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Abstract  We discuss a numerical solution of Nth-order fuzzy differential equations with initial value by third order Runge 
Kutta method based on combination of arithmatics, harmonics and geometrics means. Moreover, the convergence, stability 
and error analysis also discussed. The algorithm is illustrated by solving the Nth-order of fuzzy initial value problem. The 
numerical simulation show that the new method worked and give an accurate solution. 
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1. Introduction 
Every physical problem is inherently biased by 

uncertainty. There is often a need to model, solve, and 
interpret the problems one encounters in the world of 
uncertainty. To overcome this uncertainty and vague, we 
may use the interval and fuzzy set theory. The topic of 
fuzzy differential equations (FDEs) forms a suitable setting 
for mathematical modelling of this physical problems. The 
concept of fuzzy derivative was first introduced by Chang 
and Zadeh (1972). Numerical solution for linear fuzzy 
differential equation was studied by many researcher ([1], 
[2], [3], [4], [5], [6], [7], [8], [9]). The solution of n-th order 
of fuzzy differential equation also derive by [10], [11],  
[12], [13] and [14]. The most frequently method to get the 
numerical solution is Runge Kutta method. 

This paper studied a third order Runge Kutta method 
based on combination of arithmatics, harmonics and 
geometrics mean to solve n-th order of fuzzy initial value 
problem. In the Section 2, we begin with some preliminary 
results and concepts about fuzzy number and system of 
fuzzy initial value problem. In Section 3, we discuss the 
main idea to solve the problem. We also analyse the 
stability, convergence  and the error, then  we employ the  
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method on test example. Finally, in Section 4 we give the 
conclusion of this study. 

2. Preliminaries 
2.1. A Fuzzy Number 

An interval x~  is denoted by [ ]xx,  on the set of real 
numbers R given by 

[ ] { }xxxRxxxx ≤≤∈== :,~ . 

In this paper, we have only considered closed intervals, 
although there exist various types of intervals such as open 

and half-open intervals. A fuzzy number U~  is convex, 

normalized fuzzy set U~  of the real line R  such that 

( ) [ ]{ }RxRxU ∈∀→ ,1,0:~µ , 

where, U~µ  is called the membership function of the fuzzy 
set, and it is piecewise continuous. A triangular fuzzy 
number v  is defined by three numbers 321 aaa << , 

where the graph of ( )xv , the member of function of the 
fuzzy number v , is a triangle with the base on the interval 
[ ]31 ,aa  and the vertex at 2ax = . We specify v  as 

( )321 // aaa  and 
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i. 0>v  if 01 >a ; 

ii. 0≥v  if 01 ≥a ; 

iii. 0<v  if 03 <a  and 

iv. 0≤v  if 03 ≤a . 

Let E  be a set of all the upper semicontinuous normal 
convex fuzzy numbers with bounded r-level sets. It means 
that if Ev∈ , then the r -level set 

[ ] ( ){ } 10,| ≤<≥= rrsvsv r , 

is a closed bounded interval which is denoted by 

[ ] ( ) ( )[ ]rvrvv r 21 ,= . 

Let I  be a real interval. The mapping EIx →:  is 
called fuzzy process and its r -level set is denoted by 

( )[ ] ( ) ( )[ ] ( ]1,0,,;,; 21 ∈∈= rItrtxrtxtx r . 

The derivative ( )tx'  of the fuzzy process x  is defined 
by 

( )[ ] ( ) ( )[ ] ( ]1,0,,;',;'' 21 ∈∈= rItrtxrtxtx r , 

provided that this equation determines the fuzzy number. 
Let κ  be the set of all nonempty compact subset of R  

and cκ  be the subset of κ  consisting of nonempty convex 
compact sets. Recall that 

( ), min
A

x A x a
α

ρ
∈

= −  

is a distance of the point Rx∈  from κ∈A  and that the 
Hausdorff separation ( )BA,ρ  of κ∈BA,  is defined as 

( ) ( ), max ,
A

A B a B
α

ρ ρ
∈

= . 

