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Abstract  It is shown that a well-known theory of random stationary processes contain contradictions. Integral 
representations of correlat ion functions and random stationary processes are investigated further. The new method of struggle 
with handicaps is received on the basis of the carried out researches. Method of dealing with noise leads to a new method of 
identification of dynamic characteristics of control objects in a class of multidimensional linear stationary models. As an 
example, describe an algorithm for obtaining the differential equation-wire feed control aircraft pitch, taking into account the 
elastic deformation of the structure of class IL -96 aircraft. 
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1. Introduction 
The initial (primary) data are given in the presence of 

noise in the solution of applied problems ever. Certain 
properties of the signals used to control noise. The modern 
theory of random wide-sense stationary processes with fin ite 
variance (the random process) is described in many books, 
for example, in[1- 4]. In  the theory of random processes, the 
empirical[5] and theoretical methods, for example, published 
in[2],[6 -7]. The random stationary process and its 
correlation function are represented by a trigonometric 
Fourier series of arbitrary frequencies, and therefore belong 
to the Hilbert space of almost periodic functions of Bohr. 
This follows from the empirical studies of E. Slutsky, which 
are summarized in[4]. A stochastic process does not have the 
ergodic property with a d iscrete spectrum[2]. 

The first theoretical concept was published by A. 
Khinchin, accord ing to which the correlation function of 
random process has two components[6]. One component 
belongs to the Hilbert space of almost periodic function

),(2 +∞−∞B . Average value of the time of the square the 
other component is always zero. This implies that another 
component belongs to the Hilbert space of square-integrable 
Lebesgue functions ),(2 +∞−∞L . 

Another theoretical concept was published by Wiener, 
according to which the correlation function of a stationary 
p rocess  belongs  on ly  to  the Hilbert  space o f square 
in te g ra b le  f un ct io ns ,  Le bes gue  in t eg r a l  is  t he 
Fourier-Plancherel terms of the spectral density[7]. Such a  
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model is a random process has the ergodic property of the 
theorem, published in[2]. 

In the works of Norbert Wiener and Khintchine 
representation of random processes they were not considered. 
This problem was solved empirically first E. Slutsky, then in 
theory by Kolmogorov[8], further Cramer[2] and other 
researchers. In all v iews, except of E. Slutsky, a stationary 
random process is an integral of the Fourier-Stieltjes. 

All three concepts of a random stationary process 
contradict each other. In Wiener[9] shows that if the process 
belongs to the Hilbert space ),(2 +∞−∞L , then the correlation 
function, obtained by averaging over time is identically  zero 
on the entire line. This assertion N. Wiener is contradiction 
ergodic theorem g iven in[2]. 

D. Middleton[3] and other researchers[10] pointed out that 
the integral o f the square of a random stationary process for 
all d irect costs, even when the average value of zero. 
Therefore, a  stationary random process can not belong to a 
Hilbert space ),(2 +∞−∞L . 

Known[11], that the space ),(2 +∞−∞L is a set of functions 
that decay sufficiently fast at infinity. Such functions are not 
suitable for description of random stationary processes on 
the whole line. In many monographs as examples of 
stationary processes are functions that do not belong to the 
space ),(2 +∞−∞L , a elements of almost periodic functions 

),(2 +∞−∞B [12],[2 - 4]. It is still unclear why the 
Lebesgue-Fourier-Stieltjes in N. W iener[7] has led to 
conflicting results. 

A hypothesis, that the contradictions are due to incorrect 
assumptions adopted in theoretical studies. First, all 
theoretical studies suggest that the angular frequency ω is a 
continuous variable in the integration[8] and 
differentiation[7]. Second, the probability distribution 
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function contains a step and continuous components 
[7],[2],[6]. In this connection there arose the first task of 
assessing the correctness of these assumptions. 

2. Investigation of the Known 
Assumptions 

First, we show that a certain assumption about the 
continuity of the independent variable angular frequency is 
incorrect assumption. Angular frequency ω is related to the 
cyclic frequency f  numerical function  ω = 2πf . Cyclic 
frequency belongs to a continuous set of real numbers Wf ∈ . 
The answer to the question, to what set of numbers belongs 
to the set of corner frequencies, the following theorem. 

It is theorem 1. Let the real function kxy = defined on the 
set of real numbers Wx∈ for all 0≠x . If the ratio k  is an 
element of a subset of irrat ional numbers, transcendental 

Tk∈ , for example, π=k the numerical function that 
displays the specified  set of real numbers TIVWx =∈ , 
only a subset of irrat ional numbers, transcendental Ty∈ , 
where V - a  subset of rational numbers I - a subset of 

algebraic irrationals, for example, 2 where the union 
IV  - is an infin ite countable set of algebraic numbers. 

