
Applied Mathematics 2013, 3(1): 1-11 
DOI: 10.5923/j.am.20130301.01 

 

Comparing up and Down Milling Modes of End-Milling 
Using Temporal Finite Element Analysis 

Chigbogu G. Ozoegwu*, Sam N. Omenyi, Sunday M. Ofochebe, Chinonso H. Achebe 

Department of Mechanical Engineering, Nnamdi Azikiwe University Awka, PMB 5025 Anambra state, Nigeria  

 

Abstract  Two types of end milling at partial radial immersion are distinguished in this work, namely; up and down 
end-milling. They are theoretically given comparative study for a three tooth end miller operating at 0.5, 0.75 and 0.8 radial 
immersions. 0.5 and 0.8 radial immersion conditions are chosen so that analysis  covers situations in which repeat and 
continuous tool engagements occur while 0.75 radial immersion just precludes tool free flight. It  results from analysis that the 
down end-milling mode is better favoured for workshop application than the up end-milling mode from both standpoints of 
cutting force and chatter stability. Th is superiority in chatter stability is quantified by making use of the Simpson’s rule to 
establish that switching from up end-milling mode to down end-milling mode at 0.5 rad ial immersion almost doubles the 
possibility of chatter free milling while at 0.75 and 0.8 radial immersions this possibility almost triples. This result conforms 
to the age long recognition from workshop practices that climb milling operations are much more stable than conventional 
milling operations. Validation of the resulting stability charts is conducted via MATLAB dde23 time domain numerical 
analysis of selected points on the parameter plane of spindle speed and depth of cut. 
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1. Introduction 
Machining is needed for the production of specialized 

components in the aerospace, marine, automobile and other 
industries. For this reason best mode of machin ing is sought 
after for best productivity and quality of components. 
Among other methods of mach ining, end milling is 
extensively used in the industry. In end milling a machined 
surface that is at right angle with the cutter axis results as 
shown Figure 1. Milling cutters equipped with shanks for 
mounting on the spindle are utilized for end milling. 

Two types of end-milling at partial radial immersion are 
distinguished as shown in figure 2. Milling operat ion as 
dep icted  in  f igure 2 .a dyna mica l ly  looks  l ike the 
conventional milling since workp iece feed  is in opposite 
direct ion to cutter rotat ion at  advent o f tooth-workpiece 
engagement. Chip thickness progressively grows from zero 
to non-zero values as feed progresses in this type of milling. 
The end milling process of figure 2.b dynamically resembles 
the climb milling being that workp iece feed is in the same 
direction as cutter rotation at inception of a tooth-workp iece 
engagement. Chip thickness starts from non-zero value and 
ends at zero  value in this type of milling. These milling 
p rocesses  will thus  be referred  to  in  th is  work as  up 
end-milling  and down end-milling respect ively . Rad ial  
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immersion 𝜌𝜌 is defined for these milling processes to mean 
the ratio of the radial depth of cut to the tool diameter. The 
aim here is to compare the cutting forces and stability of both 
types of end milling process for a three tooth milling tool at 
half, three-quarters and four-fifths radial immersions.  

The first major d ifference between this work and others is 
that the cutting force of the non-chattered down end-milling 
and up end-milling are compared. It is suggested that there is 
less possibility of fatigue in the down end-milling mode 
since its magnitude of unperturbed cutting force is always 
less than that of the up end-milling at all rad ial immersions. 

The superiority of conventional milling over climb milling 
in terms  of surface quality of component in workshop 
practice is long known and documented[1-3]. It is noted by 
Joshi[2] that conventional milling has fixture or clamping 
problems that is entirely absent in climb milling. This is due 
to the lift effect cutting forces have on the workpiece in 
conventional milling. Miller and Miller[3] wrote that climb 
milling allows faster material removal rate and surface fin ish 
than conventional milling. The poorer surface fin ish in 
conventional milling is attributed to tooth-workp iece 
rubbing that occurs before active engagement. The fixtu re 
and rubbing-induced surface problem of conventional 
milling are not expected in up end-milling since the 
mach ined surface is at right angle with the cutter axis. 

The dynamic resemblance of up  and down end-milling 
with conventional and climb milling respectively is 
considered to mean resemblance in stability. Analysis shows 
that domain of chatter stability of down milling mode is 
much greater than that of up milling mode at all the studied 
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radial immersion conditions. The point thus made in this 
work is that the superiority of surface finish in climb milling 
over that in conventional milling is partly due to less 
possibility of chatter or unstable self –excited vibrations in 
the former. This is another contribution of this work.  

 
Figure 1.  End-Milling 

 
(a) 

 
(b) 

Figure 2.  Two End-Milling Modes. (A) Up End-Milling; (B) Down 
End-Milling 

The novelty of this work also lies in the use of Simpson’s 

rule to quantify the superiority of chatter stability of down 
end-milling over up end-milling at each o f the radial 
immersion conditions considered. It is found that switching 
from up end-milling mode to down end-milling mode at 0.5 
radial immersion almost doubles the possibility of chatter 
free milling in the spindle speed range 0 < Ω ≤ 30000  
while at 0.75 and 0.8 rad ial immersions this possibility 
almost triples in the same spindle speed range. 

2. Mathematical Model of Periodic 
Cutting Force 

End-milling process as depicted in figure 3 is a  
multi-toothed cutting operation. The tool is given a spindle 
speed Ω in revolutions per minute while the workpiece has a 
prescribed feed velocity 𝑣𝑣 imparted on it via the worktable. 

 

Figure 3.  Dynamical Model Of End-Milling 

A tool-workp iece disposition as shown in figure 4 is 
considered for the 𝑗𝑗𝑗𝑗ℎ tooth of the tool where the normal 
and tangential components are designated 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑗𝑗 (𝑡𝑡)  and 
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑗𝑗 (𝑡𝑡)  respectively. The 𝑥𝑥 −component of cutting force 
for the tool thus becomes 
𝐹𝐹𝑥𝑥(𝑡𝑡) = ∑ 𝑔𝑔𝑗𝑗(𝑡𝑡)�𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑗𝑗(𝑡𝑡)sin𝜃𝜃𝑗𝑗(𝑡𝑡) + 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑗𝑗(𝑡𝑡)cos𝜃𝜃𝑗𝑗(𝑡𝑡)�𝑁𝑁

𝑗𝑗=1   (1) 

 

Figure 4.  Milling Tooth-Workpiece Disposition 
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𝑁𝑁 is the number teeth on the milling tool indexed with the values 𝑗𝑗 =1, 2, 3......𝑁𝑁. The instantaneous angular position of a 
tooth 𝑗𝑗 is 𝜃𝜃𝑗𝑗 (𝑡𝑡). In th is work 𝜃𝜃𝑗𝑗 (𝑡𝑡)  is measured clockwise relative to the negative 𝑦𝑦 −axis to give 

