C

B
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2. A-D-C. Let 1AD b  and 2DC b . by theorem 1, 1
1

,
2

BDA b h  2
1

.
2

BDC b h   

By the additivity postulate ABC BDA BDC     

Therefore 1 2 1 2
1 1 1 1

( ) ,
2 2 2 2

ABC b h b h b b h bh      this was to be proved 

3. D-A-C. let 
'b AD  by theorem () '1

( ) ( ) .
2

Area BDC b b h    

Also, by theorem '1
( ) ( ) .

2
Area BDA b b h    

By the additivity postulate ABC BDA BDC     

Therefore, ABC BDC BDA   '1
( )

2
b b h  '1 1

2 2
b h bh  this was to be proved 

Theorem 2.6.11: If two triangles have the same altitude, then the ratio of their areas is equal to the ratio of their bases.  

This theorem follows immediately from the area formula. If the triangles ABC  and DEF  have bases 1 2,b b  and the 

corresponding altitude for each of them is h, then 
1

1

2
2

1

2
1

2

b h
bABC

DEF b
b h

   this was to be proved. In the same way, we get the 

following theorem. 

Theorem 2.6.12: If two triangles have the same base, then the ratio of their areas is the ratio of their corresponding 

altitudes. The next theorem is a corollary of each preceding theorems. 

Theorem 2.6.13: If two triangles have the same base and the same altitude, then they have the same area. 

 

Figure 2.6.8 

Theorem 2.6.14: If two triangles are similar, then the ratio of their areas is the square of the ratio of any two corresponding 

sides. That is if ABC ∼ ,DEF then 

2
ABC a

DEF b

 
  
 

 

Proof: if the altitude to AC DF  are h and 
'h , as in the above figure , then we know from theorem()that 

'

h a b c

d e fh
    

Now, 

22 2

''

1

2
1

2

bh
ABC b h b a c

DEF e e d fheh

       
            

        
 which was to be proved 

3. Hyperbolic Geometry 

Introduction 

Until the 19thcentury the Euclidean Geometry was the only known system of geometry which concerned with measurement, 

concepts of congruence, parallelism and perpendicularity. Then early in that century, a new system dealing with the same 

concepts was discovered. This new system was called Non-Euclidean System which contained theorems that disagreed with 

the Euclidean Theorems. For instance, hyperbolic geometry, and elliptic geometry are some examples of Non-Euclidean 

Geometry. 

Non-Euclidean Geometry is not Euclidean Geometry. The term is usually applied only to the special geometries that are 

obtained by negating the parallel postulate, but, keeping the same the other axioms of Euclidean Geometry. 

Since the first 28 postulates of Euclid's Elements do not use parallel postulate, then these results will also be valid in our 

b

h

b

h
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first example of non-Euclidean Geometry called hyperbolic geometry.  

Remember that one of Euclid's unstated assumptions was that lines are infinite. This will not be the case in our other 

version of Euclidean Geometry called elliptic geometry and so not all 28 propositions will hold there (for example, in elliptic 

geometry the sum of the angles of a triangle is always more than two right angles and two of the angles together can be greater 

than two right angles, contradicting proposition 17). 

Hyperbolic geometry is the geometry you get by assuming all the postulates of Euclid, except the fifth one, which replaced 

by its negation. 

3.1. The Poincare Model 

In this section we shall assume that there is a mathematical system satisfying the postulates of Euclidean Plane Geometry, 

and we shall use Euclidean Geometry to describe a mathematical system in which the Euclidean parallel postulate fail, but in 

which the other postulates of Euclidean Geometry hold.  

Consider a fixed circle C in an Euclidean Plane. We assume that, merely for the sake of convenience, that C is a unit circle. 

Let E be the interior of C. 

Consider the following figure: 

 

Figure 3.1.1 

By hyperbolic circle we mean a circle C’ which is orthogonal to C. When we say that two circles are orthogonal to each 

other, we mean that their tangents at each intersection point are perpendicular. If this happens at one intersection point R, then 

it happens at the other intersection point S. But, we shall not stop to prove this; this chapter is purely descriptive and proofs 

will come later. 

The points of our hyperbolic plane will be the points of the interior E of C. By hyperbolic line we mean: 

1. The intersection of E and a hyperbolic circle, or  

2. The intersection of E and a diameter of C. 

It is a fact that  

Every two points of E lie on exactly one hyperbolic line. * 

We are going to define a kind of “Plane geometry” in which the “plane” is the set E and the lines are the hyperbolic lines. 

In our new geometry we already know what is meant by point and line. We need next to define distance and angular measure. 

For each pair of points X, Y, either on C or in the interior C, let XY be the usual Euclidean distance.  

Notice that if R, S, T, and U are as in the above figure, then R and S are not points of our hyperbolic plane, but they are 

points of the Euclidean plane that we started with. Therefore, all of the distances TS, TR, US, UR are defined, and * tells us 

that R and S are determined when T and U are determined. 

There is one and only one hyperbolic line through T and U, and this line cuts the circle C in the points R and S. We shall use 

these four distances TS, TR, US, UR to define a new distance d (T, U)in our” plane” E, by the following formula: 

d(T, U) = 𝑙𝑜𝑔𝑒

𝑇𝑅

𝑇𝑆
𝑈𝑅

𝑈𝑆

  

Evidently we have the following: 

d is a function which can be defined as 

d: ExE           R 

Let us now look at the ruler postulate in chapter 1. On any hyperbolic line L, take a point U and regard this point as fixed. 

For every point T of L, let  

 f (T) =𝑙𝑜𝑔𝑒

𝑇𝑅

𝑇𝑆
𝑈𝑅

𝑈𝑆

 

That is, f (T) is what we get by omitting the absolute value signs in the formula for d (T, U). We now have a function,  

f: L      ℜ 

E
C

C'

C'

S'

R'

S''
S

R C Q'

U'

Q

U
P

T'
T

U''V
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Where L is a hyperbolic line 

We shall now show that f is a coordinate system for L. 

If V is any other point of L, then 

 f (V)=𝑙𝑜𝑔𝑒

𝑉𝑅

𝑉𝑆
𝑈𝑅

𝑈𝑆

 

Let x=f (T) and y=f (V). Then 

 𝑥 − 𝑦 =  𝑙𝑜𝑔𝑒

𝑇𝑅

𝑇𝑆
𝑈𝑅

𝑈𝑆

− 𝑙𝑜𝑔𝑒

𝑉𝑅

𝑉𝑆
𝑈𝑅

𝑈𝑆

 =  𝑙𝑜𝑔𝑒

𝑇𝑅

𝑇𝑆
𝑉𝑅

𝑉𝑆

 . Since the absolute value of the difference of the logarithms is the absolute 

value of the logarithm of the quotient of the fractions.  

Therefore,  𝑥 − 𝑦 = 𝑑(𝑇, 𝑉), which means that our new distance function satisfies the ruler postulate. 

Since the ruler postulate in chapter one holds, the other distance postulates automatically hold. 

We define betweenness, segment, rays, and so on, exactly as in chapter one. All of the Theorems of chapter one also hold in 

our new geometry. Because the new geometry satisfies the postulates on which the proofs of the theorems were based. 

It is rather easy to convince yourself that the plane-separation postulate holds E.  

To discuss congruence of angles, we need to define an angular-measure function. Given “hyperbolic angle” in our new 

geometry, we form an angle in the old geometry by using the two tangent rays: 

 

Figure 3.1.2 

We then define the measure m<BAC to be the measure (in the old sense) of the Euclidean angle < ′𝐵𝐴𝐶′. 
It is a fact that the resulting structure [E, L, d, m] satisfies all the postulates of chapter one, including the SAS postulate. 

The proof of this takes time, however, and it requires the use of more Euclidean Geometry than we know so far. 

Granted that the postulates hold, it follows that the theorems also hold. Therefore, the whole theory of congruence, and of 

geometric inequalities, applies to the Poincare model of hyperbolic geometry. 

 

Figure 3.1.3 

On the other hand, the Euclidean parallel postulate obviously does not hold for the Poincare model. Consider, for example 

a hyperbolic line L which does not pass through the center p of C (figure 3.3). Through p there are infinitely many hyperbolic 

lines which are parallel to L. 

3.2. The Hyperbolic Parallel Postulate 

Hyperbolic geometry (also called Lobachevskian geometry) is the kind represented by the Poincare model. In such 

geometry, when the familiar parallel postulate fails, it pulls down a great many familiar theorems with it. A few samples of 

the theorems in hyperbolic geometry which are quite different from the analogous theorems of Euclidean Geometry follow.  

1. No quadrilateral is a rectangle. In fact, if a quadrilateral has three right angles, the fourth angle is always acute. 

2. For any triangle, the sum of the measures of the angles is always strictly less than 180°. 

3. No two triangles are ever similar, except in the case where they are also congruent. 

The third of these theorems means that two figures cannot have exactly the same shape, unless they also have exactly the 

same size. Thus, in hyperbolic geometry, exact scale models are impossible. 

In fact, each of the above three theorems characterizes hyperbolic geometry. 

If the angle-sum inequality, m<A+m<B+m<C< 180° holds, even for one triangle, then the geometry is hyperbolic; if the 

angle sum inequality holds, even for one triangle, then the geometry is Euclidean and similarly for (1) and (3). 

This has a curious consequence in connection with our knowledge of physical space. If physical space is hyperbolic, which 

C
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it may be, it is theoretically possible for the fact to be demonstrated by measurement. For example, suppose that you measure 

the angles of a triangle with an error less than” 0.0001” for each angle. Suppose that the sum of the measures turns out to be 

179°59′ 59.999′′ . The difference between this and 180° is 0.001”. This discrepancy could not be due to errors in 

measurement, because the greatest possible cumulative error is only “0.0003”. Our experiment therefore, proves that the 

space that we live in is hyperbolic.  

On the other hand, no measurement however exact can prove that the space is Euclidean. The point is that every physical 

measurement involves some possible error. Therefore, we can never show by measurement that an equation, r+s+t=180°, 

holds exactly; and this is what we would have to do to prove that the space we live in is Euclidean.  

Thus, there are two possibilities: 

1. The Euclidean parallel postulate does not hold in physical space, or  

2. The truth about physical space will never be known. 

The Hyperbolic parallel postulate: Given a line L and a point P not on L, there are at least two lines 𝐿′  and 𝐿′ ′ which 

contain P and are parallel to L. 

 

Figure 3.2.1 

3.3. Closed Triangles and Angle Sum  

In this section we deal specifically with the hyperbolic case. To avoid confusion, throughout this chapter, we shall mention 

the hyperbolic parallel postulate in every theorem whose proofs requires it. 

 

Figure 3.3.1 

If 𝑃𝐷       𝑖𝑠 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝐴𝐵      , then ∆PABD is called a closed triangle.  

Note that every closed triangle is an open triangle, but under hyperbolic parallel postulate the converse is false, because 

through P there is more than one line parallel to 𝐴𝐵      . 

Closed triangles have important properties in common with genuine triangles. 

Theorem 3.3.1: The Exterior Angle Theorem 

Under hyperbolic parallel postulate, in every closed triangle, each exterior angle is greater than its remote interior angle. 

That is, if 𝑃𝐷       𝑖𝑠 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝐴𝐵       and Q-A-B, then <QAP> ∠P. 