It is proof. Known[13], that there exists 0≠x  an inverse 
1−x for each element such that 11 =− xx . Multip ly the left 

and right sides of a numerical function to return the item to 
an arbitrarily chosen 0≠x . Obtain Tkxkxyx ∈≡= −− 11 . It 

follows that for 01 ≠−x an arbitrary product Tyx ∈−1  of an 
irrational t ranscendental number. Of all the possible random 
numbers 1−x  choose an arbitrary rational number

nmx /1 =− , where m and n are arb itrary  nonzero integers. 
Of all the random numbers m , choose a number nm = . In 
this case, we find that Tky ∈= . Theorem 1 is proof. 

The question arises, under what factors k  numerical 
function kxy =  defined on the real line ),( +∞−∞∈x  for 
all 0≠x  will display the specified  set of real numbers into 
itself? The answer to this question is the following theorem. 

It is theorem 2. Let the real function kxy = , defined on the 
set of real numbers Wx∈  for all 0≠x . If the coefficient  

0≠k  belongs to a subset of rational numbers WVk ⊂∈ , 
then the numerical function displays the specified set of real 
numbers Wx∈ into itself Wy∈ . 

It is proof. All rational coefficients 0≠k  are presented 
as a fraction nmk /= , where m  and n are arb itrary 
nonzero integers. Let nm = all of the random numbers. In 
this case .Wxy ∈=  

It is consequence of theorem 2. Angle ω and cyclic 
frequency f are related by the formula f2πω = . It is 
according with theorem 2 the set of numbers Wf ∈2 . Since 

T∈π  it belongs to the set of irrational numbers, 
transcendental, then by theorem 1 the set of corner 
frequencies T∈ω  belong to the subset of irrational 
transcendental number, which is not continuous set of 

numbers. In  an infin ite uncountable interval only  irrat ional 
transcendental numbers contains an infin ite countable 
number of seats are not engaged in irrat ional, t ranscendental 
numbers. On an in fin ite line of real numbers +∞<<−∞ ω , 
these seats are a countable infinite set of algebraic 
numbers[13]. It follows that an infinite range of irrat ional 
transcendental frequency contains an infinite countable set of 
discontinuity points. On an infinite line of real numbers, 
these seats are a countable infinite set of algebraic 
numbers[13]. It follows that an infinite range of irrat ional 
transcendental frequency contains an infinite countable set of 
discontinuity points. On a subset of irrat ional numbers, 
transcendental notions T∈ω of mathemat ical analysis as an 
infinitely small quantity ωd , the derivative (spectral density) 
and the differential of the independent variable angular 
frequency ω  does not exist. With respect ω  to the integral 
sums of Riemann, Riemann-Stieltjes and Fourier and 
Fourier-Plancherel not exist. 

Second, the well-known assumption that the distribution 
function of angular frequency contains a continuous 
component is an invalid assumption.  

It is theorem 3. In general, the probability distribution as a 
function of real random variables consists of three 
components - a step function, absolutely continuous 
differentiable function and a singular function. If the 
probability distribution is a function of random angular 
frequency, defined on the set of irrational numbers, 
transcendental, then the probability d istribution function of 
random angular frequency contains only a step function with 
an infinite countable number of discontinuity points and 
contains no nonzero continuous components. 

It is proof. It is known[2], that in general the distribution 
function of random real variab les ),( +∞−∞∈x  consists of 
three components 

)()()()( 321 xFxFxFxF ++= , 
where 111 ),()( +<≤= kkk xxxxFxF - a  step function of 
discrete values kx , ,...3,2,1,0=k , continuous variable x , 
and kx  can also take an infinite value, )(2 xF - absolutely 
continuous differentiable function on a continuous variable 
x ,  )(3 xF - a singular function - a continuous function, 

which has a derivative almost everywhere equal to zero, for 
example, cxF =)(3  where c - arb itrary constant. 

From the properties of the probability distribution 
function defined, for example, random variables

),( +∞−∞∈x , it follows that the entire function 0)( =−∞F  
and its two components 0)(1 =−∞F  and 0)(2 =−∞F . At the 
same time 0)()( 21 =+−∞+−∞ cFF . It follows that 0=c . 
The distribution function is represented as 

)()()( 21 xFxFxF += . From the other properties of the 
probability distribution of the variab le x  that

1)()()( 21 =∞+∞=∞ FFF . Hence 
)(1)( 21 ∞−=∞ FF .                 (1) 

It is known[14], that the step function can have a finite 
number of steps, for example, n  or an infinite number of 
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steps, but necessarily countable. Therefore, the component 
)(1 ∞F  belongs to a countable set of rational numbers and 

can take values in the interval[0,1]. Let mnF /)(1 =∞  where 
n  and m  - integers with mn ≤ . 

Into an infinite number of steps tends to its maximum 
possible value of the countable ∞=→ mn . In this case, a 
discrete component tends to its maximum value 1)(1 =∞F
and the continuous component tends to its min imum value

0)(2 =∞F . Since when the number ∞=ω   of breaks in the 
step function equal to an infinite countable set of values, for 
all ω  the distribution function continuous component

0)(2 ≡ωF . Theorem 3 is proved. 
Thus, the probability distribution function of angular 

frequency has only a discrete component, containing an 
infinite but countable set of stairs. In this case, it contains no 
nonzero continuous components. 