𝜃𝜃𝑗𝑗 (𝑡𝑡) = �𝜋𝜋Ω  
30
� 𝑡𝑡 + (𝑗𝑗 − 1) 2𝜋𝜋

𝑁𝑁
+𝛼𝛼                                    (2) 

where 𝛼𝛼 is the init ial angular position of the tooth indexed1. Screen or switching function for the 𝑗𝑗𝑗𝑗ℎ tooth 𝑔𝑔𝑗𝑗 (𝑡𝑡) could 
either have the values 1 or 0 depending on whether the tooth is active or not. For given start and end angles of cut designated 
𝜃𝜃𝑠𝑠  and 𝜃𝜃𝑒𝑒  respectively, 𝑔𝑔𝑗𝑗 (𝑡𝑡) of the general tool-workpiece disposition shown in figure 5 becomes[4] 

 
Figure 5.  General Milling Tool-Workpiece Disposition 

𝑔𝑔𝑗𝑗 (𝑡𝑡) = 1
2
�1 + 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑠𝑠𝑠𝑠𝑠𝑠 �𝜃𝜃𝑗𝑗 (𝑡𝑡) − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑠𝑠𝑠𝑠𝑠𝑠 θ s−𝑠𝑠𝑠𝑠𝑠𝑠 θe

𝑐𝑐𝑐𝑐𝑐𝑐 θ s−𝑐𝑐𝑐𝑐𝑐𝑐 θe
��− 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜃𝜃𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑒𝑒

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑠𝑠−𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒
����       (3) 

where it is seen from figure 5 that 
cos 𝜃𝜃𝑠𝑠 = 𝐵𝐵+2𝑒𝑒

𝐷𝐷

cos 𝜃𝜃𝑒𝑒 = 2𝑒𝑒−𝐵𝐵
𝐷𝐷

                                           (4) 

𝐵𝐵 is the radial dept of cut, 𝐷𝐷  is the tool diameter and 𝑒𝑒 is the deviation of centre of radial dept of cut from the tool centre. 
For the studied end-milling tool-workpiece disposition shown in figure 2 the radial immersion 𝜌𝜌 by definition becomes 

𝜌𝜌 = 𝐵𝐵
𝐷𝐷

                                              (5) 
Equation (5) put into equation (4) gives 

cos 𝜃𝜃𝑠𝑠 = 𝜌𝜌+ 2𝑒𝑒
𝐷𝐷

cos 𝜃𝜃𝑒𝑒 = −𝜌𝜌 + 2𝑒𝑒
𝐷𝐷

                                          (6) 

If the rad ial immersion is given as 𝜌𝜌 = 1 𝑑𝑑⁄ , it will not be difficu lt to see from figure 2 that the deviation 𝑒𝑒  is given as 

𝑒𝑒 = �
(𝑑𝑑 − 1) 𝐷𝐷

2𝑑𝑑
          for up end − milling

(1 − 𝑑𝑑) 𝐷𝐷
2𝑑𝑑

   for down end − milling
 �                                (7) 

Equation (7) and (6) put into (3) while recalling that 𝜌𝜌 = 1 𝑑𝑑⁄  gives the screen function in terms  of radial immersion 𝜌𝜌 for 
up end-milling as 

𝑔𝑔𝑗𝑗 (𝑡𝑡) = 1
2
�1 + sgn �sin�𝜃𝜃𝑗𝑗 (𝑡𝑡) − arctan �−1

2𝜌𝜌
sin[arccos(1 − 2𝜌𝜌)]��+ sin�arctan �−1

2𝜌𝜌
sin[arccos(1 − 2𝜌𝜌) ]���� (8) 

while fo r down end-milling the screen function in terms of radial immersion 𝜌𝜌 becomes 

𝑔𝑔𝑗𝑗 (𝑡𝑡) = 1
2
�1 + 𝑠𝑠𝑠𝑠𝑠𝑠 �sin

�𝜃𝜃𝑗𝑗 (𝑡𝑡) − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 1
2ρ

sin[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (2ρ − 1)]��

− sin�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (2ρ − 1) − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 1
2ρ

sin[𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1 − 2ρ)]��
��          (9) 

It is seen from figure2 that an 𝑁𝑁-tooth end miller could  
undergo free flight or damped natural vibrat ion when the 
radial immersion gets too low. The condition for this to occur 
becomes 

𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑠𝑠 < 2𝜋𝜋
𝑁𝑁

                 (10) 
Up end-milling as shown in figure 2 has start and end 

angles expressed from equations (6) and (7) in terms of radial 
immersion 𝜌𝜌  as 𝜃𝜃𝑠𝑠 = 0  and 𝜃𝜃𝑒𝑒 = arccos(1 − 2𝜌𝜌)  while 
for down end-milling  𝜃𝜃𝑠𝑠 = arccos(2𝜌𝜌 − 1) and 𝜃𝜃𝑒𝑒 = 𝜋𝜋  . If 
these angles are put into the inequality (10), the restriction on 
radial immersion 𝜌𝜌 for damped natural vibrat ion for both 
Up end-milling and down end-milling becomes 

𝜌𝜌 < 1
2
�1 − cos �2𝜋𝜋

𝑁𝑁
��              (11) 

The time spent in free flight 𝑡𝑡𝑓𝑓  evidently becomes given 
as 𝑡𝑡𝑓𝑓 = 30

𝜋𝜋Ω
�2𝜋𝜋
𝑁𝑁
− (𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑠𝑠 )�. The ratio of time interval of 

free flight to discrete delay becomes  𝑟𝑟𝑡𝑡 =
𝑡𝑡𝑓𝑓
𝜏𝜏

= 1 −
𝑁𝑁

2𝜋𝜋
(𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑠𝑠 ) . If the start and end angles are put into this 

expression for  𝑟𝑟𝑡𝑡 , the equations describing 𝑟𝑟𝑡𝑡 for Up 
end-milling and down end-milling respectively becomes 
equations (12) and (13) 

𝑟𝑟𝑡𝑡 = 1 − 𝑁𝑁
2𝜋𝜋

arccos(1 − 2𝜌𝜌)          (12) 

𝑟𝑟𝑡𝑡 = 1 − 𝑁𝑁
2𝜋𝜋

[𝜋𝜋 − arccos(2𝜌𝜌 − 1)]        (13) 

Ω

Be

sθ
( )tjθ

eθD
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Total 𝑥𝑥-component of cutting force for the tool becomes 
given as 
𝐹𝐹𝑥𝑥(𝑡𝑡) = ∑ 𝑔𝑔𝑗𝑗(𝑡𝑡)�𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑗𝑗(𝑡𝑡)sin𝜃𝜃𝑗𝑗(𝑡𝑡) + 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑗𝑗(𝑡𝑡)cos𝜃𝜃𝑗𝑗(𝑡𝑡)�𝑁𝑁