2.2. A nth Fuzzy Initial Value Problem 

Consider the fuzzy initial value problem 
( ) ( ) ( )( )
( ) ( ) ( )
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where ϕ  is continuous mapping from nRR ×+  into R  

and ( )niai ≤≤0  are fuzzy numbers in E . The thn
-order fuzzy differential equation by changing variables 

( ) ( ) ( ) ( ) ( ) ( ) ( ),,,', 1
21 txtytxtytxty n

n
−===   

converts to the following fuzzy system 
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where ( )nif i ≤≤1  are continuous mapping from 
nRR ×+  into R  and [ ]0

iy  are fuzzy numbers in E  with 

α -level intervals [ ][ ] [ ] ( ) [ ] ( )[ ]ααα

000 , iii yyy =  for 

,,,1 ni =  and .10 ≤< α  
Now, we have to show that the solution of (2) is 
( )tnyyy ,,1 =  on a interval I , if 

( ) ( ) ( ) ( )[ ]{ }
( )( ),,,

,,,;,,,min, 1
'

α

ααα

tytf

tytyuuutfty

i

jjjnii

=

∈= 

 

( ) ( ) ( ) ( )[ ]{ }
( )( ),,,

,,,;,,,max, 1

'

α

ααα

tytf

tytyuuutfty

i

jjjnii

=

∈= 

 

and ( ) [ ] ( ) ( ) [ ] ( ).,0,,0
00 αααα iiii

yyyy ==  

For fixed value α , we have a system of initial value 
problem in nR 2  and we have intervals 

( ) ( )[ ]αα ,,, tyty jj
 with a fuzzy number ( ) Etyi ∈ . Let 

[ ] ( ) [ ] ( ) [ ] ( )( )t
ni

yyy ααα 000 ,,=  

and 
[ ] ( ) [ ] ( ) [ ] ( )( )tni yyy ααα

000
,,= , 

with respect to the indicators system (2) can be written as 
with assumption 

( ) ( )( )
( ) [ ]
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tytFty

            (3) 

With assumption ( ) ( ) ( )[ ]ααα ,,,, tytyty =  and 

( ) ( ) ( )[ ]ααα ,',,',' tytyty =  where 

( ) ( ) ( )( ) ,,,,,, ttytyty ααα =  

( ) ( ) ( )( ) ,,,,,,
t

tytyty ααα =  

( ) ( ) ( )( ) ,,',,,',' ttytyty ααα =  

( ) ( ) ( )( ) ,,',,,','
t

tytyty ααα =  

and ( )( ) ( )( ) ( )( )[ ]ααα ,,',,,',, tytFtytFtytF = , where 

( )( ) ( )( ) ( )( )( ) ,,,,,,,,,
1

t

n
tytftytftytF ααα =  

( )( ) ( )( ) ( )( )( ) .,,,,,,,, 1

t

n tytftytftytF ααα =  

Function ( )ty  is a fuzzy solution of (3) on an interval I  

for all ( ]1,0∈α , if 
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Or  

( ) ( )( )
( ) [ ] ( )
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Theorem 2.1. If ( )ni uutf ,,, 1   for ni ,,1=  are 
continuous function of t  and satisfies the Lipschitz 

condition in ( )tnuuu ,,1 =  in the region 

( ) [ ]{ }niututD i ,,1for,1,0, =∞<<−∞∈=  with 

constant iL  then the initial value problem (2) has unique 
solution in each case. 

Proof. See [15] 
By Theorem 3.1 the initial value problem (2) has a unique 

solution ( )tnyyy ,,1 = . 

2.3. Runge Kutta Method 
The basis of all Runge Kutta method of order m is to 

express the difference between the value of 1+nt  and nt  as 

1
0

m

n n i i
i

y y w k+
=

− =∑  

where swi '  are constants and 
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The Runge Kutta method of order 3 based on combination 
of arithmetic, harmonic and geometric means is [16] 
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with 
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3. The Third Order of Runge Kutta 
Method Based on Combination of 
Arithmatics, Harmonics and 
Geometrics Mean 

Define 
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By the third order Runge Kutta based on combination of 
means, we obtain 

