
Applied Mathematics 2015, 5(6): 111-124 
DOI: 10.5923/j.am.20150506.02 

In-Plane and Out-of-Plane Dynamic Responses of Elastic 
Cables under External and Parametric Excitations 

Usama H. Hegazy 

Department of Mathematics, Faculty of Science, Al-Azhar University, Gaza, Palestine 

 

Abstract  The dynamic behavior of a three dimensional suspended elastic cable subjected to external and parametric 
excitations are investigated. The case of subharmonic resonance in the presence of 1:1:1 internal resonance between the 
modes of the cable is considered and examined. The method of multiple scales is applied to study the steady-state response 
and the stability of the system at resonance conditions. Numerical simulations illustrated that multiple-valued solutions, jump 
and saturation phenomenon, hardening and softening nonlinearities occur in the resonant frequency response curves. The 
effects of different parameters on system behavior have been studied applying frequency response function.  
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1. Introduction 
The nonlinear response of a suspended elastic cable under 

random excitation at 2:1 internal resonance of the first planar 
and non-planar modes is investigated. The Gaussian and 
non-Gaussian closure solutions are found to be in a good 
agreement with Monte-Carlo simulation. It is indicated that 
the mean response of the in-plane mode possesses a non-zero 
mean under zero mean excitation due to the non-zero 
sag-to-span ratio [1]. A three-mode, first in-plane mode and 
first two out-of-plane modes, random excitation of a 
suspended elastic cable with a 2:1:2 internal resonance is 
considered and studied. The Fokker-Planck equation and 
non-Gaussian closure scheme are applied to perform random 
analysis, which are validated using Monte Carlo simulation. 
The effect of some cable parameters on the autoparametric 
interaction is investigated [2]. The nonlinear dynamics of a 
two d.o.f. suspended elastic cable under small tangential 
oscillations of one support, which result in parametric 
excitation of out-of-plane motion and simultaneous 
parametric and external excitation of in-plane motion, are 
studied. A first order perturbation analysis is applied to 
determine the stability of the planar and non-planar periodic 
motions and found that suspended cables may exhibit 
saturation and jump phenomena. Theoretical predictions are 
found to be in a good agreement with experimental 
measurements of the cable two-to-one resonant response [3]. 
A second order perturbation analysis is conducted to 
investigate the existence and stability of periodic solutions  
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with near commensurable natural frequencies in a 
two-to-one ratio. It is found that cubic nonlinearities disrupt 
saturation and theoretical results are confirmed by numerical 
integration of the equations of motion [4]. A three 
degree-of-freedom model of suspended elastic cable subject 
to planar excitation is considered and the resonant response 
of the system is studied when a symmetric in-plane mode 
interacts with two out-of-plane modes. The considered 
simultaneous internal resonance occurs when the natural 
frequency of the in-plane mode is in the neighborhood of 
natural frequency of the first out-of-plane mode and of twice 
of natural frequency of the second out-of-plane mode. The 
multiple scales method up to a second order is utilized to 
obtain periodic solutions, which are verified numerically [5]. 
The case of 1:1 internal resonance and primary parametric 
resonance of a two dimensional suspended elastic cable to 
parametrical excitation of out-of-plane motion and external 
excitations of in-plane motion is studied. The theory of 
normal form and method of multiple scales are used to obtain 
a simplified averaged equations. It is shown that the 
considered model may undergo Hopf bifurcation, 
heteroclinic bifurcations and a Silnikov type homoclinic 
orbit to the saddle focus. Numerical simulations are 
performed to illustrate the theoretical predictions [6]. A 
hyprid three-dimensional finite element/incremental 
harmonic balance method is utilized to study the nonlinear 
modal interaction and internal resonance of a suspended 
cable. It is found that response profiles of the cable at the 
super-harmonic resonance are very different from those at 
the primary and internal resonances. Moreover, strong modal 
interaction occurs in the transition from the primary 
resonance to the super-harmonic resonance, and from the 
superharmonic resonance to the primary resonance [7]. The 
nonlinear responses of immersed cable subject to constant 
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fluid flow speed along the cable plane with two in-plane 
mode interaction under fluid hydrodynamic forces are 
investigated. It is indicated that the system exhibits a 
periodic attractor in the configuration plane when the 
velocity of the fluid is large [8]. The non-planar finite 
dynamics of a four d.o.f. elastic suspended cable to external 
excitations and support motions are studied. The equations 
of motion, which represent two in-plane and two 
out-of-plane components, are solved using the method of 
multiple scales of order two considering the cases of primary 
external resonance and three simultaneous internal 
resonances. The effect of some control parameters is 
investigated [9]. The case of three-to-one internal resonance 
between the modes of the beam and the string in the presence 
of subharmonic resonance for the beam is considered and 
examined. The method of multiple scales is applied to study 
the steady-state response and the stability of the model. The 
effect of different parameters on the system is studied and 
several nonlinear behaviors of the system are found, which 
are confirmed numerically [10]. The dynamics of cable with 
concentrated loads were investigated using a direct 
perturbation method combined with multiple time scales. 
The model was assumed to have complex loads, including 
nonlinear aerodynamic force and concentrated masses [11]. 
The dynamic configuration of inextensible cables was 
studied [12]. Three components of displacement describing 
two equilibria of an extensible, traveling, elastic cable were 
obtained [13]. Simple formulas were established to analyze 
the global vibration of a cable-stayed bridge [14]. The global 
bifurcations of an inclined cable under external excitation 
with external damping are studied and the case of primary 
resonance is considered. The Shilinkov type homoclinic 