𝑗𝑗=1 (14) 
The tangential cutting force for the 𝑗𝑗 tooth 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑗𝑗 (𝑡𝑡)  as 

indicated in figure 4 is given by the non-linear law[4] 
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑗𝑗 (𝑡𝑡) = 𝐶𝐶𝐶𝐶�𝑓𝑓𝑎𝑎 sin𝜃𝜃𝑗𝑗 (𝑡𝑡)�

𝛾𝛾
           (15) 

where 𝑤𝑤  is depth of cut, 𝐶𝐶  is the cutting coefficient 
associated with the workpiece material, 𝑓𝑓𝑎𝑎  is the actual feed  
and 𝛾𝛾 is an exponent that is not greater than one, having a 
value of 3 4⁄  for the three-quarter rule. The empirical 
relationship connecting the milling tangential and normal 
cutting forces shown in figure 4 is written in[4] to be seen in 
the works of Balint, Bali and Tlusty to have the form 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑗𝑗 (𝑡𝑡) = 0.3𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑗𝑗 (𝑡𝑡)               (16) 
The actual feed rate 𝑓𝑓𝑎𝑎  is the difference between present 

and one period delayed position of tool, thus 
𝑓𝑓𝑎𝑎 = 𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)                 (17) 

Equations (15), (16) and (17) are taken together to give  
𝐹𝐹𝑥𝑥 (𝑡𝑡) = 𝑤𝑤𝑤𝑤(𝑡𝑡) [𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)]𝛾𝛾            (18) 

where 𝑞𝑞(𝑡𝑡) = ∑ 𝑔𝑔𝑗𝑗(𝑡𝑡)𝐶𝐶sin𝛾𝛾𝜃𝜃𝑗𝑗(𝑡𝑡)�0.3sin𝜃𝜃𝑗𝑗(𝑡𝑡) + cos𝜃𝜃𝑗𝑗(𝑡𝑡)�𝑁𝑁
𝑗𝑗=1  is 

a 𝜏𝜏(= 60
𝑁𝑁Ω

)  periodic function since tool-workp iece 
disposition repeats after every time 𝑡𝑡 = 𝜏𝜏 interval. 

Stationary milling is the needed ideal that can only occur 
when there are no perturbations. In stationary milling the 
actual feed 𝑓𝑓𝑎𝑎 = 𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)  becomes equal to the 
prescribed feed per cutting period. That is, 𝑓𝑓 = 𝑣𝑣𝑣𝑣 such that 
equation (18) becomes 

𝐹𝐹𝑥𝑥 (𝑡𝑡) = (𝑣𝑣𝑣𝑣) 𝛾𝛾𝑤𝑤𝑤𝑤(𝑡𝑡)               (19) 
This is the periodic cutting force about which the realistic 

cutting force of equation (18) varies. If the milling process is 
stable, an init ially chaotic cutting force will tend to 
equilibrium periodic cutting force as initial vibrat ion dies out. 
The cutting force of stationary milling as given in equation 
(19) is 𝜏𝜏-periodic like 𝑞𝑞(𝑡𝑡). For a milling process with the 
typical specificat ion[5]; 𝐶𝐶 = 3.5 × 107 Nm−7 4⁄ ,  𝛾𝛾 = 0.75 
(from the three-quarter rule), feed speed 𝑣𝑣 = 0.0025m/s, 
Ω = 2000  rpm  and 𝑤𝑤 = 0.001m , a plot of periodic cutting 
force over interval of two periods is produced for both up 
end-milling and down end-milling at 0.5, 0.75 and 0.8 radial 
immersions  as shown in figure6a, b and c respectively. It is 
seen that at each radial immersion 𝐹𝐹𝑥𝑥 (𝑡𝑡)  has two different 
amplitudes, one above and other below the line 𝐹𝐹𝑥𝑥 (𝑡𝑡) = 0. 
The bigger amplitude of each periodic cutting force about 
zero  value is of interest. The bigger the amplitude, the more 
likely the machined component will have tolerance error. At 
0.5 radial immersion the cutting force amplitudes are 4.4 N 
and -2.7 N while they are 4.4 and 4.05 at 0.75 radial 
immersion for up end-milling and down end-milling 
respectively. Negative sign is retained to capture the 
mean ing that cutting force is opposite to feed. At 0.8 radial 
immersion the cutting force amplitudes are 4.5 N and 4.15 N 
for up end-milling and down end-milling respectively. A  plot 
of amplitude variation with 𝜌𝜌 is given in figure 7 in which is 
seen that up end-milling has higher amplitude than the down 
end-milling in the entire range of radial immersion. The 

conclusion drawn becomes that Though the Taylors’s tool 
life  equation suggests equal longevity for up end-miller and 
down end-miller, the former is more damaging to tool than 
the latter since it  generally has higher periodic cutting force 
amplitude. Reversal in direction of cutting force over a 
period exists for the down end-miller at low radial 
immersions since it has both positive and negative values 
when 𝜌𝜌 < 0.5. This means that its vibratory motion occurs 
on both sides of the tool’s undisplaced equilibrium position. 
This is not the case for the up end-miller. It is seen that when 
𝜌𝜌 > 0.5, amplitude of stationary cutting force of interest for 
down end-milling becomes positive and approaches that of 
up end-milling as 𝜌𝜌 increases. It should be observed that 
cutting force varnishes over a time interval that is equal for 
both up end-milling and down end-milling. During this time 
interval which is given as 𝑡𝑡𝑓𝑓 = 30

𝜋𝜋Ω
�2𝜋𝜋
𝑁𝑁
− arccos(1 − 2𝜌𝜌)�  

for up end-milling and 𝑡𝑡𝑓𝑓 = 30
𝜋𝜋Ω
�2𝜋𝜋
𝑁𝑁
− 𝜋𝜋 + arccos(2𝜌𝜌 − 1)� 

for down end-milling, the tool is not engaged with the 
workp iece thus in transient response. 

 
a) i. 

 
a) ii. 

 
b) i. 
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b) ii. 

 
c) i. 

 
c) ii. 

Figure 6.  Stationary Cutting Force Variation for a Three Tooth 
End-Milling At (A) 𝝆𝝆  = 𝟎𝟎.𝟓𝟓 , (B) 𝝆𝝆 = 𝟎𝟎.𝟕𝟕𝟕𝟕  and (C) 𝝆𝝆= 𝟎𝟎.𝟖𝟖: I. Up 
End-Milling, Ii. Down End-Milling 

 
Figure 7.  Amplitude of Stationary Cutting Force Variation Plotted 
Against Radial Immersion. Up End-Milling is Seen to Have Amplitude That 
is Fairly Invariant at about 4.4 N with 𝝆𝝆 While Down End-Milling is Fairly 
Invariant At About -2.7 N Up To 𝝆𝝆= 𝟎𝟎.𝟓𝟓 

3. Equation of Regenerative Vibration 
The parameters of the milling process as depicted on the 

dynamical model of figure 3 are; 𝑚𝑚  mass of tool, 𝑐𝑐  the 
equivalent viscous damping coefficient of the tool system 
and 𝑘𝑘  the stiffness of the tool system. These modal 
parameters could  be ext racted from p lot of the tool frequency 
response function in a scheme of experimental modal 
analysis[6-8]. Figure 3 is a single degree of freedom 
vibration model of an end milling tool. Most encountered 
resonance in machining involves the fundamental natural 
frequency thus single degree of freedom vibrat ion is 
satisfactory when it is well separated from the higher natural 
frequencies as seen in Stepan[9]. Chatter is an unstable 
vibration in mach ining due regenerative effects that are 
originally triggered by internal and external perturbations. 
Regenerative effect as seen in figure 3 is the effect of 
waviness created on a mach ined surface due to perturbed 
dynamic interaction between the tool and the workpiece. The 
present tool pass that is indicated as dashed curve has 
waviness that is not in phase with the last tool profile. A 
variation in chip thickness causes cutting force variation that 
results in vibration which subsequently builds up to chatter if 
cutting parameter combination is unfavourable. 