( )( ) ( ) ( )( ),;,
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From Eq. (6), define 
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The discrete equally spaced grid points 
{ }Tttt N == ,,,0 10   is a partition for interval [ ]T,0 . 
If the exact and the approximate solution in the i -th α  cut 

at Nmtm ≤≤0,  are denoted by [ ] ( ) [ ] ( )[ ]αα
m

i
m

i
yy ,  

and [ ] ( ) [ ] ( )[ ]αα
m

i
m

i YY ,  respectively, then the numerical 
solution by third order Runge Kutta method based on 
combination of arithmetic, harmonics and geometrics means 
is 
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The approximate solution for α -cut of Eq.(2) is 
[ ] ( ) [ ] ( ) [ ] ( )( )

[ ] ( ) [ ] ( )αα

ααα
00

1 ,,,

yY
hYthHYY m

m
mm

=

+=+

    (7) 

where 
[ ] ( )( ) [ ] ( )( )[

[ ] ( )( )],,,*

,,,*,,

hYtG
hYtFhYtH

m
m

m
m

m
m

α

αα =
 

and 
[ ] ( )( )

( [ ] ( )( ) [ ] ( )( )(
[ ] ( )( ))

[ ] ( )( ) [ ] ( )( )
[ ] ( )( ) [ ] ( )( )

1 2

3

1 2

1 2

* , ,

1 7 , , 2 , ,
90

, ,

2 , , , ,

, , , ,

m
m

m m
m m

m
m

m m
m m

m m
m m

F t Y h

k t Y h k t Y h

k t Y h

k t Y h k t Y h

k t Y h k t Y h

α

α α

α

α α

α α

= +

+


− +


 



 Applied Mathematics 2018, 8(2): 19-25 23 
 

 

[ ] ( )( ) [ ] ( )( )
[ ] ( )( ) [ ] ( )( )

[ ] ( )( ) [ ] ( )( )(
[ ] ( )( ) [ ] ( )( ) ))

2 3

2 3

1 2

2 3

2 , , , ,

, , , ,

32 , , , ,

, , , ,

m m
m m

m m
m m

m m
m m

m m
m m

k t Y h k t Y h

k t Y h k t Y h

k t Y h k t Y h

k t Y h k t Y h

α α

α α

α α

α α

+
+

+ +

+ +






 

[ ] ( )( )
( [ ] ( )( ) [ ] ( )( )(

[ ] ( )( ))
[ ] ( )( ) [ ] ( )( )

[ ] ( )( ) [ ] ( )( )
[ ] ( )( ) [ ] ( )( )

[ ] ( )( ) [ ] ( )( )
[ ] ( )( ) [ ] ( )( )

[ ] ( )( ) [ ] ( )( )

1 2

3

1 2

1 2

2 3

2 3

1 2

2 3

* , ,

1 7 , , 2 , ,
90

, ,

2 , , , ,

, , , ,

2 , , , ,

, , , ,

32 , , , ,

, , , ,

m
m

m m
m m

m
m

m m
m m

m m
m m

m m
m m

m m
m m

m m
m m

m m
m m

G t Y h

k t Y h k t Y h

k t Y h

k t Y h k t Y h

k t Y h k t Y h

k t Y h k t Y h

k t Y h k t Y h

k t Y h k t Y h

k t Y h k t Y h

α

α α

α

α α

α α

α α

α α

α α

α α

= +

+


− +



+ + 


+ +


+ + 


 

with 
[ ] ( )( ) [ ] ( )( )(

[ ] ( )( )) ,,,

,,,,,, 1

tm
nj

m
j

m
j

hYtk

hYtkhYtk

α

αα =
 

[ ] ( )( ) [ ] ( )( )(
[ ] ( )( )) .,,

,,,,,, 1

tm
nj

m
j

m
j

hYtk

hYtkhYtk

α

αα =
 

3.1. Stability, Convergence and Error Analysis 

To analyse the stability, convergence and the error of the 
method, consider the next definition and theorem. 