 

Figure 3.3.2 

 

Figure 3.3.3 

Proof: 

If ∆DPAB is an isosceles triangle, this is obvious. Here, if hyperbolic parallel postulate holds, then ∠P and <PAB are 

acute angles (because c (a) ∠90° for every a), and therefore, ∠QAP is obtuse angle. ∆DPAB is equivalent to an isosceles 

open triangle ∆DPCB, and this open triangle is also closed: 

L
L''
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Figure 3.3.4 

If C=A, there is nothing to prove. For the case A-C-B, let the degree measures of the various angles be as in the figure. 

Then 𝑃 > 𝑟, because c (𝑎)  <  90°, and 𝑃 + 𝑞 + 𝑠 ≤ 180°, by theorems in chapter one. 

Therefore, t=180°-q≥ p+s>r+s, and t>r+s, which proves half of our theorem. 

To prove that the other half, we need to show that 𝜇 > 𝑞. This follows from 

 𝑡 = 180°− 𝑞 > 180°−  𝜇 = 𝑟 + 𝑠. 
We found, in chapter one, that the critical function c was non- increasing. That is, if 𝑎′ > 𝑎, then c (𝑎′) ≤c (a). Using the 

exterior angle theorem, we can shorten this result. 

 

Figure 3.3.5 

Theorem 3.3.2: Under hyperbolic parallel postulate, the critical function is strictly decreasing. That is, if 𝑎′ >a then c(𝑎′) 
≤c (a). 

Proof: 

In the above figure 3.9, AP=a and AP'=a', 𝑃𝐷      𝐴𝐵       and 𝑃′𝐷′         𝐴𝐵       , so that 𝑃𝐷      𝑃′𝐷′          . 

Therefore, ∆𝐷′𝑃′PD is a closed triangle. Therefore, c (a) >c (𝑎′), this was to be proved. 

Theorem 3.3.3: Under hyperbolic parallel postulate, the upper base angles of a saccheri quadrilateral are always acute. 

 

Figure 3.3.6 

We already know, from chapter one, that they are congruent, and cannot be obtuse.  

In the figure, 𝐵𝑄       and 𝐶𝑃       are the critical parallels to  𝐴𝐷         through B and C. 

Therefore, m∠ABQ=c (a) =m∠DCP, as indicated. Applying the exterior angle theorem to the closed triangle PCBQ, we 

see that t>s. 

Therefore, t +c (a) >s + c (a). 

Therefore, s +c (a) <90°, which proves our theorem. 

 

Figure 3.3.7 

Theorem 3.3.4: Under hyperbolic parallel postulate, in every right triangle ABC, we have  

m∠A + m∠B + m∠C ∠ 180°. 

Proof: Suppose not. Then, if ∠A is the right angle, ∠B and ∠C must be complementary angles. Take point D on the 

opposite side of 𝐵𝐶     from A, so that ∠ BCD ≅ ∠ ABC and CD=AB. Then ∆ABC ≅ ∆DCB by SAS; and quadrilateral 

DP

BCA

R

Q

D'
P'

P

BA

D
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ABDC is a Saccheri quadrilateral. This is impossible, because ∠D is a right angle.  
Theorem 3.3.5: Under hyperbolic parallel postulate, for every triangle ABC, we have 

m∠A + m∠B + m∠C ∠ 180°. 

 

Figure 3.3.8 

Proof: 

Let 𝐴𝐶     be a longest side of ∆ABC, and let 𝐵𝐷     be the altitude from B to 𝐴𝐶    . Then 
 r + s + 90°∠ 180°, and t + 𝜇 + 90°∠ 180°. 
Therefore, r + (s + t) + 𝜇∠ 180°, which proves the theorem. 

Soon we shall see that under hyperbolic parallel postulate this theorem has a true converse: 

For every number x∠ 180° there is a triangle for which the angle sum is x. Thus, 180° is not an upper bound for the angle 

sums of triangles, but is precisely their supremum.  

3.4. The Defect of a Triangle and the Collapse of Similarity Theory 

The defect of ∆ABC is defined to be 180°-m∠A - m∠B - m∠C. The defect of ∆ABC is denoted by 𝛿∆ABC. Under 

hyperbolic parallel postulate we know that the defect of any triangle is positive, and obviously it is less than 180°. (Later we 

shall see that the converse holds: every number between 0° and 180° is the defect of some triangle.) 

The following theorem is easy to check, regardless of under hyperbolic parallel postulate. 

Theorem 3.4.1: Given∆ABC, with B – D – C. Then 𝛿∆ABC = 𝛿∆ABD + 𝛿∆ADC 

 

Figure 3.4.1 

It has, however, an important consequence. 

Theorem 3.4.2: Under hyperbolic parallel postulate, every similarity is congruence. That is,  

If ∆ABC ~∆DEF, then ∆ABC ≅ ∆DEF. 

 

Figure 3.4.2 

First we take G on 𝐴𝐵     so that AG =DE; and we take H and 𝐴𝐶     so that AH = DF. We then have ∆AGH ≅ ∆EDF, by SAS; 

therefore, ∆AGH ~∆ABC 
If G = B, then H = C, and the theorem follows. We shall show that the contrary assumption G≠B and H≠ C (as shown in 

the figure) leads to a contradiction. 

Let the defects of ∆AGH ~∆GHC, and ∆GBC be 𝑑1, 𝑑2 and 𝑑3 respectively, as indicated in the figure; let d be the 

defect of ∆ABC. By two applications of the preceding theorem, we have: d=𝑑1 + 𝑑2 + 𝑑3. This is impossible, because the 

angle congruence’s given by the similarity ∆ABC ~∆AGH tell us that d =𝑑1. 

The additivity of the defect, described in theorem 3.4.1, gives us more information about the critical function. What we 

know so far is that 

1. 0 < 𝑐(𝑎) < 90 for every 𝑎 > 0, and 

2. 𝑐  decreases as 𝑎  increases. 

There remains the question of how small the numbers c (a) eventually become when a is very large. We might have either 
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of the following situations: 

 

Figure 3.4.3 

In each case, e= inf{c (a)}, that is, the greatest lower bound of the numbers c (a). In each case, it follows from (2) that 

lim𝑎→∞ 𝑐(𝑎)=e. To prove the following theorem, therefore, we need merely show that e>0 is impossible. 

Theorem 3.4.3: lim𝑎→∞ 𝑐 𝑎 = 0. 
Proof: 

Suppose that c (a)>e>0 for every a. 

 
Figure 3.4.4 

The markings in the figure should be self-explanatory. For each n, 𝑃𝑛𝑄𝑛
           intersects 𝑃𝑜𝑅1

          , because e<c (n). The right 

triangles ∆𝑃𝑛𝑃𝑛+1𝑄𝑛+1 all are congruent, and therefore have the same defect 𝑑𝑜 . Consider now what happens to the defect 

𝑑𝑛  of ∆𝑃𝑜𝑃𝑛𝑅𝑛  where, n is increased by 1. In the figure below, the letters in the interiors of the triangles denote their defects. 

We have: 

𝛿∆𝑃𝑜𝑃𝑛𝑅𝑛+1 = 𝑑𝑛 + 𝑦, 
 𝛿∆𝑃𝑜𝑃𝑛𝑅𝑛+1 = 𝑑𝑛 + 𝑥, 
 𝑑𝑛+1 =(𝑑𝑛 + 𝑦) + (𝑑𝑜 + 𝑥),  

 

Figure 3.4.5 

By theorem 3.4.1 in each case, Therefore, 𝑑𝑛+1 > 𝑑𝑛 + 𝑑𝑜  

Thus, 𝑑2>𝑑1 + 𝑑𝑜 , 𝑑3 > 𝑑2+𝑑𝑜>𝑑1 + 2𝑑𝑜 . 

And by induction, we have 𝑑𝑛 > 𝑑1+ (n-1)𝑑𝑜 . 

When n is sufficiently large, we have 𝑑𝑛 > 180°, by the Archimedean postulate.this is possible, because the defect of a 

triangle is 180° minus the angle sum. Therefore, 𝑐 (𝑎) > 𝑒 > 0 is impossible, which was to be proved. 

Consider now what happens to the measure 𝑟 (𝑎) of the base angles of an isosceles right triangle, as the length 𝑎 of the 

legs becomes large. 
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Figure 3.4.6 

 

Figure 3.4.7 

Here, 𝐵𝐷       /𝐴𝐶.        Therefore, we always have r (a) <c (a). Therefore, lim𝑎→∞ 𝑐 𝑎 = 0. 

Let us now make the figure symmetrical by copying ∆𝐴𝐵𝐶 on the other side of 𝐴𝐵      . For∆𝐷𝐵𝐶, the angle sum is 4r(a). 

Therefore, the defect 180°− 4𝑟(𝑎) can be made as close to 180° as we please; we merely need to take a sufficiently large. 

Thus, 180° is not merely an upper bound of the numbers which are the defects of triangles; 180° is precisely their supremum.  

Theorem 3.4.4: For every number x<180° there is a triangle whose defect is greater than x. 

4. The Consistency of the Hyperbolic Geometry 

Under this chapter, we shall show that the Poincare Model satisfies all the postulates of hyperbolic geometry. In the 

analysis of the model we will depend, on Euclidean geometry, and so our consistency proof will be conditional. At the end of 

the chapter we shall know not that the hyperbolic postulates are consistent, but merely that they are as consistent as the 

Euclidean postulates. 

4.1. Inversions of a Punctured Plane 

Given a point A of a Euclidean plane E and a circle C with center at A and radius a. The set E-A is called a punctured plane. 

The inversion of E-A about C is a function,  

 f: E-A ↔ E-A, 

defined in the following way. For each point P of E-A, let P'=f(P) be the point of 𝐴𝑃       for which  

 AP'= 
𝑎2

𝐴𝑃
. 

 

Figure 4.1.1 

(Thus, for a=1, we have AP'=
1

𝐴𝑃
.). Since 

𝑎2

𝑎
= 𝑎, we have the following theorems.  

Theorem 4.1.1: If P∈ 𝐶, then𝑓 𝑃 = 𝑃. 

Theorem 4.1.2: If P is in the interior of C, then 𝑓(𝑃) is in the interior of C, and conversely. 

Theorem 4.1.3: For every  𝑃, 𝑓(𝑓(𝑃)) = 𝑃. 

That is, when we apply an inversion twice, this gets us back to wherever we started.  

Proof: 

P

aA

P'
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𝑓(𝑃) Is the point of 𝐴𝑃       for which 𝐴𝑓 𝑃 =
𝑎2

𝐴𝑃
, and 𝑓(𝑓(𝑃)) is the point of the same ray for which 𝐴𝑓 𝑓𝑃 =

𝑎2

𝐴𝑓(𝑃)
=

𝑎2

𝑎2
𝐴𝑃 

= 𝐴𝑃 

Therefore, 𝑓 𝑓 𝑃  = 𝑃. 

Theorem 4.1.4: If 𝐿 is a line through 𝐴, then  𝑓 𝐿 − 𝐴 = 𝐿 − 𝐴. 

Here by 𝑓 𝐿 − 𝐴  we mean the set of all image point 𝑓(𝑃), where  𝑃 ∈ 𝐴. In general,  

If 𝐾 ⊂ 𝐸 − 𝐴, then 𝑓 𝐾 = {𝑃′ = 𝑓(𝑃)/𝑃 ∈ 𝐾}. 

It is also easy to see that "if 𝑃 is close to 𝐴, then 𝑃′ is far from  𝐴, and conversely; the reason is that "
𝑎2

𝐴𝑃
 is large when 𝐴𝑃 

is small." In studying less obvious properties of inversion, it will be convenient to use both rectangular and polar coordinates, 

taking the origin of each coordinate system at  𝐴. 

