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Abstract  The aim of this study is to discuss the weakness of the conventional way of presenting the relative intensities in 
multiplicative models. The identification problem in hazards models with multiple interactions is illustrated here. A proposed 
solution of this problem with a common baseline level rather than of using two pairs of baseline levels is demonstrated. A 
Bayesian approach with Markov Chain Monte Carlo (MCMC) algorithm is used to estimate the parameters of interest of a 
hazards model with multiple interactions. In this analysis MCMC chain has run for 12000 iterations then first 2000 are 
discarded as burn-in and retained 10000 for the posterior distribution. Various diagnostics like posterior autocorrelations, 
Gelman-Rubin diagnostic, Monte Carlo Standard Error (MCSE) are performed to check the Markov chain mixing and 
convergence to target posterior distribution. All these diagnostics are found statistically significant. The results are presented 
in a single table with common baseline level according to proposed solution. The major consequences of such presentation is 
that it is almost impossible to compare two separate tables entirely, while from a single table one can easily compare and 
interpret the results properly. Relative intensities are also computed from the posterior simulations in Bayesian analysis and 
presented in different tables and graphs.  
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1. Introduction and Literature Review 
Presentation of results of any research work should be 

apparent so that one can easily understand and compare these. 
Especially it is more important in case of presenting relative 
intensities (risk) in models with multiple interactions. The 
identification problem in a hazards model with multiple 
interactions has been illustrated using a real data set. 

Hazards models, also known as duration or survival 
models, are widely used in different fields. They are used to 
analyze factors associated with the occurrence and timing of 
events such as finding a job, or dying. Cox introduced the 
proportional hazards model in which the covariates act in a 
multiplicative way on a baseline hazards function such that 
the hazards functions are proportional to each other over 
time for different values of the covariates [1]. This model has 
gained much popularity because no assumption is required 
on the form of the hazards function. Multiplicative model 
leads to a relative-risk type summary. Bernhardt and Bjeren  
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used a multiplicative intensity model to investigate 
sex-differentials of first-birth to cohabiting and married 
Swedish adults [2]. The model controls for five 
socio-demographic variables-Sex, Education, Residence, 
Age, and Duration. In their final analysis, the authors found a 
five-factor two-interaction model that fits the data best. 

Scheike and Zhang proposed an additive-multiplicative 
intensity model that extended the Cox regression model as 
well as the additive Aalen model [3]. Instead of having 
simple baseline intensity the extended model used an 
additive Aalen model as its covariate dependent baseline. 
Approximate maximum likelihood estimators of the baseline 
intensity functions and the relative risk parameters of the 
Cox model are suggested by solving the score equations. 
Woodworth and Kanane used a discrete-time proportional 
hazards model of time to involuntary employment 
termination [4]. With this model they examined both 
continuous effect of the age of an employee and whether that 
effect has varied over time. Ghilagaber examined a 
multiplicative intensity model in which a covariate interacts 
with two other covariates in the same model [5]. He also 
demonstrated that the usual presentations of results of fitted 
model are miss specified approach and this approach  
provide less than interaction. In his paper the author 
suggested how the model can be given a mathematical 
representation applying the log-linear parameterization and 
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also demonstrated that in saturations where a covariate 
interacts with two others to multiplicative model. Finally he 
showed the appropriate tables one should use to convey the 
empirical results. But he did not have original data in his 
hand and hence failed to re-analyze, he just used the results 
of Bernhardt and Bjeren [2].  

Susarla and Van Ryzin have derived a nonparametric 
Bayesian estimator (NPBE) of the survival function for 
right-censored data for the first time [6]. Their estimator is 
based on the class of Dirichlet processes a priori introduced 
by Ferguson [7]. They proved that the nonparametric 
Bayesian estimator includes the Kaplan-Meier estimator as a 
special case, both estimators are asymptotically equivalent 
and that NPBE has better small sample properties than the 
Kaplan-Meier estimator [8]. Chong et al. have developed a 
Bayesian approach of model fitting to estimate age-specific 
survival rates for nesting studies using a large class of prior 
distributions [9]. The computation is done by Gibbs 
sampling and some latent variables are introduced to simply 
the full conditional distributions. Their results indicated that 
Bayesian analysis provides stable and accurate estimates of 
nest survival rate. Wong et al. used Bayesian approach to 
analyze a set of multilevel clustered interval-censored data 
from a clinical study to investigate the effectiveness of silver 
diamine fluoride and sodium fluoride varnish in arresting 
active dentin caries in Chinese pre-school children [10]. 

There are a few researches have been done yet about the 
aforementioned problem of identification in multiplicative 
hazards models with a real data set. In addition a Bayesian 
approach is applied to fit a hazards model with multiple 
interactions for grouped survival data. 

The outline of this paper is as follows. In section 2, data 
and methodology is discussed. Results and discussion is 
described in section 3. Finally limitations and conclusion are 
presented in sections 4 and 5 respectively. 