orbits and chaotic dynamics are analyzed using a new global 
perturbation technique [15]. The nonlinear dynamic 
responses of cable structures with two-to-one internal 
resonance cases [16-18], and three-to-one internal resonance 
[19] are studied using different methods and the chaotic 
dynamics of the cable model is illustrated by numerical 
simulations. Primary and subharmonic resonance cases in an 
inclined cable under external harmonic excitation are 
investigated theoretically and experimentally [20].  

The present work examines the nonlinear resonant 
behavior of one in-plane mode that is coupled with two 
out-of-plane modes. The Galerkin method is used to 
discretize the governing nonlinear equation of motion into 
three ordinary differential equations with quadratic and cubic 
nonlinearities. Using the method of multiple scales, a set of 
first order nonlinear differential equations are obtained. The 
analytical results show that the system behavior includes 
several characteristics of the nonlinear system in the resonant 
frequency response curves. It is also shown that the system 
parameters have various effects on the nonlinear response of 
the considered model. 

2. Cable Model Formulation  
The elastic cable of length L suspended between two 

supported ends, one is fixed and the second is vibrating 
support is shown in Fig. 1. The external excitation is 
assumed to be harmonic loading of the form f2(s)cosΩt 
acting upon the elastic cable in the tangential (in-plane) 
direction of the cable’s left support.  

 

Figure 1.  Schematic diagram of the suspended elastic cable, [6] 

The model of the considered cable under investigation is very close to the one studied by Perkins [5]. The nondimensional 
equations governing the transverse motion of a suspended is given by: 
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associated with the following boundary conditions (0, ) (1, ) 0k kw t w t= =  for k = 2,3. 2,3 ( , )w s t  are nondimensional 
displacements with respect to the static equilibrium configuration of the cable in the normal and binormal directions, 
respectively, s is the nondimensional arc length coordinate of the cable and t is the nondiemnsional time. 2

tv  and 2
lv  denote 

the nondimensional transverse and longitudinal wave speeds of the cable, respectively.  
The partial differential equations (1) and (2) are discretized considering one in-plane mode and two out-of plane modes 

using the following expansions, which represent separable solutions 

2 1 1( , ) ( ) ( )w s t s u t= Φ ,                                        (3) 