The advantage of polar coordinates is that they allow us to describe the inversion in the simple form. 𝑓: 𝐸 − 𝐴 ↔ 𝐸 − 𝐴 

  𝑟, 𝜃 ↔ (𝑠, 𝜃) 

Where 

 𝑠 =
𝑎2

𝑟
 and 𝑟 =

𝑎2

𝑠
 

In rectangular coordinates we have, 𝑃 =  𝑥, 𝑦 = (𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃), 𝑓 𝑃 =  𝑢 𝑣 = (𝑠𝑐𝑜𝑠𝜃, 𝑠𝑠𝑖𝑛𝜃), 

Where 𝑟 and 𝑠 are related by the same equation as before evidently. 

Just as 𝑢2 + 𝑣2 = 𝑠2 

𝑥2 + 𝑦2 = 𝑟2 

These equations will enable us to tell what happens to lines and circles under inversions. We allow the cases in which the 

lines and circles contain the origin A, so that they appear in E-A “as punctured lines” and “punctured circles.” Thus, we shall 

be dealing with four types of figures, namely, lines and circles, punctured and unpunctured. For short, we shall refer to such 

figures as k-sets. The rest of this section will be devoted to the proof that if K is a k-set, then so also is f (K). Let us look first, 

however, at a special case. 

Let K be the line x=a. 

 

Figure 4.1.2 

Then K is the graph of the polar equation 𝑟𝑐𝑜𝑠𝜃 = 𝑎 

Since 𝑟 =  
𝑎2

𝑠
, where 𝑓 𝑟, 𝜃 = (𝑠, 𝜃), it follows that 𝑓(𝐾) is the graph of the condition 

 
𝑎2

𝑠
𝑐𝑜𝑠𝜃 = 𝑎,    𝑠 ≠ 0 

 Or 𝑠 = 𝑎𝑐𝑜𝑠𝜃,    𝑠 ≠ 0 

   𝑠2 = 𝑎𝑠𝑐𝑜𝑠𝜃,    𝑠 ≠ 0 

In rectangular form, this is  

𝑢2 + 𝑣2 = 𝑎𝑢, 𝑢2 + 𝑣2 ≠  0. 

Replacing 𝑢 and 𝑣 by 𝑥 and 𝑦 (to Mach the labels on the axes), we see that 𝑓(𝐾) is the graph of 

 𝑥2 − 𝑎𝑥 + 𝑦2 = 0, 𝑥2 + 𝑦2 ≠ 0 

And is hence the punctured circle with center at (
𝑎

2
, 0) and radius  

𝑎

2
. Thus, 𝑓 has pulled the upper half of the line K on to 

the upper semicircle, and the lower half on to the lower semicircle. It is to see that points far from the x-axis either above or 

below go on to points near the origin. 

More generally, we have the following theorem. 

Theorem 4.1.5: If K is a line in E-A, then f (K) is a punctured circle. 

Proof: Since we can choose the x-axis any way we want, we are free to assume that K is the graph of a rectangular equation 

 𝑥 = 𝑏 > 0 

And hence of a polar equation  

 𝑟𝑐𝑜𝑠𝜃 = 𝑏 > 0. 

f(K)

Xa

K

Y

C
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As before, setting 𝑟 =
𝑎2

𝑠
, we conclude that 𝑓(𝐾) is the graph of 

 
𝑎2

𝑥
𝑐𝑜𝑠𝜃 = 𝑏, 𝑠 ≠ 0 

 𝑠2=
𝑎2

𝑏
𝑠𝑐𝑜𝑠𝜃 

Or  

 𝑢2 −
𝑎2

𝑏
𝑢 + 𝑣2 = 0, 𝑢2 + 𝑣2 ≠ 0 

Or 𝑢2 −
𝑎2

𝑏
𝑢 + 𝑣2 = 0, 𝑥2 + 𝑦2 ≠ 0 

Therefore, 𝑓(𝐾) is a punctured circle, with center at (
𝑎2

2𝑏
, 0) and radius 

𝑎2

2𝑏
. 

It is easy to see that (1) every punctured circle is described by the above formula for some choice of b and some choice   

of the axes. Therefore, (2) every punctured circle L is = 𝑓(𝐾) for some line K. Theorem 3 tells us that 𝑓 𝑓 𝑃  = 𝑃  for  𝑃. 

Therefore,  

𝑓 𝐿 = 𝑓 𝑓 𝐾  = 𝐾. 

Thus, we have the following theorem. 

Theorem 4.1.6: If L is a punctured circle, then 𝑓(𝐿) is a line in  𝐸 − 𝐴. 

We now know, from theorem 4, that under 𝑓, punctured lines go on to punctured lines; and we know, by theorem 5 and 6, 

that lines go on to punctured circles and vice versa. Now we must see what happens to circles. 

Theorem 4.1.7: If M is a circle in 𝐸 − 𝐴, then  𝑓(𝑀) is a line in 𝐸 − 𝐴. 

Proof: M is the graph of a rectangular equation 

 𝑥2 + 𝑦2 + 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, 

Where, C≠ 0 since the circle is not punctured. 

In polar form, this is 

  𝑥2 + 𝐴𝑥𝑐𝑜𝑠𝜃 + 𝐵𝑟𝑠𝑖𝑛𝜃 + 𝐶 = 0, 

Since 𝑟 =
𝑎2

𝑠
, this tells us that 𝑓(𝑀) is the graph the equation 

𝑎4

𝑠2
+ 𝐴

𝑎2

𝑠
𝑐𝑜𝑠𝜃 + 𝐵

𝑎2

𝑠
𝑠𝑖𝑛𝜃 + 𝐶 = 0. 

Or 𝑎4 +  𝐴𝑎2𝑠𝑐𝑜𝑠𝜃 + 𝐵𝑎2𝑠𝑠𝑖𝑛𝜃 + 𝐶𝑠2 = 0, 
Or 𝑎4 +  𝐴𝑎2𝑢 + 𝐵𝑎2𝑣 + 𝐶(𝑢2 + 𝑣2) = 0, 
Replacing 𝑢 and 𝑣 by 𝑥 and𝑦, to match the labels on the axes, we get an equation for 𝑓(𝑀) in the form  

𝑥2 + 𝑦2 +
𝐴𝑎2

𝐶
𝑥 +

𝐵𝑎2

𝐶
𝑦 +

𝑎2

𝐶
= 0. 

The graph of 𝑓(𝑀) is a circle; this circle is punctured, because 
𝑎2

𝐶
≠ 0 

Theorem 4.1.8: If K is a k-set, then so is  𝑓(𝐾). 

4.2. Cross Ratio and Inversions 

We recall, from chapter 1, the definition of distance in the Poincare model. 

 

Figure 4.2.1 

If T and U are points of the hyperbolic line with end points R, S on the boundary circle C, then the non-Euclidean distance 

is defined by the formula. 

𝑑 𝑅, 𝑈 =  log
𝑇𝑅

𝑇𝑆 

𝑈𝑅
𝑈𝑆 

  

The fraction whose logarithm gets taken in this formula is called the cross ration the quadruplet R, S, T, U, and is 

commonly denoted by (𝑅, 𝑆, 𝑇, 𝑈). 

Thus,  𝑅, 𝐴, 𝑇, 𝑈 = log
𝑇𝑅

𝑇𝑆 

𝑈𝑅
𝑈𝑆 

 

T

C

P

R

S

U
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And changing the notation slightly, we have  𝑃1, 𝑃2, 𝑃3, 𝑃4 =
𝑃1𝑃3 .𝑃2𝑃4

𝑃1𝑃4 .𝑃2𝑃3
 

We shall show that inversions preserve the cross ratio. In the following theorem, 𝑓 is an inversion of a punctured plane 

𝐸 − 𝐴 about a circle with center at 𝐴 and radius 𝑎, as in the preceding section. 

Theorem 4.2.1: If  𝑃 ≔ 𝑃′𝑖 = 𝑓 𝑃1 (𝑖 = 1, 2,3, 4), then 

 𝑃1, 𝑃2, 𝑃3, 𝑃4 = (𝑃1′, 𝑃2′, 𝑃3′, 𝑃4′) 

Proof: For each 𝑖 from 1 to 4, let the polar coordinates of 𝑃𝑖   be  (𝑟𝑖 , 𝜃𝑖). By the usual polar distance formula, we have 

𝑃𝑖𝑃𝑗
2 = 𝑟𝑖

2 + 𝑟𝑗
2 − 2𝑟𝑖𝑟𝑗 cos(θi − θj). 

Now 𝑃𝑖
′ =  𝑠𝑖 , 𝜃𝑖 = (

𝑎2

𝑟𝑖
, 𝜃𝑖) 

Therefore,  

(𝑃1, 𝑃2, 𝑃3, 𝑃4)2 =
 𝑟1

2 + 𝑟3
2 − 2𝑟1𝑟3 cos 𝜃1 − 𝜃3  [𝑟2

2 + 𝑟4
2 − 2𝑟2𝑟4(𝜃2 − 𝜃4)]

 𝑟1
2 + 𝑟4

2 − 2𝑟1𝑟4 cos 𝜃1 − 𝜃4  [𝑟2
2 + 𝑟3

2 − 2𝑟2𝑟3(𝜃2 − 𝜃3)]
 

And  

(𝑃1 ′, 𝑃2 ′, 𝑃3 ′, 𝑃4′)
2 =

 
𝑎4

𝑟1
2 +

𝑎4

𝑟3
2 − 2

𝑎4

𝑟1𝑟3
𝑐𝑜𝑠 𝜃1 − 𝜃3  [

𝑎4

𝑟2
2 +

𝑎4

𝑟4
2 − 2

𝑎4

𝑟2𝑟4
𝑐𝑜𝑠(𝜃2 − 𝜃4)]

 
𝑎4

𝑟1
2 +

𝑎4

𝑟4
2 − 2

𝑎4

𝑟1𝑟4
𝑐𝑜𝑠 𝜃1 − 𝜃4   

𝑎4

𝑟2
2 +

𝑎4

𝑟3
2 − 2

𝑎4

𝑟2𝑟3
𝑐𝑜𝑠 𝜃2 − 𝜃3  

 

To reduce the second of these fractions to the first, we multiply in both the numerator and denominator by 
𝑟2

1𝑟2
2𝑟2

3𝑟2
4

𝑎8 . 

This theorem will tell us, in due course, that inversions applied to the Poincare model are isometries, relative to the 

non-Euclidean distance. 

4.3. Angular Measure and Inversions 

A re-examination of Section 4.1 will indicate that the image of an angle under inversion is never an angle. The point is that 

every angle in E-A has at least one side lying on a non-punctured line and the image of a non-punctured line is always a 

punctured circle. Therefore, the following theorem doesn’t mean it might seem to mean. 

 

Figure 4.3.1 

Theorem 4.3.1: If A and Q are non-collinear, then  

𝑃′ = 𝑓 𝑃 𝑎𝑛𝑑 𝑄′ = 𝑓 𝑄 , 𝑚∠𝐴𝑃𝑄 = 𝑚∠𝐴𝑄′𝑃′ 
Proof: Consider  Δ𝑃𝐴𝑄 𝑎𝑛𝑑 Δ𝑄′𝐴𝑃′. They have the angle ∠A in common. Since  

𝐴𝑃′ =
𝑎2

𝐴𝑃′
 𝑎𝑛𝑑 𝐴𝑄′ =

𝑎2

𝐴𝑄
 

We have  𝐴𝑃. 𝐴𝑃′ = 𝐴𝑄. 𝐴𝑄′ = 𝑎2, 

So that  
𝐴𝑃

𝐴𝑄′
=

𝐴𝑄

𝐴𝑃′
 

By the SAS similarity, Δ𝑃𝐴𝑄 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 Δ𝑄′𝐴𝑃′ 
Note the reversal of order of vertices here. Since ∠𝐴𝑃𝑄 𝑎𝑛𝑑 ∠𝐴𝑄′𝑃′ are corresponding angles, they have the same 

measure. 