2. Data and Methodology 
2.1. Source of Data 

This study has utilized the data refers to childhood 
mortality among 7055 Eritrean children born in the period 
2001 to 2010. This data is extracted from the Eritrea 
Demographic and Health Survey (EDHS) which was 
conducted in the period 2001 to 2010 by the National 
Statistics Office [Eritrea] and Macro International Inc. [11]. 
The EDHS employed a nationally representative, two-stage 
probability sample. In the first stage, 208 primary sampling 
units (PSUs) were selected with probability proportional to 
size. A complete listing of the households in the selected 
PSUs was carried out. The lists of households obtained were 
used as the frame for the second-stage sampling, which was 
the selection of the households to be visited by the EDHS 
interviewing teams during the main survey fieldwork. 
Women between the ages of 15 and 49 were identified     
in these households and interviewed. A total of 6258 

households were selected in the sample, of which 5642 were 
occupied at the time of the survey. In the interviewed 
households 5250 eligible women identified of whom 5054 
were interviewed, yielding a response rate of 96 percent. The 
information related to early childhood mortality drawn from 
the questions asked in the birth history section of the 
women’s questionnaire. In the birth history, for each live 
birth, information is collected on sex, month and year of birth, 
survivorship status and current age, and age at death if the 
child died. The study consists of the following variables: 

ExpMonth is the exposure time (in months) i.e. the 
number of months between child’s birth and interview time 
(if the child was alive) or age in months at the time of death 
(if the child has died). Occurrence indicates the number 
child died in the time between birth and date of interview. It 
is measured form the Status which is an indicator of whether 
the child still survives (Status = 0), or died (Status = 1). 
Period indicates the child’s period of birth (birth cohort)  
and takes value 1 for the period 2001-05 and 2 for the  
period 2006-10. Mother’s Education indicates mother’s 
educational level and has value 1 if she has no education at 
all, 2 if she had primary-level education, 3 if her educational 
level is secondary-level or above. Residence has value 1 for 
urban areas and 2 for rural areas. 

The time variable (ExpMonth) is partitioned into 4 
age-groups such that age_g1 covers the period 1-11 months, 
age_g2 covers the period 12-23 months, age_g3 covers the 
period 24-35 months, and age_g4 covers the period 36-59 
months. 

2.2. Parameter Estimation of Multiplicative Hazards 
Model for Grouped Data 

For the present study of illustrating the identification 
problem in hazards models, the one important issue is 
variation across individuals within the population rather than 
the functional form between time and the rate. In this section, 
therefore, we shall concentrate on the piecewise exponential 
model in which the hazards rate remains constant within 
certain time interval but varies arbitrarily among the 
intervals.  

Let Dij denote the number of occurrences (say deaths) of 
the event of interest in the i-th time (discrete/grouped) 
interval and j-th level of the covariate, for Tij time units (say, 
months) of exposure to the risk of experiencing the event.  

We interpret each occurrence or exposure rate �̂�𝜆𝑖𝑖𝑖𝑖 =
𝐷𝐷𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖⁄  as an estimator of the corresponding hazards 
function 𝜆𝜆𝑖𝑖𝑖𝑖  which, as in the piecewise exponential model, 
is assumed to be constant at each combination (i,j) of the 
levels. In other words, the density function of the time to 
occurrence of an event in duration interval i for a person with 
level j of the covariate is given by  

𝑓𝑓�𝑡𝑡𝑖𝑖 ,𝑥𝑥𝑖𝑖 � = 𝜆𝜆𝑖𝑖𝑖𝑖 exp(−𝜆𝜆𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖 )          (1) 

The rate variability across individuals in a population can 
be modeled by specifying the rate as a function of a set    
of explanatory variables. When all these variables are 
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categorical, a simple mathematical model for the rate 
structure is given by  

𝜆𝜆𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑖𝑖𝛼𝛼𝑖𝑖                  (2) 

whereby the interval-specific hazards rates are obtained from 
multiplicative contributions of the i-th interval (θi) and j-th 
level of the covariate (αj). A model of this form has been 
suggested for a variety of situations. 

Equation (2) will be referred to as a multiplicative 
parameterization of the hazards (intensity) rate. θi is the 
baseline intensity (value of the intensity rate when αj=1), 
while αj represents the intensity of an individual with level j 
of the covariate relative to that of an individual with the 
baseline level j0.  