3 1 1 2 2( , ) ( ) ( ) ( ) ( )w s t s u t s u t= Ψ +Ψ ,                             (4) 

where 1( )sΦ  is the in-plane mode shape with the corresponding natural frequency ω1 and 1,2Ψ  are out-of-plane mode 
shapes with the corresponding natural frequencies ω1,2. These mode shape functions are obtained by substituting Eqs. (3) and 
(4) into the linear equations of motion governing the free motion about the equilibrium position for normal and binormal 
directions, that are extracted from Eqs. (1) and (2). Then using separation of variables and applying the boundary conditions 
gives: 
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where D1 and Dk are arbitrary constants. Substituting Eqs. (3) and (4) into Eqs. (1) and (2), applying the applying the Galerkin 
method and adding linear viscous damping coefficients µ1,2,3 lead to the following three nonlinear coupled ordinary 
differential equations in terms of the nondimensional generalized coordinates u1,2,3(t):  

2 2 3 2 2 2 2
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where 
u1, and u2,3 are the displacements of in-plane and out-of-plane modes of the cable, associated with natural frequencies ω1, 

and ω2,3 and viscous damping coefficients µ1, and µ2,3, respectively, αi for i=1…6, βj and γj for j = 1…4 are nonlinear 
parameters, 0 1ε<   is a small perturbation parameter, F and Ω1 are the in-plane external forcing amplitude and 
frequencies, fj ( j =1,2,3) and Ω2 are parametric forcing amplitudes and frequency. These parameters are defined as follows 
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3. Perturbation Analysis 
A generalization of the method of multiple scales [21] is utilized to obtain a first-order uniform expansion for the solutions 

of Eqs. (5-7) in the form. 
2

0 0 1 1 0 1( , ) ( , ) ( , ) ( )j j ju t u T T u T T Oε ε ε= + +  for  j = 1,2,3.                 (8) 

where, tT n
n ε= . 

Substituting Eq. (8) into Eqs. (5-7) and equating the coefficients of the same powers of ε , yield the following 
Order ε0:  

2 2
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The solutions of Eq. (9) can be written in the following form 

0 0 1 1 0( , ) ( ) exp( )j j ju T T A T i T ccω= + ,  for j = 1,2,3                 (13) 

where cc denotes the complex conjugate of the preceding terms. By substituting Eq. (13) into Eqs. (10-12), we obtain the 
following equations: 
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where the prime indicates the derivative with respect to T1.  
 

The general solutions of Eqs. (14-16) can be expressed in the following forms: 
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where A1,2,3 are complex functions in T1, which are still arbitrary at this level of approximation. They can be determined by 
eliminating the secular terms at the next approximation. 

We consider the simultaneous resonance conditions which occur when the primary parametric resonance conditions Ω2 ≈ 
2ω1 ≈ 2ω2 ≈ 2ω3 are satisfied simultaneously between three modes of vibration, which mean the existence of the primary 
internal resonance ω1= ω2= ω3. Furthermore, primary parametric resonances of in-plane and out-of-plane modes lead to 
primary external resonance of the in-plane mode (Ω1 ≈ ω1), where for convenience of the investigation we assume Ω2 = 2Ω1. 
The closeness of the resonances is described by  

Ω1= ω1 + εσ, Ω2= 2ω1 + εσ1,  Ω2 = 2ω2 + εσ2, and  Ω2 = 2ω3 + εσ3 .                (20) 
where σ, and σ1, σ2, σ3 denote primary and parametric external detuning parameters, respectively. The definitions (20) are 

used in Eqs. (14-16) together with the polar representation 
1 exp( )
2k k kA a iθ= , k = 1,2,3, and the eliminating of the secular 

terms provides the following four equations governing the amplitude and phase modulations 
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where  
γ = σ T1 – θ, γ1 = 2(θ2 – θ1), ζ1 = 2(θ3 – θ1), η1 = σ1 T1 – θ1, γ2 = 2(θ1 – θ2), ζ2 = 2(θ3 – θ2), η2 = σ2 T1 – θ2, γ3 = 2(θ1 – θ3), ζ3 = 

2(θ2 – θ3), η3 = σ3 T1 – θ3.  
The steady-state periodic responses of the three modes of vibrations correspond to constant solutions, that is correspond to 
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0ja′ = and 0jη′ = , for j = 1,2,3. Using these conditions in Eqs. (21-26) leads to 