 

Figure 4.3.2 

P'

QQ'A

P
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In the figure above, 𝑃′ = 𝑓 𝑃  𝑎𝑛𝑑 𝑄′ = 𝑓 𝑄  as before. Here we have 

𝑢 = 180 − 𝛼 − 𝑟 

=  180 − 𝑟 − 𝛼 

= 𝑠 − 𝛼. 

Therefore, 𝑠 = 𝑢 − 𝛼. 

The order of s and u depends on the order in which P and 𝑃′ appear on the ray. If P and 𝑃′ are interchanged, then we 

should interchange s and u, getting 𝑢 − 𝑠 = 𝛼. 

Thus, in general we have   𝑠 − 𝑢 = 𝛼. 

Consider next the situation illustrated in the figure below: 

 

Figure 4.3.3 

Here B is the center of a circular arc; 
𝑃𝑄
   is a line intersects in the arc at P; 

𝑃𝑆
↔ is a tangent ray at P:𝑅𝛼𝑃 = 𝑎. We assert that 

 lim𝑎→0 𝑚∠𝑅𝑎𝑃𝑄 = 𝑚∠𝑆𝑃𝑄. 

Proof: 
The first step is to show that  lim𝑎→0 𝑚∠𝑅𝑎 = 𝑃𝑆 = 0. 
Consider now a circular arc 𝑄𝑆      with end point at a point Q. 

 

Figure 4.3.4 

For small positive numbers a, let 𝑅𝛼  be the point of the arc for which Q𝑅𝛼 = 𝑎. 

Let 𝑄′𝑆    ′ be the image of   𝑄𝑆    ; that is  𝑄′𝑆     ′ = 𝑓(𝑄𝑆    ); 

Let 𝑄′𝑅′      be the tangent ray at 𝑄′. 
We assert that ∠𝐴𝑄′𝑅′ ≅ ∠𝑇𝑄𝑅. 

To see this, we observe that m ∠𝑇𝑄𝑅𝑎  𝑎𝑛𝑑 𝑚∠𝐴𝑄′𝑅𝑎 ′  is the s and u that we discussed just after Theorem 4.3.1. 

Therefore,  

 𝑚∠𝑇𝑄𝑅𝑎 − 𝑚∠𝐴𝑄′𝑅𝑎 ′  = 𝛼 

Now 

lim
𝑎→0

𝑚∠𝑇𝑄𝑅𝑎 = 𝑚∠𝑇𝑄𝑅, 

and 

lim
𝑎→0

𝑚∠𝐴𝑄′𝑅𝑎 ′ = 𝑚∠𝐴𝑄′𝑅′, 

Therefore, lim𝑎→0[𝑚∠𝑇𝑄𝑅𝑎 − 𝑚∠𝑇𝑄𝑅 − 𝑚∠𝐴𝑄′𝑅′]. 

But, the absolute value of the quantity indicated in square brackets is equal to 𝛼 and  𝑎 → 0. 
Therefore, 𝑚∠𝑇𝑄𝑅 = 𝑚∠𝐴𝑄′𝑅′. 
Given two intersecting circles or lines, the tangent rays give us “tangent angles” like this: 

a

S
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B
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Figure 4.3.5 

By the preceding result, we have the following theorem. 

Theorem 4.3.2: Under inversions, corresponding tangent angles are congruent. That is, if 𝐴𝐵     and 𝐴𝐶     are arcs with a 

tangent angle of measure r, then their images 𝑓(𝐴𝐵)        and,  𝑓(𝐴𝐶)      have a tangent angle of measure r. Similarity for an arc 

and a segment or a segment and a segment. 

Proof: Left for reader. 

4.4. Reflections across L-Lines in the Poincare Model 

We recall that the points in the Poincare model are the points of the interior E of a circle C with center at P; the L-lines 

are: 

1. The intersection of E with lines through P and 

2. The intersection E with circles C' orthogonal to C. 

 

Figure 4.4.1 

If L is hyperbolic line of the first type, then the reflection of E across L is defined in the familiar fashion as a one 

correspondence: 𝑓: 𝐸 ↔ 𝐸 Such that for each point Q of E, Q and f(Q) are symmetric across L. 

If L is hyperbolic line of the second type, then the reflection of E across L is the inversion of E about C'. 

To justify this definition of course we have to show that if f is an inversion about a circle C' 
Orthogonal to C, then f(E) =E. But, this is not difficult to show. In the next few theorems, it should be understood that f 

is an inversion about C'; C' has center at A and intersects C orthogonally at R and S: and  𝐿 = 𝐸 ∩ 𝐶′. 

 

Figure 4.4.2 

Theorem 4.4.1: 𝒇(𝑪) = 𝑪. 

Proof: 𝑓 𝐶  is a circle. This circle contains R and S because 𝑓 𝑅 = 𝑅 and  𝑓 𝑆 = 𝑆. By Theorem 2 of the 

preceding section, 𝑓 𝐶  𝑎𝑛𝑑 𝐶′ are orthogonal. But there is only one circle C which crosses𝐶′orthogonally at R and S. It is 

clear that P must be the center of any circle. Therefore, 𝑓 𝐶 = 𝐶, this was the required. 

Theorem 4.4.2:  𝑓 𝐸 = 𝐸. 

Proof: Let X be any point of E. Then  𝐴𝑋       intersects C at points T and U. Since 𝑓 𝐶 = 𝐶  we have 

𝑈 = 𝑓 𝑇  𝑎𝑛𝑑 𝑇 = 𝑓 𝑈 , but, inversions preserve betweenness on rays starting at A. Therefore, 𝑓 𝑇𝑈     = 𝑇𝑈     and 

𝑓 𝑋 ∈ 𝐸. Thus, 𝑓 𝐸 ⊂ 𝐸. 

We need to show conversely that 𝐸 ⊂ 𝑓 𝐸 . This is trivial: given that 𝑓 𝐸 ⊂ 𝐸 we have 𝑓 𝑓 𝐸  ⊂ 𝑓 𝐸 . Since 

 𝑓 𝑓 𝐸  = 𝐸, this gives 𝐸 ⊂ 𝑓 𝐸 . 

Theorem 4.4.3: If M is hyperbolic line, then so also is 𝑓 𝑀 . 
Proof: 

E

E
L

T

X
U
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M is the intersection 𝐸 ∩ 𝐷 where 𝐷 is either a circle orthogonal to 𝐸 or a line orthogonal to C. Now 𝑓 𝐷  is 

orthogonal to C and is a line or circle (punctured or unpunctured). Let  𝐷′ be the corresponding complete line or circle. 

Thus, 𝐷′ = 𝑓 𝐷 , 𝑜𝑟 𝐷′ = 𝑓(𝐷) ∪ 𝐴.  

Then 

𝑓 𝑀 = 𝑓(𝐷) ∩ 𝐸 = 𝐷′ ∩ 𝐸, Which is hyperbolic line.  

We recall that hyperbolic angle is the angle formed by two “ray” in the Poincare model. 

  

Figure 4.4.3 

The measure of hyperbolic angle is the measure of the angle formed by the tangent rays. We now sum up nearly all of 

the preceding discussion in the following theorem. 

Theorem 4.4.4: Let f be a reflection across E and hyperbolic line. Then  

1. 𝑓 is a one-to-one correspondence 𝐸 ↔ 𝐸 

2. 𝑓 preserves the non-Euclidean distances between points 

3. 𝑓 preserves hyperbolic lines 

4. 𝑓 preserves measures of hyperbolic angles 

For hyperbolic lines of the first type passing through P all this is trivial because in this case f is an isometry in the 

Euclidean sense. It therefore preserves distances of both types lines, circles, orthogonally, and angular measure. For 

hyperbolic lines of the second type conditions 1 to 4 follows from the theorems of this section and the preceding two 

sections. 

4.5. Uniqueness of the hyperbolic lines Through Two Points 

Given the center P of C, and some other point Q of E. We know that P and Q lie on only one straight line in the 

Euclidean Plane. Therefore, P and Q lie on only one hyperbolic line of the first kind. But P doesn’t on any hyperbolic line 

of the second kind. The reason is that on the right triangle 𝐴𝑅𝑃 in the figure, the hypotenuse 𝐴𝑃     is the longest side. It 

follows that the hyperbolic line through two points of E is unique, in the case where one of the points is P. 

 

Figure 4.5.1 

To prove that uniqueness always holds we need the following theorem. 

Theorem 4.5.1: For each point Q of E there is a reflection f such that f(Q)=P. 

 

Figure 4.5.2 

Proof: 

We start by the method of wishful thinking. If the inversion 𝑓 about 𝐶′ gives𝑓 𝑄 = 𝑃, then  

𝐴𝑃 =
𝑎2

𝐴𝑄
. 
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We recall that the radius PR=1. Let K=QP, and let x be the unknown distance AP (figure 4.13) 

Suppose that L passes through P, and let its end points on C be R and S. For every point Q of L, Let 𝑓 𝑄 = log𝑒

𝑄𝑅
𝑄𝑆 

𝑃𝑅
𝑃𝑆 

 

= log𝑒
𝑄𝑅

𝑄𝑆
 (Because PR=PS).  

Let QS=x. Then QR=2-QS=2-x, and we have 𝑓 𝑄 = log𝑒
2−𝑥

𝑥
. 

Obviously 𝑓 is a function 𝐿 → ℝ in to the real numbers. We need to verify that 𝑓 is a one-to-one correspondence 

 𝐿 → ℝ. Then we need to show every real number K is equal to 𝑓(𝑄) for exactly one point Q. Thus, we want 𝑘 =

log𝑒
2−𝑥

𝑥
 

Or 

𝑒𝑘 =
2 − 𝑥

𝑥
 

Or  𝑒𝑘 + 1 𝑥 = 2 Or 𝑥 =
2

𝑒𝑘+1
 

For Every K there is exactly one such x, and 0<x<2 as it should be. Therefore every k is equal to 𝑓 𝑄  for exactly one 

point Q of L. 

We have already checked that when the coordinate system f defined in this way, the distance formula 𝑑 𝑇, 𝑈 =
 𝑓 𝑇 − 𝑓(𝑈)  is always satisfied. 

Before proceeding to generalize the following theorem we observe that the formulas give us some more information. 

 

Figure 4.5.3 

The figure 𝑥𝑖 = 𝑄𝑆 𝑓𝑜𝑟 𝑖 = 1, 2, 3. It is easy to check that 
2−𝑥

𝑥
 is a function. Its derivative is −

2

𝑥2 < 0  and the 

logarithm is an increasing function.  

Therefore, if 𝑥1 < 𝑥2 < 𝑥3 as in the figure, it follows that  𝑓(𝑄1) < 𝑓(𝑄2) < 𝑓(𝑄3), and conversely. We recall that 

betweenness is defined in terms of distance and one point of a line is between two others if and only if its coordinate is 

between their coordinates.  