Let us define Ai= lnθi, and Bj=lnαj so that 
lnλij=lnθi+lnαj=Ai+Bj. If we further let 

�̅�𝐴 = ∑ 𝐴𝐴𝑖𝑖
𝐼𝐼
𝑖𝑖=1
𝐼𝐼

 𝐵𝐵� =
∑ 𝐵𝐵𝑖𝑖
𝐽𝐽
𝑖𝑖=1

𝐽𝐽
 ∆= �̅�𝐴 + 𝐵𝐵�  𝑎𝑎𝑖𝑖   

= 𝐴𝐴𝑖𝑖 − �̅�𝐴 𝑏𝑏𝑖𝑖 = 𝐵𝐵𝑖𝑖 − 𝐵𝐵�  

We may define a log-linear equivalent of the intensity rate 
in (2) as  
𝑙𝑙𝑙𝑙𝜆𝜆𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖 + 𝑙𝑙𝑙𝑙𝛼𝛼𝑖𝑖 = 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖 = (𝑎𝑎𝑖𝑖 + �̅�𝐴) + (𝑏𝑏𝑖𝑖 + 𝐵𝐵�) 

= (�̅�𝐴 + 𝐵𝐵�) + 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 = ∆ + 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖           (3) 

Thus one can estimate the intensity rates as 
𝜆𝜆𝑖𝑖𝑖𝑖 = exp(∆ + 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 )            (4) 

This is a log-linear parameterization of the intensity rate. 
Without the loss of generality, we may select j0 to be the first 
level (j0=1). Then, since by design α1=1, we have 

𝜆𝜆𝑖𝑖1 = 𝜃𝜃𝑖𝑖𝛼𝛼1 = 𝜃𝜃𝑖𝑖(1) = 𝜃𝜃𝑖𝑖  
or, equivalently 

𝜃𝜃𝑖𝑖 = 𝜆𝜆𝑖𝑖1 = exp(∆ + 𝑎𝑎𝑖𝑖 + 𝑏𝑏1)          (5) 
as the estimate of baseline intensity 

and     𝛼𝛼𝑖𝑖 =
𝜆𝜆𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖

=
exp �∆+𝑎𝑎𝑖𝑖+𝑏𝑏𝑖𝑖 �

exp (∆+𝑎𝑎𝑖𝑖+𝑏𝑏1)
= exp(𝑏𝑏𝑖𝑖 − 𝑏𝑏1)       (6) 

as the estimate of relative intensity. 
Details on procedures for estimating the parameters in (2) 

and/or (4) may be found in [12] and [13].  
The extension with three factors indexed by i, j, and k, in 

which the first two factors interact, equations in (2) and (4) 
may be extended to  

𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖 ; i=1,…, I, j=1, …, J, k = 1, ..., K   (7) 

and  
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 = exp(∆ + 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑖𝑖 ); 

i =1,…, I, j = 1, …, J , k = 1, ..., K     (8) 
Further consider a multiplicative hazards rate model that 

factor age-group (i) interacts with the covariates period    
(j) and mother’s education (k) while residence (l) is not 
involved in any interaction.  

Thus the mathematical representation for this 
multiplicative hazards model as in (2) is  

𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = 𝜃𝜃𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖𝛾𝛾𝑙𝑙 ; i=1, 2, 3, 4; j=1,2; k=1, 2, 3; l=1, 2. (9) 

while the corresponding log-linear model is given by  
𝑙𝑙𝑙𝑙𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = ∆ + 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑙𝑙 + 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖𝑖    (10) 

or equivalently, 
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = exp(∆ + 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑙𝑙 + 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖𝑖)  (11) 

where ∆ = Intercept, ai = i-th age-group, bj= j-th period, ck= 
k-th mother’s education, dl= l-th residence, eij = Interaction 
between i-th age-group and j-the period, and fik = Interaction 
between i-th age-group and k-th mother’s education. 

Now the relative intensities for the interaction between 
age-group and period: 

𝜃𝜃𝑖𝑖𝑖𝑖 = exp��𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� + �𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑖𝑖0� + �𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖0𝑖𝑖0�� 

= exp{𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 }                     (12) 

Similarly the relative intensities for the interaction 
between age-group and mother’s education: 

𝛼𝛼𝑖𝑖𝑖𝑖 = exp��𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� + �𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0� + �𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑖𝑖0𝑖𝑖0�� 

= exp(𝑎𝑎𝑖𝑖 + 𝑐𝑐𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖𝑖)                     (13) 

2.3. The Identification Problem 

Recall that the baseline intensity is given by [from 
equation (11)] 
𝛾𝛾𝑙𝑙 = 𝜆𝜆𝑖𝑖0𝑖𝑖0𝑖𝑖0𝑙𝑙  

= exp{∆ + 𝑎𝑎𝑖𝑖0 + 𝑏𝑏𝑖𝑖0 + 𝑐𝑐𝑖𝑖0 + 𝑑𝑑𝑙𝑙 + 𝑒𝑒𝑖𝑖0𝑖𝑖0 + 𝑓𝑓𝑖𝑖0𝑖𝑖0 }  (14) 

Thus the model in (19) can be represented as 
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = 𝜃𝜃𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖𝛾𝛾𝑙𝑙  

= exp��𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� + �𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑖𝑖0� + �𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖0𝑖𝑖0�� 

×exp{�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� + �𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0� + (𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑖𝑖0𝑖𝑖0 )} 

×exp{∆ + 𝑎𝑎𝑖𝑖0 + 𝑏𝑏𝑖𝑖0 + 𝑐𝑐𝑖𝑖0 + 𝑑𝑑𝑙𝑙 + 𝑒𝑒𝑖𝑖0𝑖𝑖0 + 𝑓𝑓𝑖𝑖0𝑖𝑖0 } 

[From equations(12), (13) and (14)] 
= exp{∆ + 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑙𝑙 + 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖𝑖 + (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0 )}(15) 

This expression is different from that in (19) because it 
contains the additional term (ai-ai0) in the exponent.  