2 25 6 1 1
1 1 2 1 3 1 1 1

1 1 1 1 1

1 ( sin sin sin sin )
2 8 8 2 2

f Fa a a a
a

α αµ γ ζ η γ
ω ω ω ω

− = + + + ,                    (27) 

2 2 2 2 25 6 5 62
1 1 1 2 3 2 1 3 1

1 1 1 1 1

3( ) ( cos cos
8 4 4 8 8

a a a a a aα α α αασ γ ζ
ω ω ω ω ω

− − − − = + 1 1
1 1

1 1 1

cos cos )
2 2

f F a
a

η γ
ω ω

+ + ,   (28) 

2 23 4 2
2 2 1 2 3 2 2 2

2 2 2

1 ( sin sin sin )
2 8 8 2

fa a a aβ βµ γ ζ η
ω ω ω

− = + + ,                      (29) 

2 2 2 2 23 31 4 4 2
2 2 2 1 3 1 2 3 2 2 2

2 2 2 2 2 2

3( ) ( cos cos cos )
8 4 4 8 8 2

fa a a a a a aβ ββ β βσ γ ζ η
ω ω ω ω ω ω

− − − = + + ,       (30) 

2 23 34
3 3 1 3 2 3 3 3

3 3 3

1 ( sin sin sin )
2 8 8 2

fa a a aγ γµ γ ζ η
ω ω ω

− = + + ,                     (31) 

2 2 2 2 23 3 31 4 4
3 3 3 1 2 1 3 2 3 3 3

3 3 3 3 3 3

3( ) ( cos cos cos )
8 4 4 8 8 2

fa a a a a a aγ γγ γ γσ γ ζ η
ω ω ω ω ω ω

− − − − = + +      (32) 

 
The above Eqs. (27-32) have the following possible solutions: 

(1) pure in-plane motion (a1 ≠ 0, a2 = a3 = 0), 
(2) pure out-of-plane motion (a1 = 0, a2 ≠ 0, a3 ≠ 0) 
(3) primary and parametric resonant motion (a1 ≠ 0, a2 ≠ 0, a3 = 0), (a1 ≠ 0, a2 = 0, a3 ≠ 0), and (a1 ≠ 0, a2 ≠ 0, a3 ≠ 0), which 

is the practical case. 
We shall consider and study the last case (a1 ≠ 0, a2 ≠ 0, a3 ≠ 0), which is the practical one among the previous mentioned 

cases. The frequency response equations of this case are given by: 

( )
2 2 2

4 2 2 2 4 4 25 62 2 2 1
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2 2
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1 2 3 5 2 6 32 2
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ω ω ω ω ω
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2 21 1
5 2 6 32 2
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Figure 2.  Resonant frequency response curves for the first mode of the system 
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Figure 3.  Resonant force response curves for the first mode of the system 
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Figure 4.  Resonant frequency response curves for the second mode of the system 
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Figure 5.  Resonant force response curves for the second mode of the system 

 
4. Numerical Results 

The steady-state periodic solutions corresponding to the 
fixed points of Eqs. (27-32) for simultaneous internal and 
principle parametric resonances of the three modes are 
obtained when the conditions 1,2,3 1,2,3 0a η′ ′= = are 
implemented. From the resulting equations, the frequency 
response Eqs. (33-35) are obtained and solved numerically 
using the MAPLE© software.  

The analysis of local stability is determined by 
linearization of Eqs. (21-26) for the parameters a1,2,3 and 
η1,2,3 about each singular point, which will result in a set of 
linear equations with constant coefficients and hence lead to 
an eigen-value problem. Then, these eigen-values associated 
with the resulting linear equations will be examined. If the 
real part of every eigen-value of the coefficient matrix is 
positive then the point is unstable, otherwise must be stable. 
These linear equations are formed by assuming that each one 
of the parameters a1,2,3 and η1,2,3 is expressed in the form  

,10 nnn aaa += 0 1n n nη η η= +         (36) 

where an0 and ηn0 are the solutions of the steady-state Eqs. 
(21-26) when 1,2,3 0a′ =  and 1,2,3 0η′ =  and an1 and ηn1 are 
small perturbations. Inserting Eq. (36) into Eqs. (21-26) and 
keeping the linear terms in an1 and ηn1, then solving the 
resulted the state-space equation { } [ ]{ }X A X= , where the 

matrix [A] is the Jacobian matrix, in order to calculate the 
eigen-values.  