Theorem 4.5.2: Let 𝑄1 ,𝑄2 , 𝑄3 be points of hyperbolic line through P. Then 𝑄2 − 𝑄3 under the non-Euclidean distance 

if and only if 𝑄1 ,𝑄2 , 𝑎𝑛𝑑 𝑄3 are in the Euclidean plane. 

Theorem 4.5.3: Every hyperbolic line has a coordinate system.  

Proof: 

Given hyperbolic line L. If L contains P, we use theorem 4.6.1. If not, let Q be point of L; let g be a reflection such that 

g(Q) =P; let 𝐿'=g(L) and let 𝑓: 𝐿′ ↔ ℛ be a coordinate system for 𝐿′. For each point T of L, let 𝑓 ′ 𝑇 = 𝑓(𝑔(𝑇)). 

That is, the coordinate of T is the coordinate of the corresponding point 𝑔(𝑇) of 𝐿′. Since f and g are one-to-one 

correspondences, so also is their composition f(g). Given points such as T, and U of L. We know that 𝑑 𝑇, 𝑈 =
𝑑(𝑔 𝑇 , 𝑔 𝑈  because inversions preserve the non-Euclidean distance. This in turn is equal to 

 𝑓 𝑔 𝑇  − 𝑓(𝑔(𝑈)) . Because 𝑓 is a coordinate system for  𝐿′.  

Therefore, 𝑑 𝑇, 𝑈 =  𝑓′ 𝑇 − 𝑓′(𝑈)  this was to be proved. 

Theorem 4.5.4: Every hyperbolic line through P separates E in to two sets H1 and H2 such that  

1. H1 and H2 are convex sets 

2. If Q∈H1 andR ∈H2, then 𝑄𝑅     intersects L. 
Here 𝑄𝑅     means of course the non-Euclidean segment. 

  

Figure 4.5.4 

Proof: 

We know that the Euclidean line containing L separates the Euclidean Plane in to two half-planes  𝐻1
′  𝑎𝑛𝑑 𝐻2′. Let 

𝐻1 𝑎𝑛𝑑 𝐻2 be the intersections 𝐻1′ ∩ 𝐸 𝑎𝑛𝑑 𝐻2
′ ∩ 𝐸 as indicated in the figure.  

Suppose that  𝑄, 𝑅 ∈ 𝐻1 and suppose that 𝑄𝑅     intersects L in a point S. Let f be an inversion 𝐸 ↔ 𝐸 about a circle 
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with center A on the line containing L such that f(S) =P. Then f (𝑄𝑅    ) is hyperbolic line through P and f (Q) and f (R) belong 

to 𝐻1. Since Q-S-R, in the non-Euclidean sense, because f preserves the non-Euclidean distance.  

Therefore, 𝑓 𝑄 − 𝑃 − 𝑓(𝑅) in the Euclidean sense, which is impossible because 𝑓 𝑄  𝑎𝑛𝑑 𝑓 𝑅  are in the same 

Euclidean half-plane. 

It follows that in the same way that 𝐻1 is a convex set. Thus, we have verified half of the proof.  

Suppose now that 𝑄 ∈ 𝐻1 and 𝑅 ∈ 𝐻2. Let 𝐶′ be the Euclidean circle that contains the hyperbolic line  𝑄𝑅    
: 

 

Figure 4.5.5 

Then L contains a point S of the Euclidean segment from Q to R and S is in the interior of 𝐶′. It follows that the 

Euclidean line containing L intersects 𝐶′ in points, one of which is a point T of L. Now we must verify that Q-T-R in 

non-Euclidean sense. [Hint: Use an inversion 𝑓: 𝐸 ↔ 𝐸, 𝐻1 ⟷ 𝐻1, 𝐻2 ⟷ 𝐻2, 𝑇 ↔ 𝑃,  and then apply theorem 4.6.2.] 

To extend this result to hyperbolic lines in general, we observe that: 

Theorem 4.5.5: Reflections preserve betweenness. Because, they preserve lines and distance. 

Proof: Left for reader. 

Theorem 4.5.6: Reflections preserve segments. Because, they preserve betweenness.  

Proof: Left for reader. 

Theorem 4.5.7: Reflections preserve convexity. Because, they preserve segments. 

Proof: Left for reader. 

Theorem 4.5.8: The plane separation postulate holds in the Poincare model. 

Proof: 

Let L be any hyperbolic line and let Q be any point of L. Let f be a reflection such that 

𝑓 𝑄 = 𝑃; 𝑙𝑒𝑡 𝐿′ = 𝑓 𝐿 ;  𝑎𝑛𝑑 𝑙𝑒𝑡 𝐻1
′  𝑎𝑛𝑑 𝐻2′ be the half-planes in E determined by  𝐿′ . Let 𝐻1 = 𝑓−1 𝐻1

′   𝑎𝑛𝑑 𝐻2 =
𝑓−1(𝐻2′).  

𝑓−1 is also a reflection and reflections preserve convexity. It follows that 𝐻1 and 𝐻2 are convex sets. This proves half 

of the plane separation postulate for L. It remains to show that if 𝑅 ∈ 𝐻1 𝑎𝑛𝑑 𝑆 ∈ 𝐻2
′ , 𝑡ℎ𝑒𝑛 𝑅𝑆     intersects 𝐿. 

If 𝑅′ = 𝑓 𝑅  𝑎𝑛𝑑 𝑆′ = 𝑓 𝑆 , 𝑡ℎ𝑒𝑛 𝑅′ ∈ 𝐻1′ and 𝑆′ ∈ 𝐻2
′ , so that 𝑅′𝑆′      intersects 𝐿′ at a point 𝑇′. Therefore, 𝑅𝑆     

intersects L at 𝑇 = 𝑓−1 𝑇′ . 
Theorem 4.5.9: Reflections preserve segments Reflections preserve half planes. 

That is, if 𝐻1 𝑎𝑛𝑑 𝐻2 are the half planes determined by L, then 𝑓 𝐻1  𝑎𝑛𝑑 𝑓(𝐻2) are the half planes determined by 

𝑓 𝐿 . 

Proof: Left for reader. 

Theorem 4.5.10: Reflections preserve segments Reflections preserve interior of angles. 

Proof: 

The interior of ∠𝐴𝐵𝐶 is the intersection of  

1. The side of 𝐴𝐵       that contains C 

2. The side of 𝐴𝐵       that contains A 

Since reflections preserve half planes, they preserve intersections of half planes. 

We have defined the measure of non-Euclidean angle as the measure of the Euclidean angle formed by the two tangent 

rays. We need to check whether this measure function satisfies the postulate of section 1.5. For angles with vertex at P this 

is obvious. To verify it for angles with vertex at some other point Q, we throw Q on to P by a reflection 𝑓. 

Now 𝑓 preserves angles, angular measure, lines, and interior of angles. It is therefore trivial to check that if Postulates 

M-1 through M-5 holds at P, then they hold at Q.  

5. The Consistency of Euclidean Geometry 

Our proof of the consistency of hyperbolic geometry, in the preceding chapter, was conditional. We should that if there is a 

mathematical system satisfying the postulates for Euclidean geometry, and then there is a system satisfying the postulates for 

hyperbolic geometry. We shall now investigate that if, by describing model for the Euclidean postulates. Here again our 

consistency proof will be conditional. To set up our model, we shall need to assume that the real number system is given. 

C

L

C'
R

S

Q
A

T
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5.1. The Coordinate Plane and Isometries 

Definition 5.1.1:  𝐸 = 𝑅𝑥𝑅, where 𝑅  the real number system is called a Cartesian model  

or coordinate system. 

Then a point in a Cartesian model 𝐸 is defined to be an ordered pair of real numbers. 

Definition 5.1.2: A line in the Cartesian model  𝐸 is a sub set of 𝐸 which has the form 

  𝐿 = {(𝑥, 𝑦)/ 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, 𝐴2 + 𝐵2 > 0} 

That is a line is defined to be the graph of a linear equation in x and y. 

Definition 5.1.3: If 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2 ), are two points in a Cartesian model 𝐸, then the distance between 

these two points from analytic geometry is given by 

  𝑑 𝑃, 𝑄 =  (𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

We define betweenness in terms of distance. As usual, we abbreviate 𝑑 𝑃, 𝑄  as 𝑃𝑄. 

Segments and rays are defined in terms of betweenness; and angles are defined when rays are known. It turns out that 

setting up an angular measure function is a formidable technical chore. We hope, therefore, that the reader will settle for a 

congruence relation ≅ for angles, satisfying the congruence postulates for angles. This relation is defined in the following 

way. 

Recall that: A one-to-one correspondence f from a set A to a set B is a function 

𝑓: 𝐴 → 𝐵 such that, for each 𝑏 ∈ 𝐵, there is a unique 𝑎 ∈ 𝐴 for which 𝑓 𝑎 = 𝑏. This is equivalent to the mapping 

𝑓: 𝐴 → 𝐵 being both one-to one and on to. In other words, we have a “pairing” between elements of 𝐴 and elements of 𝐵. 

Definition 5.1.4: An isometry is a one-to-one correspondence 𝑓: 𝐸 → 𝐸 𝑝 reserving distance. 

Definition 5.1.5: Two angles ∠𝐴𝐵𝐶 𝑎𝑛𝑑 ∠𝐷𝐸𝐹 are congruent if there is an isometry 𝑓: 𝐸 → 𝐸 such that 𝑓 ∠𝐴𝐵𝐶 =
∠𝐷𝐸𝐹. 

We have now given definitions, in the Cartesian model, for the terms used in the Euclidean postulates. Each of these 

postulates thus becomes a statement about a question of fact; and our task is to show that all of these statements are true. 

5.2. The Ruler Postulate 

Recall the following: 

1. The ruler postulate: Every line has a coordinate system. 

2. A vertical line is a line which is the graph of an equation 𝑥 = 𝑎. 

3. Every non-vertical line is the graph of an equation 𝑦 = 𝑚𝑥 + 𝑏. 

4. If 𝑥 = 𝑎 and 𝑥 = 𝑏 are equations of the same line, then 𝑎 = 𝑏. 
5. If 𝑦 = 𝑚1𝑥 + 𝑏1 and 𝑦 = 𝑚2𝑥 + 𝑏2 are equations of the same line, then 𝑚1 = 𝑚2 and 𝑏1 = 𝑏2. 

Definition 5.2.1: A coordinate system 𝑓 on a line L is a one-to-one correspondence 

𝑓: 𝐿 → 𝑅 

Definition 5.2.2: Distance function 

For each line L in the plane, fix a coordinate system 𝑓𝐿: 𝐿 → 𝑅. Then the distance function on the plane E is the function 

𝑑: 𝐸𝑥𝐸 → 𝑅 which assigns to any two points P,Q a real number 𝑑 𝑃, 𝑄 = 𝑃𝑄 

Defined by 

 𝑑 𝑃, 𝑄 = 𝑃𝑄 =  
 𝑓 𝑃 − 𝑓 𝑄   𝑖𝑓 𝑃 ≠ 𝑄

0 𝑖𝑓 𝑃 = 𝑄
  

Theorem 5.2.1: Every vertical line L has a coordinate system. 

Proof: Let 𝑥 = 𝑎 be the vertical line and for each point 𝑃 =  𝑎, 𝑦  of L, let 𝑓 𝑃 = 𝑦 

Then 𝑓 is a one-to-one correspondence  𝐿 ↔ 𝑅. If 𝑃 = (𝑎, 𝑦1) and 𝑄 = (𝑎, 𝑦2 ), then  

𝑃𝑄 = 𝑑 𝑃, 𝑄 =   𝑎 − 𝑎 2 +  𝑦2 − 𝑦1 
2 

 =   𝑦2 − 𝑦1 
2 

 =  𝑦2 − 𝑦1  

 =  𝑓(𝑄) − 𝑓(𝑃) , As desired. 