If we redefine  

𝜃𝜃𝑖𝑖𝑖𝑖∗ = exp{φ�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� + �𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑖𝑖0� + (𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖0𝑖𝑖0 )} (16) 

and for some unspecified φ 

𝛼𝛼𝑖𝑖𝑖𝑖∗ = exp{(1 − φ)�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� + �𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0� + (𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑖𝑖0𝑖𝑖0 )} 
(17) 

Then we get 
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙∗ = exp{∆ + 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑙𝑙 + 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖𝑖 }  (18) 

which is identical to in (11).  
The problem is to choose φ≠1. It is impossible to partition 

the contribution of (ai-ai0), in a unique way, among the two 
exponents in (16) and (17). In other words, the relative 
intensities 𝜃𝜃𝑖𝑖𝑖𝑖∗  and 𝛼𝛼𝑖𝑖𝑖𝑖∗  become unidentified in the sense 
that they cannot be represented in a unique way. 
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2.4. Proposed Solution 

A proposed solution for the aforementioned problem 
according to Ghilagaber (1999) is to use a common baseline 
level for all the factors involved in interactions rather than of 
using two pairs of baseline levels. Therefore the relative 
intensities of interest are computed using a common baseline 
level for the factors involved in interactions.  

Let 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖  denotes the relative intensity at the i-th level of 
the covariate age-group, j-th level of the covariate period, 
and k-th level of the covariate mother’s education. Our 
multiplicative hazards (intensity) model will then be given 
by 

𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = 𝜃𝜃𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖𝛾𝛾𝑙𝑙                (19) 

and the relative intensity of interest, 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 , is given by 

𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 =
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙

𝜆𝜆𝑖𝑖0𝑖𝑖0𝑖𝑖0𝑙𝑙
= exp{�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� + �𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑖𝑖0�  

+�𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0� + �𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖0𝑖𝑖0� + �𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑖𝑖0𝑖𝑖0�}    (20) 

If we were to compute the joint effect of the three 
covariates involved in interaction using the mathematical 
representation in (20) and (21) with two pairs of baseline 
levels, such effect would have been obtained as 

𝜃𝜃𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖 =
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙

𝜆𝜆𝑖𝑖0𝑖𝑖0𝑖𝑖0𝑙𝑙
= exp{2�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� + �𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑖𝑖0�  

+�𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖0� + �𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖0𝑖𝑖0� + �𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑖𝑖0𝑖𝑖0�} 

= 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 exp�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0�                      (21) 

Thus 

𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙∗∗ = 𝜆𝜆𝑖𝑖0𝑖𝑖0𝑖𝑖0𝑙𝑙𝜃𝜃𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑙𝑙𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖  exp�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0�     (22) 

which is different from the formulation in (19). In other 
words, it can be explained that the use of two pairs of 
baseline levels, instead of one common for the three factors 
involved in the interaction, will inflate the real intensity rate 
by a factor of exp�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0�. 

Therefore in our multiplicative hazards model, the 
inflation factor of real intensity rate is given by 

exp�𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖0� = exp(𝑎𝑎𝑖𝑖 − 𝑎𝑎1) = exp(𝑎𝑎𝑖𝑖 − 0) = exp(𝑎𝑎𝑖𝑖); 

i =2,3,4                   (23) 
Let us now re-estimate the relative intensities of interest 

using a common baseline levels for factors involved in 
interaction. The relative risks for the non-interacting factor 
residence and those of the baseline intensities remain 
unchanged. 

For the factors involved in interaction, we get the (4×2×3) 
table of relative intensities, 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 , can obtain by 

𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 = exp�𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖𝑖�      (24) 

Further, we can compute the following relative intensities 
of interest: 

Age-group profiles of relative intensities across period: 
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙
𝜆𝜆𝑖𝑖𝑖𝑖0𝑖𝑖𝑙𝑙

= exp(𝑏𝑏𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 )            (25) 

Age-group profiles of relative intensities across mother’s 
education: 

𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙
𝜆𝜆𝑖𝑖𝑖𝑖 𝑖𝑖0𝑙𝑙

= exp(𝑐𝑐𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖𝑖)            (26) 