The free-body diagram for the tool dynamics shown in 
figure 3 is as depicted in figure 8. 

 
Figure 8.  Free-Body Diagram Of Tool Dynamics 

The differential equation governing the motion of the tool 
as seen from the free-body diagram is  

𝑚𝑚𝑥𝑥̈(𝑡𝑡) + 𝑐𝑐[𝑥𝑥̇(𝑡𝑡) − 𝑣𝑣𝑣𝑣] + 𝑘𝑘[𝑥𝑥(𝑡𝑡) − 𝑣𝑣𝑣𝑣] + 𝐹𝐹𝑥𝑥 = 0 (20) 
Introducing Equation (18) into the equation (20) g ives 

𝑚𝑚𝑥𝑥̈(𝑡𝑡) + 𝑐𝑐[𝑥𝑥̇(𝑡𝑡) − 𝑣𝑣𝑣𝑣] + 𝑘𝑘[𝑥𝑥(𝑡𝑡) − 𝑣𝑣𝑣𝑣] 
+𝑤𝑤𝑤𝑤(𝑡𝑡)[𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏)]𝛾𝛾 = 0          (21) 

The motion of the tool is assumed to be a linear 
superposition of prescribed feed motion 𝑣𝑣𝑣𝑣, tool 𝜏𝜏-periodic 
response 𝑥𝑥𝑡𝑡(𝑡𝑡) due to periodic fo rce of equation (19)  and 
perturbation 𝑧𝑧(𝑡𝑡)[4] then 

𝑥𝑥(𝑡𝑡) = 𝑣𝑣𝑣𝑣 + 𝑥𝑥𝑡𝑡(𝑡𝑡) + 𝑧𝑧(𝑡𝑡)              (22) 
Substitution of equation (22) into equation (21) gives 

𝑚𝑚𝑥𝑥̈𝑡𝑡(𝑡𝑡) + 𝑐𝑐𝑥𝑥̇𝑡𝑡(𝑡𝑡) + 𝑘𝑘𝑥𝑥𝑡𝑡(𝑡𝑡) + 𝑚𝑚𝑧̈𝑧(𝑡𝑡) + 𝑐𝑐𝑧𝑧(𝑡𝑡)̇ + 𝑘𝑘𝑘𝑘(𝑡𝑡) 
= −𝑤𝑤𝑤𝑤(𝑡𝑡){𝑣𝑣𝑣𝑣 + [𝑧𝑧(𝑡𝑡) − 𝑧𝑧(𝑡𝑡 − 𝜏𝜏)]}𝛾𝛾      (23) 

Without perturbation (that is 𝑧𝑧 = 𝑧𝑧(𝑡𝑡 − 𝜏𝜏) = 0), equation 
(23) simplifies to 

𝑚𝑚𝑥𝑥̈𝑡𝑡(𝑡𝑡) + 𝑐𝑐𝑥𝑥̇𝑡𝑡(𝑡𝑡) + 𝑘𝑘𝑥𝑥𝑡𝑡(𝑡𝑡) = −𝑤𝑤𝑤𝑤(𝑡𝑡) (𝑣𝑣𝑣𝑣)𝛾𝛾     (24) 
This governs the periodic motion of the system. Equation 

(24) means that equation (23) becomes 
𝑚𝑚𝑧̈𝑧(𝑡𝑡) + 𝑐𝑐𝑧𝑧(𝑡𝑡)̇ + 𝑘𝑘𝑘𝑘(𝑡𝑡)  

= 𝑤𝑤𝑤𝑤(𝑡𝑡) (𝑣𝑣𝑣𝑣)𝛾𝛾 − 𝑤𝑤𝑤𝑤(𝑡𝑡){𝑣𝑣𝑣𝑣 + [𝑧𝑧(𝑡𝑡) − 𝑧𝑧(𝑡𝑡 − 𝜏𝜏)]}𝛾𝛾   (25) 
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Linearized Tay lor series of equation (25) about 𝑣𝑣𝑣𝑣  
becomes 
𝑚𝑚𝑧̈𝑧(𝑡𝑡) + 𝑐𝑐𝑧𝑧(𝑡𝑡)̇ + 𝑘𝑘𝑘𝑘(𝑡𝑡) = −𝑤𝑤ℎ(𝑡𝑡) [𝑧𝑧(𝑡𝑡) − 𝑧𝑧(𝑡𝑡 − 𝜏𝜏)] (26) 

where ℎ(𝑡𝑡) = 𝛾𝛾(𝑣𝑣𝑣𝑣) 𝛾𝛾−1𝑞𝑞(𝑡𝑡) is the 𝜏𝜏-periodic specific force 
variation. Equation (26) is re-written with the following 
compact notations; 𝑧𝑧(𝑡𝑡) = 𝑧𝑧 and 𝑧𝑧(𝑡𝑡 − 𝜏𝜏) = 𝑧𝑧𝜏𝜏  to give the 
periodic damped delayed differential equation of 
regenerative vibration of the system 

𝑧̈𝑧 + 2𝜉𝜉𝜔𝜔𝑛𝑛 𝑧̇𝑧+ �𝜔𝜔𝑛𝑛2 + 𝑤𝑤ℎ(𝑡𝑡 )
𝑚𝑚

�𝑧𝑧 = 𝑤𝑤ℎ (𝑡𝑡)
𝑚𝑚

𝑧𝑧𝜏𝜏          (27) 
With the substitutions 𝑦𝑦1 = 𝑧𝑧  and 𝑦𝑦2 = 𝑧̇𝑧  made, 

equation (27) could be put in state differential equation form 
as 

�𝑦̇𝑦1
𝑦̇𝑦2
�= �

0 1
−�𝜔𝜔𝑛𝑛

2 + 𝑤𝑤ℎ(𝑡𝑡)
𝑚𝑚 � −2𝜉𝜉𝜔𝜔𝑛𝑛

��
𝑦𝑦1
𝑦𝑦2
� + �

0 0
𝑤𝑤ℎ(𝑡𝑡)
𝑚𝑚 0��

𝑦𝑦1,𝜏𝜏
𝑦𝑦2,𝜏𝜏

�(28) 