Theorem 5.2.2: Every non-vertical line has a coordinate system. 

 

Figure 5.2.1 
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Proof: Let 𝐿 be the graph of 𝑦 = 𝑚𝑥 + 𝑏. If (𝑥1, 𝑦1) and (𝑥2, 𝑦2) ∈ 𝐿, then it is easy to check that  
𝑦2−𝑦1

𝑥2−𝑥1
= 𝑚, 𝑦2 −

𝑦1 = 𝑚(𝑥2 − 𝑥1). 

And 

𝑃𝑄 = 𝑑 𝑃, 𝑄 =   𝑥2 − 𝑥1 
2 +  𝑦2 − 𝑦1 

2 

=   𝑥2 − 𝑥1  (1 + 𝑚2) 

From this we see how to define a coordinate system for 𝐿. For each point 𝑃 = (𝑥, 𝑦) ∈ 𝐿 

Let 𝑓 𝑃 = 𝑓 𝑥, 𝑦 = 𝑥  1 + 𝑚2  

Then for 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2) 

We have  

𝑃𝑄 =  𝑥2 − 𝑥1   1 + 𝑚2  

=  𝑥
2  1+𝑚2 

− 𝑥
1  1+𝑚2 

  

=  𝑓(𝑄) − 𝑓(𝑃)  

as it should be. 

These two theorems give us: 

Theorem 5.2.3: In the Cartesian model, the ruler postulate holds. 

Proof: Exercise  

5.3. Incidence and Parallelism 

Theorem 5.3.1: Every two points of the Cartesian model lie on a line. 

Proof: Given 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2). If 𝑥1 = 𝑥2, then 𝑃 𝑎𝑛𝑑 𝑄 lie on the vertical line 

 𝑥 = 𝑎 = 𝑥1.  

If not, then 𝑃 𝑎𝑛𝑑 𝑄 lie on graph of the equation 

𝑦 − 𝑦1 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
(𝑥 − 𝑥1) 

This is easily seen to be a line. 

Theorem 5.3.2: Two lines intersect in at most one point. 

Proof: Given 𝐿1  and 𝐿2  with 𝐿1 ≠ 𝐿2 . If both are vertical, then they do not intersect at all. If one is vertical and the 

other is not, then the graphs of  

𝑥 = 𝑎, 𝑦 = 𝑚𝑥 + 𝑏 

Intersect at the unique point (𝑎, 𝑚𝑎 + 𝑏). Suppose finally, that 𝐿1 and 𝐿2  are the graphs of  

 𝑦 = 𝑚1𝑥 + 𝑏1, 𝑦 = 𝑚2𝑥 + 𝑏2. 

If 𝑚1 ≠ 𝑚2 , very elementary algebra gives us exactly one common solution and hence exactly one intersection point. If 

𝑚1 = 𝑚2 , then 𝑏1 ≠ 𝑏2 , and the graphs do not intersect at all.  

We have already observed that if 𝐿 is the graph of 𝑦 = 𝑚𝑥 + 𝑏, then for every two points  𝑥1, 𝑦1 , (𝑥2, 𝑦2) of 𝐿, we have  

𝑦2 − 𝑦1

𝑥2 − 𝑥1
= 𝑚. 

Thus, 𝑚 is determined by the non-vertical line  𝐿. As usual, we call 𝑚 the slope of 𝐿. 
Theorem 5.3.3: Every vertical line intersects every non-vertical line. 

Proof: Let 𝐿1 be a vertical line 𝑥 = 𝑎 and 𝐿2 be non-vertical line = 𝑚𝑥 + 𝑏, then by theorem 2, 𝐿1 and 𝐿2 intersect at 

the point (𝑎, 𝑚𝑎 + 𝑏2). 

Theorem 5.3.4: Two lines are parallel if and only if (1) both are vertical, or (2) neither is vertical, and they have the same 

slope. 

Proof: Given 𝐿1 ≠ 𝐿2 . If both are vertical, then 𝐿1 ∥ 𝐿2 . If neither is vertical, and they have the same slope, then the 

equations  

𝑦 = 𝑚𝑥 + 𝑏1, 𝑦 = 𝑚𝑥 + 𝑏2. (𝑏1 ≠ 𝑏2) have no common solution, and 𝐿1 ∥ 𝐿2 . 

Suppose, conversely, that 𝐿1 ∥ 𝐿2 . If both are vertical, then (1) holds. It remains only to show that if neither line is vertical, 

they have the same slope. 

Suppose not. Then 𝐿1 : 𝑦 = 𝑚1𝑥 + 𝑏1, 𝐿2 : 𝑦 = 𝑚2𝑥 + 𝑏2 (𝑚1≠𝑚2) 

We can now solve for 𝑥 and 𝑦: 

0 =  𝑚1 − 𝑚2 𝑥 +  𝑏1 − 𝑏2 , 

Solve for 𝑥 we obtain  
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𝑥 = −
𝑏1 − 𝑏2

𝑚1 − 𝑚2
, 

𝑦 = −𝑚1  
𝑏1 − 𝑏2

𝑚1 − 𝑚2
 + 𝑏1 

We got this value of y by substituting in the equation of 𝐿1 . But, our x and y also satisfy the equation of 𝐿2 . This 

contradicts the hypothesis  𝐿1 ∥ 𝐿2 . 

Theorem 5.3.5: Given a point 𝑃 = (𝑥1, 𝑦1) and a number  𝑚, there is exactly one line which passes through 𝑃 and has 

slope = 𝑚. 
Proof: The lines L with slope 𝑚 are the graphs of equations  𝑦 = 𝑚𝑥 + 𝑏. 

If L contains  (𝑥1, 𝑦1), then 𝑏 = 𝑦1 − 𝑚𝑥1, and conversely. Therefore, our line exists and is unique. 

Theorem 5.3.6: In the Cartesian model, the Euclidean parallel postulate holds. 

Proof: Given a line L and a point 𝑃 = (𝑥1, 𝑦1) not on L. 

1.  If L is the graph of 𝑥 = 𝑎, then the line 𝐿′: 𝑥 = 𝑥1 is the only vertical line through P, and by theorem 5.3.3, no 

non-vertical line is parallel to L. Thus, the parallel line L through P is unique. 

2.  If L is the graph of 𝑦 = 𝑚𝑥 + 𝑏, then the only line parallel to L through P is the line through P with slope = 𝑚. This is 

unique.  

5.4. Translations and Rotations 

By a translation of the Cartesian model, we mean a one-to-one correspondence 

 𝑓: 𝐸 ↔ 𝐸: (𝑥, 𝑦) ↔ (𝑥 + 𝑎, 𝑦 + 𝑏). 

Merely by substitution in the distance formula, and observing that 𝑎 and 𝑏 cancel out, we have: 

Theorem 5.4.1: Translations are isometries. 

If L is the graph of the equation 

  𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, then the points 𝑥 ′ , 𝑦′ = (𝑥 + 𝑎, 𝑦 + 𝑏) of 𝑓(𝐿) satisfy the equation 

  𝐴 𝑥 ′ − 𝑎 + 𝐵 𝑦′ − 𝑏 + 𝐶 = 0, 
Or  𝐴𝑥 ′ + 𝐵𝑦′ +  −𝑎𝐴 − 𝑏𝐵 + 𝐶 = 0 

This is linear. Thus, we have proven the theorem. 

Theorem 5.4.2: Translation preserves lines. 

Since translations preserve lines and distance, they preserve everything defined in terms of lines and distance. 

Theorem 5.4.3: Translations preserve betweenness, segments, rays, angles, triangles, and angle congruences. 

Rotations are harder to describe, because at this stage we have no trigonometry to work with. Let us first try using 

trigonometry, wistfully, to find out what we ought to be doing, and then find a way to do something equivalent, using only the 

primitive apparatus that we now have at our disposal in our study of the Cartesian model. 

  

Figure 5.4.1 

We want to rotate the Cartesian model through and angle of measure ∅. (Fig. 5.4.1) 

Trigonometrically, this can be done by a one-to-one correspondence, 

 𝑓: 𝐸 ↔ 𝐸, 

defined as the labels in the figure suggest.  

Now cos(𝜃+𝜙) = 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 

Let 𝑎 = 𝑐𝑜𝑠𝜙, 𝑏 = 𝑠𝑖𝑛𝜙 

Now 𝑟 =  𝑥2 + 𝑦2, 𝑐𝑜𝑠𝜃 =
𝑥

 𝑥2+𝑦2
, 𝑠𝑖𝑛𝜃 =

𝑦

 𝑥2+𝑦2
 

We can therefore rewrite our formulas in the form 

 𝑓: (𝑥, 𝑦) ↔ (𝑥 ′ , 𝑦′) 

Where 𝑥 ′ = 𝑟𝑐𝑜𝑠(𝜃+𝜙) 

r

Y

X
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   =  𝑥2 + 𝑦2  
𝑥

 𝑥2+𝑦2
𝑎 −

𝑦

 𝑥2+𝑦2
𝑏  

  = 𝑎𝑥 − 𝑏𝑦 

And 𝑦′ =  𝑥2 + 𝑦2  
𝑦

 𝑥2+𝑦2
𝑎 +

𝑥

 𝑥2+𝑦2
𝑏   

 = 𝑎𝑦 + 𝑏𝑥. 
Any correspondence of this form, with 𝑎2 + 𝑏2 = 1,  is called a rotation of the Cartesian model. 

Theorem 5.4.4: Rotations preserve distance. 

Proof: We have 

𝑃 =  𝑥1, 𝑦1  

𝑄 =  𝑥2, 𝑦2  

𝑃′ = 𝑓 𝑃 = (𝑎𝑥1 − 𝑏𝑦1, 𝑎𝑦1 + 𝑏𝑥1) 

𝑄′ = 𝑓 𝑄 = (𝑎𝑥2 − 𝑏𝑦2, 𝑎𝑦2 + 𝑏𝑥2)  

It is merely an exercise in patience to substitute in the distance formula, calculate  

𝑃′𝑄′, simplify with the aid of the equation  𝑎2 + 𝑏2 = 1, and observe that 𝑃′𝑄′ = 𝑃𝑄. Solving for 𝑥 𝑎𝑛𝑑 𝑦, we get 

 𝑥 = 𝑎𝑥 ′ + 𝑏𝑦′ , 𝑦 = 𝑎𝑦′ − 𝑏𝑥 ′  

Comparing the formulas  

 𝑥 ′ = 𝑎𝑥 − 𝑏𝑦, 𝑦′ = 𝑏𝑥 + 𝑎𝑦 

For 𝑓 and the corresponding formulas for 𝑓−1, we see that these have the same form: 

 𝑥 = 𝑎′𝑥 ′ − 𝑏′𝑦′, 𝑦 = 𝑎′𝑦′ + 𝑏′𝑥′, where 𝑎′ = 𝑎 and 𝑏′ = −𝑏. 

Therefore, we have the following theorem. 

Theorem 5.4.5: The inverse of a rotation is a rotation. 

Proof: Exercise 

Theorem 5.4.6: Rotations preserve lines. 

Proof: Exercise 

Proof: L is the graph of an equation 

1. 𝑥 = 𝑘, 
2. 𝑦 = 𝑘, Or  

3. 𝑦 = 𝑚𝑥 + 𝑘)(𝑚 ≠ 0) 

In case (1), If f(L) is the graph of 𝑎𝑥 ′ + 𝑏𝑦′ = 𝑘 , where a and b are not both equal to zero, because 𝑎2 + 𝑏2 =
1.Therefore, L is a line. 