2.5. Bayesian Approach  

Bayesian analysis is applied to estimate parameters of 
interest in multiplicative hazards model in (9) and compute 
relative intensities. The data, used in this study, is a grouped 
data of childhood mortality and thus it is a grouped survival 
data which are usually censored. Bayesian analysis in 
grouped data is widely used because of the direct 
probabilistic interpretation of the posterior distribution and 
because many problems can be formulated in terms of 
integrals with respect to the posterior distribution. The 
Bayesian approach delivers the answer to the right question 
in the sense that Bayesian inference provides answers 
conditional on the observed data and not based on the 
distribution of estimators or test statistics over imaginary 
samples not observed [14]. Bayesian inference is consistent 
with much of philosophy of science regarding epistemology, 
where knowledge cannot be built entirely through 
experimentation, but requires prior knowledge [15)]. The 
development of new numerical algorithms, such as Markov 
Chain Monte Carlo(MCMC) algorithm, which allow us to 
obtain a sample from the posterior of interest, has open the 
door to the use of Bayesian methods to survival analysis. In 
this study we use Bayesian approach with MCMC algorithm 
is used to estimate the parameters of interest of a hazards 
model with multiple interactions. 

MCMC method is a general simulation method for 
sampling from posterior distributions and computing 
posterior parameters of interest. In MCMC method samples 
are taken successively from a target distribution. Each 
sample depends on the previous one, hence the notion of the 
Markov chain. A Markov chain is a sequence of random 
variables, 𝜃𝜃1,𝜃𝜃2,⋯ , for which the random variable 𝜃𝜃𝑡𝑡  
depends on all previous 𝜃𝜃 s only through its immediate 
predecessor 𝜃𝜃𝑡𝑡−1. With the MCMC method, it is possible to 
generate samples from an arbitrary posterior density 𝑝𝑝(𝜃𝜃|𝑦𝑦) 
and to use these samples to approximate expectations of 
quantities of interest. Most importantly, if the simulation 
algorithm is implemented correctly, the Markov chain is 
guaranteed to converge to the target distribution 𝑝𝑝(𝜃𝜃|𝑦𝑦) 
under rather broad conditions, regardless of where the chain 
was initialized.  

The usual programming statements for survival estimation 
are not directly applicable. Thomas and Reyes offered a 
tutorial in survival estimation for the time-varying 
coefficient model, implemented in SAS and R [16]. Allison 
presents a highly readable introduction to the subject based 
with Bayesian approach on the SAS statistical package, but 
nevertheless of general interest [17]. Statistical Analysis 
System (SAS) is used to analyze the data. 
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3. Results and Discussion 
3.1. Fitting a Multiplicative Hazards Model Using 

Bayesian MCMC Algorithm 

To fit a hazards model with multiple interactions in (9), 
we estimate the parameters of corresponding log-linear 
model in (10) applying Bayesian procedure for 
non-informative prior. In this model, samplings from the 
joint posterior distribution of the unknown quantities of 
interest are obtained through the use of MCMC methods. In 
this analysis MCMC chain is run for 12000 iterations, and 
then first 2000 are discarded as burn-in and retained 10000 
for posterior analysis. The estimates (posterior mean) of 
parameters, Standard deviation and highest posterior density 
(HPD) intervals are given in the Table 1. 

The highest posterior density (HPD) intervals, also known 
as probability intervals or credible intervals, actually have 
the stated probability of containing the true value of the 
variable of interest. A 95% credible interval says simply that 
there is a probability of 0.95 that the true parameter is 

included in the reported interval. A 95% credible interval 
that does not include 0 is the Bayesian equivalent of an 
estimate that is significantly different from 0 at the .05 level 
(by a two-sided test). From the Bayesian HPD intervals    
in Table 1 it is observed that six estimates marked by  
double asterisk are statistically significant at 5% level of 
significance. 

Before drawing inferences from the posterior estimates 
and/or posterior simulations, we examined the trace, 
autocorrelation, density plots for each parameter are given in 
Appendix, and other related diagnostics to be content that the 
underlying chain has converged. 

3.2. Some Diagnostics 

Posterior Autocorrelations: In this analysis it is sighted 
that the autocorrelations given in Table 2 can vary 
substantially among different lags and decline dramatically 
and at fifty draws apart (lag 50) close to 0 which suggests 
that the Markov chain is well mixing. Usually the well 
mixing chain produces better estimates of the parameters. 