Definition 3.1. [15] A one-step method for 
approximating the solution of differential equation 
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with F is a −thn ordered as ( )tnfff ,,1 =  and 

( )niRRRf n
i ≤≤→×+ 1:  is a method that can be 

written in the form 
[ ] [ ] [ ]( ),,,1 hYthYY n

n
nn ϕ+=+         (8) 

where the increment function ϕ  is determined by F . 

Theorem 3.2. If ( )hyt ,,ϕ  satisfies a Lipschitz 
condition in y  then the method given by (8) is stable. 

Theorem 3.3. In relation (2), if ( )ytF ,  satisfies a 
Lipschitz condition in y then the method given by (7) is 
stable. 

Theorem 3.4. If 
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Is a numerical method for approximation of differential 
equation (2), 1ϕ  and 2ϕ  are continuous in hyt ,,  for 

,0 Tt ≤≤ 00 hh ≤≤  and all y , and if they satisfy a 

Lipschitz condition in the region ( ){ hvutD ,,,=  

Tt ≤≤0 , ii vu ≤≤∞− , ∞≤≤∞− iv , 00 hh ≤≤ , 

}ni ,,0= , the necessary and sufficient conditions for 
convergence is 

( )( ) ( )( ).,,,,, ααϕ tytFhtyt =  

Proof. See [15]. 
Then the method proposed by (6) is convergent to the 

solution of the system (2). 

3.2. Numerical Examples 

The next example show the performance the new method. 

 

Figure 1 

Example [15]. Consider the vibrating mass ( 1=m  slug) 
in Fig.1. The spring constant is ft

lbk 4= , there is no 

damping force and the forcing function is ( )100cos tς  for 

0>ς . The differential equation of motion is 



24 Yanti Rini et al.:  Numerical Solution of Nth-Order Fuzzy Differential Equations by Third Order Runge  
Kutta Method Based on Combination of Arithmatics, Harmonics and Geometrics Means 

 

( ) ( ) ( )

( )

( )

'' 4 100cos ,

0 1 ,1 , 0 1,

' 0 1 ,1 .

y t y t t

y

y

α

α

α

ς

α α α

α α



      

     

+ =

= − + − ≤ ≤

= − + −

 

Let 
( ) ( )
( ) ( )





=

=
α

α

tytu

tytu

'2

1  

( ) ( )
( ) ( ) ( ).4cos100'

'

12

21





−=
=

tuttu
tutu

ς
 

The exact solution is 
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ς
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By using the new method, the numerical solution is in 
Table 1 and Table 2. 

Table 1.  The Solution of Example 1 for [ ] ( )m
iY α  

r Exact Numeric Error 
0 -0.58756 -0.58734 0.00022 

0.1 -0.48207 -0.47942 0.00265 
0.2 -0.37658 -0.37146 0.00512 
0.3 -0.27108 -0.26347 0.00761 
0.4 -0.16559 -0.16459 0.001 
0.5 -0.06011 -0.05821 0.0019 
0.6 0.04538 0.04691 0.00153 
0.7 0.15087 0.1581 0.00723 
0.8 0.25636 0.26529 0.00893 
0.9 0.36185 0.3722 0.01035 
1 0.46734 0.479614 0.012274 

Table 2.  The Solution of Example 1 for 
[ ] ( )m
iY α  

r Exact Numeric Error 
0 1.57171 1.57143 0.00028 

0.1 1.46622 1.46345 0.00277 
0.2 1.36072 1.3555 0.00522 
0.3 1.25523 1.24722 0.00801 
0.4 1.14974 1.14514 0.0046 
0.5 1.04425 1.03875 0.0055 
0.6 0.93876 0.93363 0.00513 
0.7 0.83372 0.82289 0.01083 
0.8 0.72778 0.71525 0.01253 
0.9 0.62229 0.60834 0.01395 
1 0.51681 0.500936 0.015874 

4. Conclusions 
In this paper we presented a numerical approach to solve 

system of fuzzy differential equations with initial value. 
The scheme is based on the third order Runge Kutta method 
for solving n-th order of fuzzy initial value probrems. The 
stability, convergence and error analysis have been studied. 
Numerical simulation performs that the new method is an 
accurate method for n-th order of fuzzy initial value 
problems. 
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