In case (2), 𝑓(𝐿) is the graph of 𝑎𝑦′ − 𝑏𝑥 ′ = 𝑘, which is a line. 

In case (3), 𝑓 𝐿  is the graph of 𝑎𝑦′ − 𝑏𝑥 ′ = 𝑚𝑎𝑥 ′ + 𝑚𝑏𝑦′ + 𝑘, 
Or  𝑚𝑎 + 𝑏 𝑥 ′  + 𝑚𝑏 − 𝑎 𝑦′ + 𝑘 = 0. 
If we had both  𝑚𝑎 + 𝑏 = 0, 𝑚𝑏 − 𝑎 = 0, 

Then 𝑚𝑎2 + 𝑎𝑏 = 0, 𝑚𝑏2 − 𝑎𝑏 = 0 

So that 𝑚(𝑎2 + 𝑏2) = 0, and 𝑚 = 0, contradicting our hypothesis. 

As for translations, once we know that rotations preserve lines and distance, it follows they preserve everything that is 

defined in terms of lines and distance. 

Therefore, we have: 

Theorem 5.4.7: Rotations preserve betweenness, segments rays, angles, triangles, and angle congruences. 

We are going to use rotations in the Cartesian model in much the same way that we used reflections in the Poincare model, 

to show that postulates for angle congruence hold. To do this, we shall need to know that every ray starting at the origin (0, 0) 

can be rotated on to the positive end of the x-axis, and vice versa. By theorem 5.4.5, it will be sufficient to prove the following 

theorem. 

Theorem 5.4.8: Let = (𝑥0 , 0),𝑥0 > 0, let 𝑄 = (𝑥1, 𝑦1), and suppose that 

𝑥0 =  𝑥1
2 + 𝑦1

2 

Then there is a function 𝑓 such that 𝑓 𝑃 = 𝑄. 

 

Figure 5.4.2 

P

Q

Y

X
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The equation in the hypothesis says, of course, such P and Q are equidistant from the origin. As a guide in setting up such 

a rotation, we note unofficially that we want to rotate E through an angle of measure 𝜙, where 

𝑎 = 𝑐𝑜𝑠𝜙 =
𝑥1

 𝑦1
2 + 𝑥1

2
 

𝑏 = 𝑠𝑖𝑛𝜙 =
𝑦1

 𝑦1
2 + 𝑥1

2
 

Thus, the rotation ought to be 𝑓: 𝐸 ↔ 𝐸 

 : (𝑥, 𝑦)  ↔ (𝑥 ′ , 𝑦′) 

where  𝑥 ′ = 𝑎𝑥 − 𝑏𝑦 =
𝑥1

 𝑦1
2+𝑥1

2
𝑥 −

𝑦1

 𝑦1
2+𝑥1

2
𝑦 

 𝑦′ = 𝑏𝑥 + 𝑎𝑦 =
𝑦1

 𝑦1
2+𝑥1

2
𝑥 +

𝑥1

 𝑦1
2+𝑥1

2
𝑦 

Obviously, 𝑎2 + 𝑏2 = 1 in these equations, and so 𝑓 is a rotation. And  

𝑓 𝑥0 ,0 =  
𝑥1

 𝑦1
2+𝑥1

2
𝑥0 ,

𝑦1

 𝑦1
2+𝑥1

2
𝑥0 , = (𝑥1, 𝑦1)This is the result that we wanted. 

5.5. Plane Separation 

We shall show first that the plane separation postulate holds for the case in which the given line is the x-axis. It will then be 

easy to get the general case. 

Definition 5.5.1: A subset 𝐸+ of the plane 𝐸 is convex if, whenever 𝑃 𝑎𝑛𝑑 𝑄 are two points of 𝐸+, then the line 

segment 𝑃𝑄 joining 𝑃 𝑡𝑜 𝑄 is also contained in 𝐸+. 

Definition 5.5.2: The two non-empty convex sets 𝐸+ and 𝐸− formed by removing the line L from the plane are called half 

planes, and the line L is the edge of each half plane.  

Let 𝐸+ be the “upper half plane.” That is,  

 𝐸+ = { 𝑥, 𝑦 : 𝑦 > 0}. 

Theorem 5.5.1: 𝐸+ is convex. 

Proof: Remember that, if A, B, and C are points of a line, with coordinates x, y and z, such < 𝑦 < 𝑧, then A-B-C. (This 

was proved merely on the basis of the ruler postulate, and we can therefore apply it now). Since only one of the points A, B, 

C is between the other two, the lemma has a true converse: if A-B-C, then 𝑥 < 𝑦 < 𝑧 or 𝑧 < 𝑦 < 𝑥. 

Consider now two points, 𝐴 = (𝑥1, 𝑦1), 𝐶 = (𝑥2, 𝑦2) of 𝐸+.  

 

Figure 5.5.1 

We need to show that 𝐴𝐶     lies in 𝐸+. That is, if A-B-C, with  𝐵 = (𝑥3, 𝑦3), then 𝑦3 > 0. 
Obviously, for the case 𝑥1 ≠ 𝑥2 we may assume that 𝑥1 < 𝑥2, as in the figure; and for the case  𝑥1 = 𝑥2,  We may 

assume that  𝑦1 > 𝑦2. 

In the first case, the line 𝐴𝐶       is the graph of an equation 𝑦 = 𝑚𝑥 + 𝑏. 

And has a coordinate system of the form 𝑓 𝑥, 𝑦 = 𝑥 1 + 𝑚2. 

In the second case, the line is the graph of the equation 𝑥 = 𝑥1 and has a coordinate system of the form  𝑓 𝑥, 𝑦 = 𝑦. 

It is easy to check that in the first case 𝑓 𝐴 < 𝑓 𝐵 < 𝑓 𝐶 . 

So that 𝑓 𝑥, 𝑦 =  1 + 𝑚2 

𝑥1 < 𝑥3 < 𝑥2 

For 𝑚 > 0. 

𝑚𝑥1 + 𝑏 < 𝑚𝑥3 + 𝑏 < 𝑚𝑥2 + 𝑏; 

For  𝑚 < 0, the inequalities run the other way; but in either case 𝑦2 lies between two positive numbers. In the second case 

 𝑥1 = 𝑥2, the same result follows even more easily.  

Let 𝐸− be the “lower half plane.” That is, 𝐸− = { 𝑥, 𝑦 : 𝑦 < 0}. 

Since the function, 𝑓:  𝑥, 𝑦 ↔ (𝑥, −𝑦) is obviously an isometry, it preserves segments. Therefore, it preserves convexity. 

Since  𝑓 𝐸+ = 𝐸−, we have the following. 

Theorem 5.5.2: 𝐸− is convex. 

It is an easy exercise in algebra to show that if 𝐴 = (𝑥1, 𝑦1) ∈ 𝐸+ and 𝐵 = (𝑥2, 𝑦2) ∈ 𝐸−, then 𝐴𝐵     contains a point (x, 0) 

of the x-axis.  

Theorem 5.5.3: E and the line y=0 satisfy that conditions for E and L in the plane separation postulate. 
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Now let L be any line in E, and let 𝐴 = (𝑥1, 𝑦1) be any point of L. By a translation f, we can move A to the origin. By a 

rotation g, we can move the resulting line on to the x-axis. Let  

𝐻1 = 𝑔−1𝑓−1(𝐸+), 𝐻2 = 𝑔−1𝑓−1(𝐸−). 

Since all of the conditions of the plane separation postulate are preserved under isometries, we have the following 

theorems. 

Theorem 5.5.4: E satisfies the conditions of the plane separation postulate. 

Theorem 5.5.5: Isometries preserve half planes. 

Proof: 

Let  𝐻1 be a half plane with edge 𝐿, and let 𝐻2 be the other side of  𝐿. If 𝑓 is an isometry, then 𝑓(𝐿) is a line𝐿′. Let 

𝐻1
′ = 𝑓(𝐻1), 𝐻2

′ = 𝑓(𝐻2) 

Then 𝐻1
′  and 𝐻2

′  are convex, and every segment between two points 𝑓(𝐴) of 𝐻1
′  and 𝑓(𝐵) of 𝐻2

′   must intersect  𝑓(𝐿). 

Therefore, 𝐻1
′  is a half plane with 𝐿′ as edge.  

From theorem 5.5.5 it follows that: 

Theorem 5.5.6: Isometries preserve interior of angles. 

That is, if I is the interior of ∠𝐴𝐵𝐶, then 𝑓(𝐼) is the interior of 𝑓(∠𝐴𝐵𝐶). 

5.6. Angle Congruence 

We want to verify that angle congruence, defined by means of isometries of E onto itself, satisfies the postulate of angle 

congruence, and also satisfies SAS. Only one of this verification is trivial.  

Statement 1: For angles, congruence is an equivalence relation. 

Proof: 

1) ∠𝐴 ≅ ∠𝐴  always, because the identity functions  𝐸 ↔ 𝐸 is an isometry. 

2) If ∠𝐴 ≅ ∠𝐵, then ∠𝐵 ≅ ∠𝐴, because the inverse of an isometry is an isometry.  

3) If ∠𝐴 ≅ ∠𝐵, and ∠𝐵 ≅ ∠𝐶, then ∠𝐴 ≅ ∠𝐶, because the composition of the isometries for which ∠𝐴 ↔ ∠𝐵 and 

∠𝐵 ↔ ∠𝐶 is always an isometry for which ∠𝐴 ↔ ∠𝐵 𝑎𝑛𝑑 ∠𝐵 ↔ ∠𝐶 is always an isometry for which ∠𝐴 ↔ ∠𝐶. 

The other verification is very difficult. We begin with a lemma. 

Lemma 5.6.1: Let f be an isometry of E on to itself. If 𝑓 𝐸+ = 𝐸+, and 𝑓 𝑃 = 𝑃 for every point P of the x-axis, then f 

is the identity. 

Proof: 

Let A be the origin (0, 0), and let 𝐵 = (1, 0). Let 𝑄 = (𝑎, 𝑏) be any point, and let 𝑓 𝑄 = (𝑐, 𝑑). Then 𝐴𝑄 = 𝑓 𝐴 𝑓 𝑄 , 

𝐵𝑄 = 𝑓 𝐵 𝑓 𝑄 . 

Taking the square of each of these distances, we get 

𝑎2 + 𝑏2 = 𝑐2 + 𝑑2, 

(𝑎 − 1)2 + 𝑏2 =  𝑐 − 1 2 + 𝑑2, 

𝑎2 + 𝑏2 − 2𝑎 + 1 = 𝑐2 + 𝑑2 − 2𝑐 + 1, 

So that  𝑎 = 𝑐 . Therefore, 𝑏2 = 𝑑2 . Since 𝑓 𝐸+ = 𝐸+ , 𝑏 𝑎𝑛𝑑 𝑑  are both positive, both zero, or both negative. 

Therefore, 𝑏 = 𝑑. Thus, 𝑓 𝑄 = 𝑄 for every 𝑄, which was to be proved. 

Lemma 5.6.2 Let A be the origin; Let 𝐵 =  𝑎, 0 , (𝑎 > 0) be a point of the x-axis; and let 𝐶 =  𝑏, 𝑐 , 𝑎𝑛𝑑 𝐷 =  𝑑, 𝑒 ,  
be points of 𝐸+ and 𝐸− such that 𝐴𝐶 = 𝐴𝐷, 𝐵𝐶 = 𝐵𝐷. 