 

Table 1.  Bayesian estimate of parameters of interest in the log-linear model in (10) 

Parameters Estimate 
(PosteriorMean) 

Standard 
Deviation 

HPD (Probability) 
Interval 

Intercept -5.5534 0.1044 (-5.7513, -5.3471) 
Age    

< 1 year (Baseline) 0+   
1-2 years 0.0712 0.1267 (-0.1696, 0.3203) 
2-3 years 0.3337** 0.1348 (0.0692, 0.5956) 

3-5 years 0.6209** 0.1378 (0.3583, 0.8966) 
Period    
2001-05 (Baseline) 0+   

2006-10 -0.1163 0.1169 (-0.3575, 0.0966) 
Mother’s Education    
No education (Baseline) 0+   

Primary education -0.1117 0.1759 (-0.4694, 0.2160) 
Secondary & higher education -0.1117 0.2353 (-0.5919, 0.3283) 
Residence    

Urban (Baseline) 0+   
Rural 0.1398 0.0884 (-0.0260, 0.3181) 
Interactions    

(1-2 years)*(2006-10) -0.4977** 0.1936 (-0.8735, -0.1159) 
(2-3 years)*(2006-10) -1.2676** 0.2577 (-1.7751, -0.7700) 

(3-5 years)*(2006-10) -1.9369** 0.3158 (-2.5475, -1.3263) 
(1-2 years)*(Primary education) -0.1324 0.2882 (-0.6940, 0.4358) 
(1-2 years)*(Secondary & higher education) -0.4057 0.4192 (-1.2325, 0.3964) 

(2-3 years)*(Primary education) -1.1792** 0.4717 (-2.1363, -0.2885) 
(2-3 years)* (Secondary & higher education) -1.1990 0.6728 (-2.5558, -0.0196) 
(3-5 years)*(Primary education) -0.7056 0.3986 (-1.5046, 0.0364) 

(3-5 years)*(Secondary & higher education) -1.0405 0.6642 (-2.3127, 0.2630) 
+Indicates fixed for baseline, ** Indicates significant at level 0.05, * Indicates interactions 
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Table 2.  Posterior Autocorrelations with non-informative prior 

Parameters 
Autocorrelations at 

Lag 1 Lag 10 Lag 50 

Intercept 0.8714 0.2146 0.0004 

1-2 years 0.6678 0.1178 0.0050 
2-3 years 0.5335 0.0810 -0.0151 
3-5 years 0.4968 0.0656 -0.0114 

2006-10 0.6964 0.0994 0.0028 
Primary education 0.5941 0.0178 0.0003 
Secondary & higher education 0.4952 0.0315 0.0112 

Rural 0.7386 0.0707 0.0031 
(1-2 years)*(2006-10) 0.5955 0.0684 0.0162 
(2-3 years)*(2006-10) 0.3757 0.0318 -0.0069 

(3-5 years)*(2006-10) 0.2549 0.0260 0.0042 
(1-2 years)*(Primary education) 0.4504 0.0022 -0.0050 
(1-2 years)*(Secondary & 
higher education) 0.3292 -0.0122 0.0104 

(2-3 years)*(Primary education) 0.2022 0.0077 -0.0104 

(2-3 years)* (Secondary & 
higher education) 0.1368 0.0092 0.0170 

(3-5 years)*(Primary education) 0.2677 0.0124 -0.0032 
(3-5 years)*(Secondary & 
higher education) 0.1276 -0.0059 0.0144 

* Indicates interaction 

Gelman-Rubin diagnostics: The Gelman-Rubin estimates 
shown in the Table 3 are very close to 1.0 which indicating 
no evidence of a failure to converge. 

Table 3.  Gelman-Rubin Diagnostics 

Parameters Gelman-Rubin 
Estimate 

97.5% 
Bound 

Intercept 1.0021 1.0036 
1-2 years 1.0005 1.0012 

2-3 years 1.0007 1.0021 
3-5 years 1.0002 1.0004 
2006-10 1.0016 1.0057 

Primary education 1.0013 1.0033 
Secondary & higher education 0.9999 1.0000 
Rural 1.0009 1.0030 

(1-2 years)*(2006-10) 1.0009 1.0034 
(2-3 years)*(2006-10) 1.0006 1.0024 
(3-5 years)*(2006-10) 1.0003 1.0005 

(1-2 years)*(Primary education) 1.0004 1.0017 
(1-2 years)*(Secondary & higher 
education) 1.0003 1.0012 

(2-3 years)*(Primary education) 1.0001 1.0003 
(2-3 years)* (Secondary & higher 
education) 1.0002 1.0008 

(3-5 years)*(Primary education) 1.0004 1.0012 

(3-5 years)*(Secondary & higher 
education) 1.0001 1.0003 

* Indicates interaction 

Monte Carlo Standard Errors: Table 4 shows the Monte 
Carlo Standard Error (MCSE), the posterior sample standard 
deviation (SD), and the ratio of the two reveal that the 
standard errors of the mean estimates for each of the 
parameters are relatively small, with respect to the posterior 
standard deviations. The ratios are also small, which imply 
that only a small fraction of the posterior variability is due to 
the simulation. 