Where 𝑦𝑦𝑖𝑖 ,𝜏𝜏 = 𝑦𝑦𝑖𝑖 (𝑡𝑡 − 𝜏𝜏)  for 𝑖𝑖 = 1  and 2  . The natural 
frequency and damping ratio  of the tool system are given in 
terms of modal parameters 𝑘𝑘 ,𝑚𝑚  and 𝑐𝑐  respectively as 
𝜔𝜔𝑛𝑛 = �𝑘𝑘 𝑚𝑚⁄  and 𝜉𝜉 = 𝑐𝑐 2√𝑚𝑚𝑚𝑚⁄ . These modal parameters 
are easily  ext racted from experimental p lot of the tool 
frequency response function 
𝑅𝑅(𝜔𝜔) = 𝑋𝑋 𝐹𝐹⁄ = 1 �(𝑘𝑘 −𝜔𝜔2𝑚𝑚)2 +𝜔𝜔2 𝑐𝑐2⁄  for fo rced single 
degree of freedom vibrat ion. The damped natural v ibration 
that occurs during the time interval 𝑡𝑡𝑓𝑓 = 30

𝜋𝜋Ω
�2𝜋𝜋
𝑁𝑁
−

𝜃𝜃𝑒𝑒−𝜃𝜃𝑠𝑠 obeys the ordinary differential equation 

𝑧̈𝑧 + 2𝜉𝜉𝜔𝜔𝑛𝑛 𝑧̇𝑧+ 𝜔𝜔𝑛𝑛2𝑧𝑧 = 0               (29) 
since ℎ(𝑡𝑡) = 0. Putting the solution of form 𝑧𝑧(𝑡𝑡) = 𝐾𝐾𝑒𝑒𝜆𝜆𝜆𝜆  
into equation (29) the characteristic equation becomes 

𝜆𝜆2 + 2𝜉𝜉𝜔𝜔𝑛𝑛𝜆𝜆 + 𝜔𝜔𝑛𝑛2 = 0               (30) 
With the roots 𝜆𝜆1,2 = −𝜔𝜔𝑛𝑛𝜉𝜉 ± 𝜔𝜔𝑛𝑛�𝜉𝜉2 − 1 such that the 

transient response becomes 
𝑧𝑧(𝑡𝑡) = 𝐾𝐾1𝑒𝑒𝜆𝜆1 𝑡𝑡 + 𝐾𝐾2𝑒𝑒𝜆𝜆2 𝑡𝑡                (31) 

Assuming the in itial conditions 𝑧𝑧(0)  and 𝑧̇𝑧(0) , the 
constants become 𝐾𝐾1 = 𝑧̇𝑧(0)−𝜆𝜆2 𝑧𝑧(0)

𝜆𝜆1−𝜆𝜆2
 and 𝐾𝐾1 = 𝜆𝜆1 𝑧𝑧(0)−𝑧̇𝑧(0)

𝜆𝜆1−𝜆𝜆2
 

resulting in the response vector becoming  
�𝑦𝑦1(𝑡𝑡)
𝑦𝑦2(𝑡𝑡)

� = 1

𝜆𝜆1−𝜆𝜆2
� 𝜆𝜆1𝑒𝑒𝜆𝜆2 𝑡𝑡 − 𝜆𝜆2𝑒𝑒𝜆𝜆1 𝑡𝑡 𝑒𝑒𝜆𝜆1 𝑡𝑡 − 𝑒𝑒𝜆𝜆2𝑡𝑡

𝜆𝜆1𝜆𝜆2𝑒𝑒 𝜆𝜆2𝑡𝑡 − 𝜆𝜆1𝜆𝜆2𝑒𝑒 𝜆𝜆1𝑡𝑡 𝜆𝜆1𝑒𝑒𝜆𝜆1𝑡𝑡 − 𝜆𝜆2𝑒𝑒𝜆𝜆2𝑡𝑡
� �𝑦𝑦1 (0)
𝑦𝑦2 (0)�(32) 

4. Time Finite Element Analysis of 
Chatter Stability  

Spatial fin ite element analysis is used for the estimat ion of 
quantities of interest at the nodes of discrete or quantized 
portions of a continuum. Among other fields of study this 
type of analysis is used in fluid mechanic to estimate 
property distribution[10], in vibrat ion analysis to estimate; 
natural frequencies, mode shapes and forces[11, 12] and in 
structural analysis to estimate deflections. Ideas from Spatial 
fin ite element analysis are utilized for the so-called “time 
fin ite element analysis” (TFEA) also called “temporal fin ite 
element analysis or finite element in t ime”. TFEA has been 
variously in used in milling stability investigation[13-15]. 
Insperger et al[13] wrote that this method was first applied to 
an interrupted turning process by Halley and Bayly et  al. 
They found that this method only yielded good result when 
the tool spends most of its cutting period in free flight. This 
shortcoming was corrected by Bayly et al when they used 
finer discretizat ion. Stability of regenerative vibration  using 
time finite elements involves dividing the period of cut into 
𝐸𝐸 time elements and estimat ing the perturbation motion of 
the system in each time element as a linear combination of 
trial functions. This process allows the formation of a 
discrete map that forms the substance of stability 
investigation. Within the present period of cut, the 
regenerative motion in the 𝑘𝑘 𝑡𝑡ℎ  time element becomes  

𝑧𝑧𝑘𝑘 (𝜗𝜗) = ∑ 𝑎𝑎𝑘𝑘𝑘𝑘 𝜑𝜑𝑖𝑖(𝜗𝜗)𝑖𝑖                (33) 
While for the delayed period of cut the motion becomes 

𝑧𝑧𝑘𝑘 (𝜗𝜗) = ∑ 𝑎𝑎𝑘𝑘𝑘𝑘𝜏𝜏 𝜑𝜑𝑖𝑖(𝜗𝜗)𝑖𝑖               (34) 
The trial functions utilized here are the hermite 

polynomials[15] 

𝜑𝜑1(𝜗𝜗) = 1− 3 𝜗𝜗2

𝑡𝑡𝑘𝑘2 + 2 𝜗𝜗3

𝑡𝑡𝑘𝑘3

𝜑𝜑2(𝜗𝜗) = �𝜗𝜗
𝑡𝑡𝑘𝑘
− 2 𝜗𝜗2

𝑡𝑡𝑘𝑘2 + 𝜗𝜗3

𝑡𝑡𝑘𝑘3� 𝑡𝑡𝑘𝑘

𝜑𝜑3(𝜗𝜗) = �3 𝜗𝜗2

𝑡𝑡𝑘𝑘2 − 2 𝜗𝜗3

𝑡𝑡𝑘𝑘3�

𝜑𝜑4(𝜗𝜗) = �− 𝜗𝜗2

𝑡𝑡𝑘𝑘2 + 𝜗𝜗3

𝑡𝑡𝑘𝑘3� 𝑡𝑡𝑘𝑘

          (35) 