Then there is an isometry 𝑓: 𝐸 ↔ 𝐸 such that 𝑓 𝐴 = 𝐴, 𝑓 𝐵 = 𝐵, 𝑓 𝐶 = 𝐷 𝑎𝑛𝑑 𝑓 𝐷 = 𝐶. 

  

Figure 5.6.1 

Proof: We shall show that d=b and e=-c. The desired isometry 𝑓 will then be the function  𝑥, 𝑦 ↔  𝑥, −𝑦 . 
Given 𝑏2 + 𝑐2 = 𝑑2 + 𝑒2, 

 (𝑏 − 𝑎)2 + 𝑐2 = (𝑑 − 𝑎)2 + 𝑒2, 

We have −2𝑎𝑏 = −2𝑎𝑑. Since 𝑎 > 0, this gives 𝑏 = 𝑑. Therefore, 𝑐2 = 𝑒2. Since 𝑐 > 0 𝑎𝑛𝑑 𝑒 < 0 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑒 = −𝑐. 

Lemma 5.6.3: Given ∠𝐴𝐵𝐶, there is an isometry 𝑓 of 𝐸 on to itself such that 

𝑓 𝐵𝐴       = 𝐵𝐶       and 𝑓 𝐵𝐶       = 𝐵𝐴      . That is, the sides of the angle can be changed by an isometry. 

In the proof we may suppose that 𝐵𝐴 = 𝐵𝐶, since 𝐴 𝑎𝑛𝑑 𝐶 can always be chosen so as to satisfy the condition. 

Y

XA
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Figure 5.6.2 

Let D be the midpoint of 𝐴𝐶    . Using a translation followed by a rotation, we get an isometry 𝑔: 𝐸 ↔ 𝐸 such that 𝑔(𝐵𝐷       ) 

is the positive end of the x-axis (Fig. 6.7). First we translate B to the origin, and then we rotate. 

By the preceding lemma there is an isometry  ℎ: 𝐸 ↔ 𝐸 , interchanging 𝐴′𝑎𝑛𝑑 𝐶′, and leaving 𝐵′𝑎𝑛𝑑 𝐷′ fixed. Let 

𝑓 = 𝑔−1ℎ𝑔. 
That is, 𝑓 is the composition of 𝑔, ℎ 𝑎𝑛𝑑 𝑔−1. Then 𝑓 is an isometry; 𝑓 𝐵 = 𝐵,  
𝑓 𝐴 = 𝐶, 𝑎𝑛𝑑 𝑓 𝐶 = 𝐴. 

  

Figure 5.6.3 

It is now easy to verify that the rest of our congruence postulates. Oddly enough, the easiest is SAS. We put this in the style 

of a restatement. 

SAS. Given ΔABC, ΔA′ B′ C′ , and a correspondence,  

 ABC ↔ A′B′C′. 
If 

1. 𝐴𝐵 = 𝐴′𝐵′ , 2. ∠𝐵 ≅ ∠𝐵′ , 3. 𝐵𝐶 = 𝐵′𝐶 ′ , 4. ∠𝐴 = ∠𝐴′ , 5. ∠𝐶 ≅ ∠𝐶 ′ , 6. 𝐴𝐶 = 𝐴′𝐶′ 

 

Figure 5.6.4 

Proof: 

By hypothesis 2, there is an isometry 𝐸 ↔ 𝐸, ∠𝐵 ↔ ∠𝐵′. By Lemma 3, it follows that there is an isometry 

𝑓: 𝐸 ↔ 𝐸,  
: 𝐵 ↔ 𝐵′  

: 𝐵𝐴        ↔ 𝐵′𝐴′          

: 𝐵𝐶       ↔ 𝐵′𝐶′          
If the given isometry moves ∠𝐵 on to ∠𝐵′ in the wrong way, then we follow it by an isometry which interchanges the 

sides of ∠𝐵′. From 1 it follows that 

𝐴′ = 𝑓 𝐴 𝑎𝑛𝑑 𝐶 ′ = 𝑓 𝐶 . 

Therefore,∠𝐴′ = 𝑓 ∠𝐴 , and ∠𝐴′ ≅ ∠𝐴;  ∠𝐶 ′ = 𝑓 ∠𝐶 , ∠𝐶 ′ ≅ ∠𝐶, 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜  
𝐴𝐶 = 𝐴′𝐶′ , 𝑓  because is an isometry. 

This proof bears a certain resemblance to Euclid’s proof of SAS by supposition. 

Statement 2: The angle Construction Postulate: Let ∠𝐴𝐵𝐶 be an angle, let 𝐵′𝐶 ′          be a ray and let H be a half plane 

whose edge contains 𝐵′𝐶′         . Then there is exactly one ray 𝐵′𝐴′          with 𝐴′  in H such that ∠𝐴𝐵𝐶 = ∠𝐴′𝐵′𝐶 ′. 
We give the proof merely in outline. It should be understood that all of the functions mentioned are isometries of E on to E 

and that the ray R is the positive x-axis. 

1. Take 𝑓1 so that 𝑓1 𝐵
′𝐶 ′          = 𝑅 

2. Take 𝑓2 so that 𝑓2 𝑅 = 𝑅 and 𝑓2𝑓1 𝐻 = 𝐸+ (of course, if 𝑓1 𝐻  is already =𝐸+, we let 𝑓2 to be the identity. ) 

3. Take 𝑔1 so that 𝑔1 𝐵𝐶       = 𝑅. 
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4. Take 𝑔2 so that 𝑔2 𝑅 = 𝑅 and 𝑔2𝑔1(𝐴) is in 𝐸+. 

5. Let ∠𝑥 = 𝑓1
−1𝑓2

−1𝑔2𝑔1 ∠𝐴𝐵𝐶 . Then ∠𝑥 is the ∠𝐴′𝐵′𝐶′ that we are interested. 

6. Suppose that there are two rays 𝐵′𝐴′          and 𝐵′𝐴"           satisfying these conditions. 

  

Figure 5.6.5 

Then  

𝑓2𝑓1 𝐵
′𝐴′          = 𝑓2𝑓1(𝐵′𝐴        ") = 𝐾𝑀         

Where K and M are in 𝐸+ and 𝐾𝐿       and 𝐾𝑀         are different rays. Since ∠𝐿𝐾𝑁 ≅ ∠𝐴𝐵𝐶 ≅ ∠𝑀𝐾𝑁,  

We have ∠𝐿𝐾𝑁 ≅ ∠𝑀𝐾𝑁 

Thus, there is an isometry 𝑓 of 𝐸 on to itself such that 𝑓 ∠𝐿𝐾𝑁 = ∠𝑀𝐾𝑁. 

By Lemma 3, 𝑓 can be chosen so that 𝑓 𝐾𝑁        = 𝐾𝑁        and 𝑓 𝐾𝐿       = 𝐾𝑀        . It follows that for each point P of the x-axis, 

𝑓 𝑃 = 𝑃. Since isometries preserve half-Planes and 𝑓 𝐿  is in 𝐸+, we have 𝑓(𝐸+) = 𝐸+. 

By Lemma 1, it follows that 𝑓 is the identity. This contradicts the hypothesis 𝑓 𝐾𝐿       = 𝐾𝑀        ≠ 𝐾𝐿      . 

Statement 3: The angle addition postulate: 
If  

1. D is the interior of ∠𝐵𝐴𝐶 

2. 𝐷′ is in the interior of ∠𝐵′𝐴′𝐶′ 
3. ∠𝐵𝐴𝐷 ≅ ∠𝐵′𝐴′𝐷′ 
4. ∠𝐷𝐴𝐶 ≅ ∠𝐷′𝐴′𝐶′ 
5. ∠𝐵𝐴𝐶 ≅ ∠𝐵′𝐴′𝐶′ 

   

Figure 5.6.6 

Proof: 

1.  By an isometry 𝑓 we move 𝐴𝐷       on to R and B in to 𝐸+. For this we need a translation followed by a rotation and 

perhaps a reflection  𝑥, 𝑦 ↔ (𝑥, −𝑦). 

2.  By an isometry 𝑔 we move 𝐴′𝐷′          on to R and 𝐵′ in to 𝐸+. 

3.  By the uniqueness condition in the preceding postulate we know that 

𝑓 𝐴𝐵     = 𝑔(𝐴′𝐵′      ) and 𝑓 𝐴𝐶       = 𝑔 𝐴′𝐶 ′       . 

4.  Therefore, 𝑓 ∠𝐵𝐴𝐶 = 𝑔(∠𝐵′𝐴′𝐶′). Hence, ∠𝐵𝐴𝐶 ≅ ∠𝐵′𝐴′𝐶′ ; the required isometry is 𝑔−1𝑓. 

Statement 4: The angle Subtraction Postulate: 

If 

1. 𝐷 is the interior of ∠𝐵𝐴𝐶 

2. 𝐷′ is the interior of ∠𝐵′𝐴′𝐶′ 
3. ∠𝐵𝐴𝐷 ≅ ∠𝐵′𝐴′𝐷′ 
4. ∠𝐵𝐴𝐶 ≅ ∠𝐵′𝐴′𝐶 ′ , 𝑡ℎ𝑒𝑛  
5. ∠𝐷𝐴𝐶 ≅ ∠𝐷′𝐴′𝐶′ 

 

Figure 5.6.7 

Proof: 

Let 𝑓 be the isometry given by (4) so that ∠𝐵𝐴𝐶 ≅ ∠𝐵′𝐴′𝐶′. By Lemma 3, we may suppose that 𝑓 𝐴𝐵       = 𝐴′𝐵′          and 
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𝑓 𝐴𝐶       = 𝐴′𝐶′         . Then surely 𝑓 ∠𝐵𝐴𝐷 ≅ ∠𝐵𝐴𝐷. 

The uniqueness condition in C-7 therefore tells us that  𝑓 𝐴𝐷       = 𝐴′𝐷′         . Therefore, 𝑓 ∠𝐷𝐴𝐶 = ∠𝐷′𝐴′𝐶′, and ∠𝐷𝐴𝐶 =

∠𝐷′𝐴′𝐶′ which was to be proved. 

Exercise: 

1.  Let L be a line and let A, B, and C be three distinct points of L with coordinates x, y, and z, respectively. If the point B 

is between the points A and C, then the number y is between the numbers x and z. 

2.  Show that there are at least three points in a plane E which are not contained in any single line. 

3.  Given two distinct points 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2), then show that there is exactly one line L in a plane E 

containing both points. 
4.  Suppose L is a line in the real Cartesian plane defined by the equation, 

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 and 𝑓: 𝐿 → 𝑅2 is the function given by  

𝑓  𝑥, 𝑦  =  

𝑦 𝑖𝑓 𝐵 = 0

𝑥 1 + (
𝐴

𝐵
)2 𝑖𝑓 𝐵 ≠ 0

  

a.  Prove that 𝑓 is a coordinate system on L. 

b.  If every line L in 𝑅2 is given the coordinate L as defined in (a), prove that the distance function defined on 𝑅2 is 

the standard distance studied in analytic geometry: 𝑑  𝑥1, 𝑦1 ,  𝑥2, 𝑦2  =  (𝑦1 − 𝑦2)2 + (𝑥1 − 𝑥2)2. 

5.  Let L be a line and let A, B, C be three distinct points of L with coordinates x, y, z, respectively. Then the point B is 

between the points A and C if and only if the number y is between the numbers x and z.  
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