Table 4.  Monte Carlo Standard Errors 

Parameters MCSE SD MCSE/SD 

Intercept 0.00365 0.1044 0.0350 

1-2 years 0.00358 0.1267 0.0283 
2-3 years 0.00323 0.1348 0.0239 
3-5 years 0.00316 0.1378 0.0229 

2006-10 0.00326 0.1169 0.0279 
Primary education 0.00384 0.1759 0.0218 
Secondary & higher education 0.00455 0.2353 0.0194 

Rural 0.00244 0.0884 0.0277 
(1-2 years)*(2006-10) 0.00487 0.1936 0.0252 
(2-3 years)*(2006-10) 0.00489 0.2577 0.0190 

(3-5 years)*(2006-10) 0.00524 0.3158 0.0166 
(1-2 years)*(Primary 
education) 0.00508 0.2882 0.0176 

(1-2 years)*(Secondary & 
higher education) 0.00641 0.4192 0.0153 

(2-3 years)*(Primary 
education) 0.00625 0.4717 0.0132 

(2-3 years)* (Secondary & 
higher education) 0.00803 0.6728 0.0119 

(3-5 years)*(Primary 
education) 0.00604 0.3986 0.0152 

(3-5 years)*(Secondary & 
higher education) 0.00777 0.6642 0.0117 

* Indicates interaction 

Again the trace plots of samples versus the simulation 
index (estimate), given in appendix, show excellent mixing, 
the autocorrelation decreases to near zero, and the density is 
bell-shaped. The trace plots are centered near their respective 
posterior mean and traverse the posterior space with small 
fluctuations suggesting that the chain has converged to its 
stationary distribution. For the intercept, the trace plot is 
centered near the posterior mean of -5.77. Samples in both 
tails are covered. These results exhibit convergence of the 
Markov chain to its stationary distribution. 

3.3. Computation of Inflation Factor from Posterior 
Draws 

The inflation factors of intensity rate for different levels of 
age-group (relative to age <1 year) are estimated from 10000 
posterior draws using equation in (23). We compute 10000 
estimates of inflation factors for each level of age-group and 
consider their mean as corresponding estimate and plot these 
10000 computed values of inflation factors of intensity rate 
in Figure 1. 
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The estimates of inflation factor of intensity rate for 
different levels of age-group (relative to age <1 year) 
computed from posterior draws are 1.0824, 1.4088, and 
1.8783 for ages 1-2 years, 2-3 years, and 3-5 years 
respectively. These quantities imply that the estimated 
intensities (relative to age <1 year) are inflated by factors 
1.0824, 1.4088, and 1.8783 for ages 1-2 years, 2-3 years, and 
3-5 years respectively when two pairs of baseline levels are 
used. 

 

Figure 1.  Curves of inflation factors of intensity rate for different levels of 
age groups relative of age <1 year 

Figure 1 shows that the curves are bell-shaped and peaked 
at their corresponding estimates stated above with small 
variability. 

3.4. Computation of Relative Intensities of Interest from 
Posterior Draws 

The relative intensities of interest with a common baseline 
level according to suggested solution are computed using 
equation (24) for age-group, period and mother’s education 
from the obtained 10000 posterior simulations of each 
estimate. We take the means of 10000 computed values of 
corresponding relative intensities for each estimate and are 
given in Table 5. 

Table 5.  Relative intensities ( 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖  ) with a common baseline level for 
age-group, period and mother’s education as in Table 4 calculated from 
posterior simulation 

Age-group Period 

Mother’s education 

No 
education 

Primary 
education 

Secondary 
& higher 
education 

<1 Year 
2001-05 1 0.90811 0.91906 
2006-10 0.89629 0.81269 0.82169 

1-2 Years 
2001-05 1.08243 0.86519 0.68284 
2006-10 0.58790 0.46916 0.36981 

2-3 Years 
2001-05 1.40887 0.42047 0.45109 

2006-10 0.35853 0.10681 0.11473 

3-5 Years 
2001-05 1.87828 0.87247 0.70215 
2006-10 0.24869 0.11570 0.09284 

 

Table 5 represents the relative intensities considered in 
multiplicative hazards model with a common baseline level 
for covariates involved in interactions according to proposed 
solution. One can easily interpret and compare these relative 
intensities with different levels of covariates using the 
common baseline level from this single table.  

Further we compute relative intensities of age-group 
profiles across period from the 10000 posterior simulations 
of each estimate using equation (25) and take their means as 
corresponding estimates presented in Table 6. We also plot 
these 10000 calculated values for each relative intensity 
estimate in the same graph in Figure 2. 

Table 6.  Age-group profiles of relative intensities across period calculated 
from posterior simulation 

Age-group (i) 
Period (j) 

2001-05 2006-10 

<1 Year 1 0.8963 

1-2 Years 1 0.5476 
2-3 Years 1 0.2573 
3-5 Years 1 0.1339 

From Table 6 it is observed that children born in the period 
2006-10 are less likely to death for all age groups as 
compared to the children having birth in 2001-05. 