Where 𝜗𝜗 is the local time of the 𝑘𝑘 𝑡𝑡ℎ time element of length 𝑡𝑡𝑘𝑘 . If uniform discretization  is carried out then 𝑡𝑡𝑘𝑘 = 𝜏𝜏 𝐸𝐸⁄ . 
Adopting uniform discretization, substitution of equations (33), (34) and (35) into equation (27) for the 𝑘𝑘 𝑡𝑡ℎ element gives 
an error of approximation 𝜖𝜖  as 

∑ �𝜑̈𝜑𝑖𝑖(𝜗𝜗) + 2𝜉𝜉𝜔𝜔𝑛𝑛 𝜑̇𝜑𝑖𝑖(𝜗𝜗) + �𝜔𝜔𝑛𝑛2 + 𝑤𝑤ℎ (𝜗𝜗+(𝑘𝑘−1)𝑡𝑡𝑘𝑘 )

𝑚𝑚
�𝜑𝜑𝑖𝑖(𝜗𝜗)� 𝑎𝑎𝑘𝑘𝑘𝑘4

𝑖𝑖=1 −∑ ��𝑤𝑤ℎ (𝜗𝜗+(𝑘𝑘−1)𝑡𝑡𝑘𝑘)
𝑚𝑚

� 𝜑𝜑𝑖𝑖(𝜗𝜗)� 𝑎𝑎𝑘𝑘𝑘𝑘𝜏𝜏4
𝑖𝑖 =1 = 𝜖𝜖     (36) 

Following the method of weighted residual similar to the Galerki method in spatial finite element analysis, the integral of 
the weighted error over the 𝑘𝑘 𝑡𝑡ℎ  element is set equal to zero g iving 

�� �𝜑̈𝜑𝑖𝑖(𝜗𝜗) + 2𝜉𝜉𝜔𝜔𝑛𝑛 𝜑̇𝜑𝑖𝑖(𝜗𝜗) + �𝜔𝜔𝑛𝑛2 +
𝑤𝑤ℎ(𝜗𝜗 + (𝑘𝑘 − 1)𝑡𝑡𝑘𝑘 )

𝑚𝑚
�𝜑𝜑𝑖𝑖 (𝜗𝜗)�𝑊𝑊𝑝𝑝 (𝜗𝜗)𝑑𝑑𝑑𝑑

𝑡𝑡𝑘𝑘

0
𝑎𝑎𝑘𝑘𝑘𝑘

4

𝑖𝑖 =1

 

−∑ ∫ ��𝑤𝑤ℎ
(𝜗𝜗+(𝑘𝑘−1)𝑡𝑡𝑘𝑘 )

𝑚𝑚
�𝜑𝜑𝑖𝑖 (𝜗𝜗)�𝑊𝑊𝑝𝑝 (𝜗𝜗)𝑑𝑑𝑑𝑑

𝑡𝑡𝑘𝑘
0 𝑎𝑎𝑘𝑘𝑘𝑘𝜏𝜏4

𝑖𝑖=1 = 0                         (37) 
The weight functions 𝑊𝑊𝑝𝑝 (𝜗𝜗) as utilized in[13] are 

𝑊𝑊1(𝜗𝜗) = 1
𝑊𝑊2 (𝜗𝜗) = 𝜗𝜗

𝑡𝑡𝑘𝑘
− 1

2
                                           (38) 

Customarily nodal quantities are sought for in finite element method thus the nodal perturbations and their derivatives for 
the 𝑘𝑘 𝑡𝑡ℎ  element is seen from equations (33) and (35) taken together to give 
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𝑧𝑧𝑘𝑘 (0) = 𝑎𝑎𝑘𝑘1
𝑧̇𝑧𝑘𝑘(0) = 𝑎𝑎𝑘𝑘2
𝑧𝑧𝑘𝑘 (𝑡𝑡𝑘𝑘 ) = 𝑎𝑎𝑘𝑘3
𝑧̇𝑧𝑘𝑘(𝑡𝑡𝑘𝑘 ) = 𝑎𝑎𝑘𝑘4

                                            (39) 

The boundary condition that results for two adjacent time elements are 
𝑎𝑎𝑘𝑘1 =
𝑎𝑎𝑘𝑘2 =

𝑎𝑎𝑘𝑘+1,3
𝑎𝑎𝑘𝑘+1,4

                                            (40) 

It is already pointed out that free flight could occur for a multi-toothed miller over a time interval 𝑡𝑡𝑓𝑓 = 30
𝜋𝜋Ω
�2𝜋𝜋
𝑁𝑁
− (𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑠𝑠 )�. 

Application of equation (32) gives that the state transition matrix 

𝜱𝜱�𝑡𝑡𝑓𝑓 � = 1
𝜆𝜆1−𝜆𝜆2

� 𝜆𝜆1𝑒𝑒
𝜆𝜆2𝑡𝑡𝑓𝑓 − 𝜆𝜆2𝑒𝑒

𝜆𝜆1𝑡𝑡𝑓𝑓 𝑒𝑒 𝜆𝜆1 𝑡𝑡 − 𝑒𝑒𝜆𝜆2 𝑡𝑡𝑓𝑓

𝜆𝜆1𝜆𝜆2𝑒𝑒
𝜆𝜆2𝑡𝑡𝑓𝑓 − 𝜆𝜆1𝜆𝜆2𝑒𝑒

𝜆𝜆1 𝑡𝑡𝑓𝑓 𝜆𝜆1𝑒𝑒
𝜆𝜆1𝑡𝑡𝑓𝑓 − 𝜆𝜆2𝑒𝑒

𝜆𝜆2𝑡𝑡𝑓𝑓
�  acts as a linear operator over a time interval 𝑡𝑡𝑓𝑓 =

30
𝜋𝜋Ω
�2𝜋𝜋
𝑁𝑁
− (𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑠𝑠 )� transforming the end state �

𝑎𝑎𝐸𝐸3
𝜏𝜏

𝑎𝑎𝐸𝐸4
𝜏𝜏 � of last element of delayed period of cut to the start state �

𝑎𝑎11
𝑎𝑎12

�  of the 

first element of present period of cut such that 

�
𝑎𝑎11
𝑎𝑎12

� = �
𝛷𝛷11 (𝑡𝑡𝑓𝑓 ) 𝛷𝛷12 (𝑡𝑡𝑓𝑓 )
𝛷𝛷21 (𝑡𝑡𝑓𝑓) 𝛷𝛷22 (𝑡𝑡𝑓𝑓 )

� �𝑎𝑎𝐸𝐸3
𝜏𝜏

𝑎𝑎𝐸𝐸4
𝜏𝜏 �                                  (41) 

Substituting the weight functions 𝑊𝑊𝑝𝑝 (𝜗𝜗), 𝑝𝑝 = 1  and 2  independently into equation (37) enables the formation of a local 
matrix equation for each element which in light of the boundary conditions (40) and (41) are assembled into the global matrix 
equation of form 