The numerical results are presented in Figs. (2-5) as the 
steady-state amplitudes a1,2,3 are varied against the detuning 
parameters σ1,2,3 for different values of the system parameters. 
In these figures, Each curve consists of right and left 
branches. The left branch stands for the stable solutions and 
the right one stands for the unstable solutions.   

Considering Fig. (2a) as a basic case for comparison, 
where σ1 is plotted against a1 (in-plane mode). It can be seen 
from Figs. (2b) that as the linear viscous damping coefficient 

µ1 increases, the steady state amplitude of the first mode a1 
decreases. Figures (2c) and (2d) show several representative 
curves for the cubic nonlinear term α2. Comparing these 
curves shows that the nonlinearity effect (either hardening or 
softening nonlinearity) bends the frequency response curves 
to right when α2 is positive and to left when α2 is negative. 
The figures also illustrate the variation of the steady-state 
amplitude as α2  is varied. The remaining cubic nonlinear 
terms α5 and α6, Figs. (2e, 2f), do not strongly change the 
amplitude as they are varied and hence no effect on the 
response curves. As the natural frequency ω1 increases, Fig. 
(2g), the branches of the response curves converge, and the 
region of unstable solutions decreases. The steady-state 
amplitude a1 is increased as the parametric excitation 
amplitude f1 increases as shown in Fig. (2h), whereas Fig. 
(2k) indicates that the variation of the external forcing 
amplitude F1 shows different effect and behavior on the 
frequency response curves. In Figs. (2i) and (2j), the resonant 
response curves are shifted to right as the steady-state 
amplitudes of the second and third modes  a2 and a3 are 
increased. 

In addition, the force response curves presented in Fig. 3 
illustrate the variations of the steady-state amplitude a1 with 
the forcing parametric excitation f1 for different values of the 
cubic nonlinear terms α2, α5 and α6. The significant effects of 
α5 and α6 are shown in Figs. (3c) and (3d), where the first 
mode amplitude increases as these nonlinear terms increase.  

For the second mode of vibration (first out-of-plane mode), 
the steady-state amplitude a2 is plotted against the detuning 
parameter σ2, as shown in Fig. (4). These curves illustrate the 
effects of the damping coefficient µ2, the cubic nonlinear 
terms β1,3,4, the natural frequency ω2, the parametric 
excitation amplitude f2, the steady-state amplitudes of the 
first and third modes a1 and a3.  

The force response curves of the second mode of vibration 
for different values of the damping term and nonlinear terms 
are shown in Fig. (5). It is noticed from Fig. (5b) that as the 
parametric excitation amplitude f2 increases beyond 25.0, the 
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effect of increasing the linear damping coefficient µ2 
becomes insignificant and the steady-state amplitude a2 of 
the first out-of-plane mode saturates. It is also noted that the 
curves are shifted to the right as µ2 is increased further, 
which means that the amplitude of the excitation f2 must 
exceed a critical value before the first out-of-plane amplitude 
a2 is to be strongly excited. 

Similar effects and curves are reported for the variation of 
the second out-of-plane amplitude a3 with σ1 and f3 for 
different values of system parameters, therefore they are not 
included in the figures. 

5. Conclusions 
The nonlinear response of an elastic suspended cable to 

small tangential vibration of one support has been studied. 
The problem is described by a three-degree-of-freedom 
system of nonlinear ordinary differential equations, which 
represent one in-plane equation and two out-of-plane 
equations. The case of 1:1:1 internal resonance in the 
presence of principal parametric resonance between the 
in-plane and out-of-plane modes is studied by applying a 
perturbation method using a first-order approximation. The 
frequency response equation is numerically solved to obtain 
the steady-state solutions and to investigate the effects of 
different parameters on the system behavior. 
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