 

Figure 2.  Curves of 10000 estimates of relative intensities of child 
mortality for age groups across period 2006-10 compare to the period 
2001-05 

In Figure 2 all the curves are bell-shaped and peaked 
around their corresponding mean estimates (0.89, 0.55, 0.26, 
and 0.13). Among these, the curves for age 2-3 years and 3-5 
years across period 2006-10 are tidier compare to others, and 
indicate that these estimates have smaller variability. Figure 
2 shows that the risk of child mortality is lower (estimates are 
less than 1) in the period 2006-2010 compare to the period 
2001-2005 for all age groups and risk of child mortality 
gradually goes down with the increase of age which also 
conferred by the values in Table 6. 
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Figure 3.  Curves of 10000 estimates of relative intensities or risk of child 
mortality living in rural area compare to that in urban area 

Figure 3 shows that the risk of child mortality in rural area 
is higher (estimate is greater than 1) compare to that of in 
urban area. The curve is also so trim indicating estimate has 
small variability.  

We also compute relative intensities of age-group profiles 
across mother’s education from the posterior simulations of 
estimates using equation (26) and are shown in Table 7.  
The calculated values from posterior simulations for 
corresponding estimate of relative intensities are plotted in 
Figure 4 and 5. 

Table 7.  Age-group profiles of relative intensities across mother’s 
education calculated from posterior simulation 

Age-group 
Mother’s education 

No education Primary 
education 

Secondary & 
higher education 

<1 Year 1 0.9081 0.9191 
1-2 Years 1 0.8043 0.6572 
2-3 Years 1 0.3013 0.3232 

3-5 Years 1 0.4696 0.3777 

 

Figure 4.  Curves of 10000 estimates of relative intensities of child 
mortality for age group across mother’s education primary level compare to 
mother’s have no education 

From Figure 4 it is observed that all the curves are 
bell-shaped and peaked around their corresponding estimates. 

Figure 4 also shows that the risk of child mortality for whose 
mother’s have primary education is lower (estimates are less 
than 1) than that of whose mother’s have no education for all 
age groups which conferred by the values of 3rd column in 
Table 7. 

 

Figure 5.  Curves of 10000 estimates of relative intensities of child 
mortality for age group across mother’s education secondary level and 
higher compare to mother’s have no education 

Figure 5 shows that the risk of child mortality for whose 
mother’s have secondary and higher education is lower 
(estimates are less than 1) than that of whose mother’s have 
no education for all age groups which also conferred by the 
values of 4th column in Table 7. 

4. Limitations 
One of the limitations in this study is that we have used an 

old data set that is for the year 2001-2010. Since our main 
intension is to illustrate the identification problem of relative 
risk with a real data set i.e. this is a methodological study and 
hence this limitation would not be affected on our goal. 
Another limitation is in Bayesian analysis we have used 
non-informative prior due to lack of informative prior. 

5. Conclusions 
In this work the close relationship among the 

parameterizations in multiplicative hazards models is 
discussed. One such situation is arisen when a multiplicative 
hazards model involves a factor that interacts with two others 
in the same model. It is illustrated that, in such situations, the 
traditional approach of using a model with more than one 
baseline levels suffers from drawbacks. Consequently it is 
impossible to transform the intensity rate from log-linear 
parameterization into the simpler relative intensities format 
because the relative intensities related to the interacting 
factors are unidentified in the sense that they cannot be 
expressed in a unique way. To demonstrate the issues 
discussed, a real data set is used. It is revealed that using of 
two pairs of baseline levels might lead to estimates of 
relative intensities that inflated by a factor which is a 
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function of the effects of the covariate interacting with the 
two other covariates. Moreover, the results are difficult to 
interpret. Thus a proposed solution is discussed that use a 
common baseline level for the factors involved in interaction 
and computed the relative intensities of interest. 

A hazards model with multiple interactions is fitted using 
Bayesian MCMC algorithm for non-informative prior. 
Different diagnostics and tests are performed to check the 
Markov chain mixing, convergence to target posterior 
distribution, and posterior variability. All these diagnostics 
and tests are found statistically significant. The trace plots  
of samples against the estimates obtained from MCMC 
simulations also showed excellent mixing, the 
autocorrelation decreases to near zero, and the density is 
bell-shaped. The trace plots are centered near their respective 
posterior mean with small fluctuations suggesting that the 
chain has converged to its same stationary distribution.  

In the proposed solution with common baseline level, the 
results are presented in a single table rather than two separate 
tables with two baseline levels. Some extra information can 
be extracted from the single table with common baseline 

level but not possible from conventional presentation. The 
main consequences is that it is almost impossible to compare 
the two separate tables entirely, while from a single table it is 
easy to compare and interpret results for anyone. Relative 
intensities are computed according to the proposed solution 
from the posterior simulations obtained in Bayesian analysis. 
It also plotted the computed 10000 values from posterior 
draws for each estimate. These graphs facilitate us to study 
the characteristics and distribution pattern of estimates. 

These ideas, methodologies, and results of the present 
study could be an inspiration to the researchers for further 
research in these areas. 
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Appendix 
Trace plots of samples versus the simulation index (estimate) in posterior draws: 
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