𝐏𝐏𝑎𝑎 = 𝐃𝐃𝑎𝑎𝜏𝜏                                              (42) 
Where both 𝐏𝐏 and 𝐃𝐃 are  2(𝐸𝐸 + 1) × 2(𝐸𝐸 + 1) matrices. For example, if three elements are to be used, the global 

matrix equation becomes 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
𝑃𝑃11

1 𝑃𝑃21
1 𝑃𝑃31

1 𝑃𝑃41
1 0 0 0 0

𝑃𝑃12
1 𝑃𝑃22

1 𝑃𝑃32
1 𝑃𝑃42

1 0 0 0 0
0 0 𝑃𝑃11

2 𝑃𝑃21
2 𝑃𝑃31

2 𝑃𝑃41
2 0 0

0 0 𝑃𝑃12
2 𝑃𝑃22

2 𝑃𝑃32
2 𝑃𝑃42

2 0 0
0 0 0 0 𝑃𝑃11

3 𝑃𝑃21
3 𝑃𝑃31

3 𝑃𝑃41
3

0 0 0 0 𝑃𝑃12
3 𝑃𝑃22

3 𝑃𝑃32
3 𝑃𝑃42

3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑎𝑎11
𝑎𝑎12
𝑎𝑎21
𝑎𝑎22
𝑎𝑎31
𝑎𝑎32
𝑎𝑎33
𝑎𝑎34⎭

⎪
⎪
⎬

⎪
⎪
⎫

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0 𝛷𝛷11 (𝑡𝑡𝑓𝑓 ) 𝛷𝛷12 (𝑡𝑡𝑓𝑓 )
0 0 0 0 0 0 𝛷𝛷21 (𝑡𝑡𝑓𝑓 ) 𝛷𝛷22 (𝑡𝑡𝑓𝑓 )
𝐷𝐷11

1 𝐷𝐷21
1 𝐷𝐷31

1 𝐷𝐷41
1 0 0 0 0

𝐷𝐷12
1 𝐷𝐷22

1 𝐷𝐷32
1 𝐷𝐷42

1 0 0 0 0
0 0 𝐷𝐷11

2 𝐷𝐷21
2 𝐷𝐷31

2 𝐷𝐷41
2 0 0

0 0 𝐷𝐷12
2 𝐷𝐷22

2 𝐷𝐷32
2 𝐷𝐷42

2 0 0
0 0 0 0 𝐷𝐷11

3 𝐷𝐷21
3 𝐷𝐷31

3 𝐷𝐷41
3

0 0 0 0 𝐷𝐷12
3 𝐷𝐷22

3 𝐷𝐷32
3 𝐷𝐷42

3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎪⎪
⎨

⎪
⎪⎪
⎧𝑎𝑎11

𝜏𝜏

𝑎𝑎12
𝜏𝜏

𝑎𝑎21
𝜏𝜏

𝑎𝑎22
𝜏𝜏

𝑎𝑎31
𝜏𝜏

𝑎𝑎32
𝜏𝜏

𝑎𝑎33
𝜏𝜏

𝑎𝑎34
𝜏𝜏 ⎭
⎪
⎪⎪
⎬

⎪
⎪⎪
⎫

 

where for the 𝑘𝑘 𝑡𝑡ℎ time element 
𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘 = ∫ �𝜑̈𝜑𝑖𝑖(𝜗𝜗) + 2𝜉𝜉𝜔𝜔𝑛𝑛 𝜑̇𝜑𝑖𝑖(𝜗𝜗) + �𝜔𝜔𝑛𝑛2 + 𝑤𝑤ℎ (𝜗𝜗+(𝑘𝑘−1)𝑡𝑡𝑘𝑘 )

𝑚𝑚
�𝜑𝜑𝑖𝑖 (𝜗𝜗)�𝑊𝑊𝑝𝑝 (𝜗𝜗)𝑑𝑑𝑑𝑑

𝑡𝑡𝑘𝑘
0               (43a) 

𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 = ∫ ��𝑤𝑤ℎ(𝜗𝜗+(𝑘𝑘−1)𝑡𝑡𝑘𝑘)
𝑚𝑚

�𝜑𝜑𝑖𝑖(𝜗𝜗)�𝑊𝑊𝑝𝑝(𝜗𝜗)𝑑𝑑𝑑𝑑𝑡𝑡𝑘𝑘
0   (43b) 

As long as 𝐏𝐏 is non-singular, the global matrix equation 
can be put in the form 

𝑎𝑎 = 𝐏𝐏−1𝐃𝐃𝑎𝑎𝜏𝜏 = 𝐌𝐌𝑎𝑎𝜏𝜏             (44) 

Equation (44) is a 2(𝐸𝐸 + 1) -dimensional d iscrete time 
map  of the system. It is seen that the nodal state vectors 
combine to form the global state vector of the discrete map. 
The matrix 𝐌𝐌 acts as a linear operator that transforms the 
delayed state 𝑎𝑎𝜏𝜏  to the present state 𝑎𝑎 . The matrix 𝐌𝐌 is 
called the monodromy matrix of the system. The nature of its 
eigenvalues also called  characteristic mult ipliers determines 
the condition of stability o f the system. The necessary and 

sufficient condition for asymptotic stability of the system is 
that each of the eigenvalues of the monodromy matrix has a 
magnitude that is less than one. In other words, all the 
eigen-values of the matrix 𝐌𝐌 must exist within  a unit circle 
centred at the origin of the complex plane. Since the 
magnitude of the eigen-values depends on the cutting 
parameter combination, the parameter space of the system 
has to be demarcated into stable and unstable domains. This 
is achieved on the cutting parameter p lane of spindle speed 
and depth of cut by tracking the stability transition curve 
along which the maximum magnitude characteristic 
multip lier lies on the unit circle. The two types of loss of 
stability (bifurcation) that are analytically and 
experimentally established for milling are[4]  
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i. Period two or period doubling or flip bifurcation in 
which the exit of the unit circle of the crit ical characteristic 
multip lier 𝜇𝜇 is at −1. 

ii. Secondary Hopf or Neimark-Sacker bifurcation which 
involves a pair of complex conjugate characteristic 
multip lier leaving the unit circle. 

 
a) 

 
b) 

Figure 9.  (A) Flip Bifurcation (B) Secondary Hopf Bifurcation 

5. Results and Validation 
Making use of the relevant equations enables the 

eigen-value analysis of the monodromy matrix of reference 
system with specification; 𝑚𝑚 = 0.0431 kg,  𝜔𝜔𝑛𝑛 =
5700  rad sec⁄ ,  𝜉𝜉 = 0.02 , 𝐶𝐶 = 3.5 × 107 Nm−7 4⁄  and 
𝑣𝑣 = 0.0025  m/s on the parameter p lane of spindle speed Ω 
and depth of cut 𝑤𝑤 leading to the stability charts of figures 
10, 11 and 12 for 0.5, 0.75 and 0.8 radial immersions 
respectively. MATLAB contour command is utilized in the 
eigen-value analysis. Each of the stability charts is generated 
using 14 elements causing computation time per chart of a 
computer with processing speed of 2.10 Ghz to be about 2.92 
hrs. The stable sub domain of each stability chart  is left  white 
while the unstable sub domain is filled dark. 

Though machine tools have a random pre-function (or 
history), stability informat ion of a cutting parameter 
combination can still be fixed by assuming a constant 
pre-function since it is found that magnitude of such a 
pre-function has no effect on stability in large[5]. Making 

use of any constant history, equation (28) is solved using 
MATLAB dde23 at some chosen points of the stability 
charts. Stable MATLAB dde23 solutions exhibit decaying 
perturbation with time and are marked with star while the 
unstable ones exhib it growing perturbation with time and 
marked oval on the charts. Close agreement between the 
charts and MATLAB dde23 solutions attests to validity of 
the charts. For illustration some of the MATLAB dde23 
solutions are presented in the form of phase trajectories as 
shown in figure 13. It is seen that stable trajectories (a, b and 
f of figure 13) collapse to zero motion with time evolution 
while the unstable ones (b, d and e of figure 13) diverge from 
initial condition 
{𝑦𝑦1 (0) 𝑦𝑦2 (0)}𝑇𝑇 = {0.0000001 0.000001 }𝑇𝑇 . 

 

 
Figure 10.  Stability Charts At 𝝆𝝆 =0.5 with Stable Sub Domain Left White 
and the Unstable Sub Domain Filled Dark (A) Up End-Milling (B) Down 
End-Milling 
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Figure 11.  Stability Charts At 𝝆𝝆  =0.75 with Stable Sub Domain Left 
White and the Unstable Sub Domain Filled Dark (A) Up End-Milling (B) 
Down End-Milling 

 

 
Figure 12.  Stability Charts at 𝝆𝝆 =0.8 with Stable Sub Domain Left White 
and the unstable sub domain filled dark (a) up end-milling (b) down 
end-milling 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 
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f) 

Figure 13.  SAMPLE PHASE TRAJECTORIES (a) UP END-MILLING 
AT 𝝆𝝆 =0.5, 𝒘𝒘=0.25 mm AND Ω =5000 rpm (b) 𝝆𝝆 =0.5, 𝒘𝒘 =3 mm AND 
Ω =10000 rpm (c) 𝝆𝝆  =0.75, 𝒘𝒘 =1.5 mm AND Ω  =15000 rpm (d) 𝝆𝝆 
=0.75, 𝒘𝒘 =5.5 mm AND Ω =20000 rpm (e) 𝝆𝝆 =0.8, 𝒘𝒘 =0.5 mm AND Ω 
=25000 rpm (f) 𝝆𝝆 =0.8, 𝒘𝒘 =1 mm AND Ω =30000 rpm 

6. Discussions  
It is seen that the down end-milling mode is more stable 

than the up end-milling mode. To quantify the superiority of 
chatter stability of down end-milling over up end-milling, 
numerical integration means such as trapezoidal or 
Simpson’s rule is utilized to approximate the area under each 
stability transition curve. The Simpson’s rule[16, 17] to 
estimate the area of stable subspace of each of the stability 
charts is 

𝐴𝐴 = ∆Ω
3
�𝑤𝑤𝑜𝑜 + 𝑤𝑤𝑛𝑛 + ∑ 4𝑤𝑤𝑖𝑖𝑖𝑖  𝑜𝑜𝑜𝑜𝑜𝑜 +∑ 2𝑤𝑤𝑖𝑖𝑖𝑖 (≠𝑛𝑛)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � (45) 

Where ∆Ω =(Ω𝑛𝑛 − Ω0) 𝑛𝑛⁄  is the steps of spindle speed, 
𝑛𝑛 is an even number into which  the stable area is divided and 
𝑖𝑖 = 0, 1, 2, … … …𝑛𝑛  are the mesh points. 𝑤𝑤𝑖𝑖 = 𝑤𝑤(Ω𝑖𝑖) and 
Ω𝑖𝑖 = 𝑖𝑖∆Ω . Making use of Ω0 = 100 , Ω𝑛𝑛 = 30000  and 
𝑛𝑛 = 60 in equation (45), an estimat ion of stable area of the 
charts is as summarized in table1.  

It is seen from table1 that for the radial immersions 
considered, up end-milling operations are much  less stable 
than the down end-milling operations. Switching from up 
end-milling mode to down end-milling mode at 0.5 radial 
immersion almost doubles the possibility of chatter free 
milling in the spindle speed range 0 < Ω ≤ 30000  while at 
0.75 and 0.8 radial immersions, this possibility almost triples 
in the same spindle speed range. Since productivity is 
measured in terms of material removal rate, it is proportional 
to the product of depth of cut and radial immersion. This 
means that the down end-milling mode allows freer choice of 
very productive stable operation. It is already established 
that up end-milling operation is more damaging to tool than 
down end-milling operation since it generally has higher 
periodic cutting force amplitude over the whole radial 
immersion range. Thus it is strongly recommend that an 
end-milling operation at part ial radial immersion is carried 
out in the down end-milling mode for better product quality 
and longevity of tool and machine structure.  

Table 1.  Area of Stable Domain of the Stability Charts of Figures 10, 11 
and 12 

Radial 
immersion 

Stable area of up 
end-milling[m 

rpm] 

Stable area of 
down 

end-milling[m 
rpm] 

Percentage 
rise in stable 
area[m rpm] 

0.5 22.9 43.4 89.52 
0.75 29.55 78.75 166.5 
0.8 30.65 85.85 180.1 

7. Conclusions  
End-milling at  partial radial immersion is seen to have two  

distinct modes. One of the modes which dynamically looks 
like the conventional milling is called “up end-milling” 
while the other that dynamically resembles the climb milling 
is called “down end-milling”. It results from analysis of 
cutting force and chatter stability that the down end-milling 
mode is better favoured for workshop application than the up 
end-milling mode. This is because up-end-milling is 
considered to be more damaging to tool than the down 
end-milling since it generally has higher periodic cutting 
force amplitude. The superiority of chatter stability of down 
end-milling over up end-milling is quantified by making use 
of the Simpson’s rule to establish that switching from up 
end-milling mode to down end-milling mode at 0.5 radial 
immersion almost doubles the possibility of chatter free 
milling in the spindle speed range 0 < Ω ≤ 30000  while at 
0.75 and 0.8 radial immersions this possibility almost triples 
in the same spindle speed range. This result is in conformity 
with the age long recognition from workshop practices that 
climb milling operations are more stable than conventional 
milling operations. Validation of the resulting stability  charts 
is conducted using MATLAB dde23 analysis of selected 
points on the parameter plane o f spindle speed and depth of 
cut. 
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