3. Representation of Correlation 
Functions and Processes 

In this section we repeat the well-known findings of 
Wiener[7] to represent the correlation functions and the 
known output representation for a random process and 
Cramer[2] with the difference that we use is not anticipated 
by the authors properties for the angular frequency and its 
distribution function, as proved above properties. 

Corollary  1 is of theorem 3. If the distribution function of 
the random variable contains a step function with an infin ite 
countable number of steps, then the Lebesgue measure, 
generated by this distribution function contains only discrete 
measure. Therefore, the components of the 
Lebesgue-Stieltjes measure on a continuous non-existent. 

Since the angular frequency ω  is not a continuous 
variable, the function )exp( tjω  of the variable ω  is not 
continuous. Fourier-Stieltjes integral is defined only for 
continuous functions[14]. Since this condition is not fulfilled, 
instead of the Riemann-St ielt jes integral must be taken 
Lebesgue-Stieltjes integral[11], as did Norbert Wiener 

∫∫
+∞

∞−

+∞

∞−

== )()exp()exp()( ωωµω dFtjdtjtR F ,  (2) 

where Fµ - the measure generated by the distribution of 
the random corner frequency )(ωF  on a subset of 
transcendental numbers ∈ω T . 

Known[11], that in  cases with a discrete measure Fµ  of 
the Lebesgue-Stieltjes integral (6) leads to no integral 
concepts defined in the space of almost periodic functions 

∑
+∞=

−∞=
=

k

k
kk htjtR )()exp()(1 ωω ,               (3) 

where )( kh ω - at a frequency jump )(ωF  function kω . 
Submission of a random process differs from the 

representation of the correlation function so that the integral 

representation (2) instead of the distribution function )(ωF
uses a random complex continuous with bounded variation 
with zero mean and orthogonal increments spectral process 

)(ωζ [2] 

∫
+∞

∞−

= )()exp()( ωζωξ dtjt .             (4) 

It is corollary 2 o f Theorem 3. It  is known[14], which the 
function of bounded variation in  a certain way is the sum of 
functions of the jumps and the amount of continuous 
distribution functions. Therefore Theorem 3 is valid not only 
for the non-decreasing function of probability apply, but also 
for functions with limited modifications. 

It is corollary 3 of Theorem 3. Since any function of 
bounded variation is the difference between two step and the 
difference of two continuous distribution functions[14], the 
function of bounded variation of the angular frequency 

)(ωζ , which does not contain continuous components, can 
generate only a discrete measure )(ωζµ dF = . 

Function )exp( tjω  of the variab le ω  contains an 
infinite countable set of discontinuity points. Therefore, for 
integration into the mapping (4) must be taken 
Lebesgue-Stieltjes integral. By corollary 3, Embedding 
theorems 3 Spectral process )(ωζ , which contains an in fin ite 
countable set of discontinuity points, can produce only a 
discrete measure )(ωζµ dF = . Known[11] that at least a 
discrete integral representation (4) becomes complex Fourier 
series, defined in the Hilbert space of almost periodic 
functions of Bohr ),(2 +∞−∞B  

( ) ( ) exp( )
k

k k
k

t C j j tξ ω ω
+∞

−∞

=

=
= ∑ ,           (5) 

where kω - the point of tears. 
Our representation for correlation functions (3) and for 

stationary random processes (5) are differ from the known 
representations received by Wiener and G. Kramer. First, a 
random process and its correlation function do not belong to 
Hilbert space ),(2 +∞−∞L  and the Hilbert space of almost 
periodic functions ),(2 +∞−∞B . In this space integral of the 
square of the random process does not diverge. Second, a 
stationary random process and its correlation function has 
only discrete spectrum. In this theoretical study are 
consistent with empirical studies E. Slutsky. 

4. Functional Space for Random 
Stationary Processes 

We shall define a functional space for random stationary 
processes with d iscrete spectra on the example of the object 
control, containing the l  inputs and d  outputs. It is 
believed that a mult i-d imensional control object allows dl ⋅  
an approximate description of the dynamic performance of 
control channels in a class of linear stationary models. 
Original raw data presented in the form of single realizations 
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of random nonergodic processes only with discrete spectra, 
which simultaneously observed (recorded) on the inputs 

)(~ txiq  and output )(~ tyip  of control object, where 

,...3,2,1=i - number of implementation q ],1[ l∈ - the 
number of input ],1[ dp∈ - output number. Instead of 
accurate baseline data )(txiq  and )(tyip can be observed or 

synchronous writes only approximate data, += )()(~ txtx iqiq

)(tniq and += )()(~ tyty ipip )(tmip  in which exact 

components distorted by random noise or additive 
qiq Ntn ∈)(  and pip Mtm ∈)( . 

Each implementation of approximate in itial data belongs 
to the Hilbert space of almost periodic functions. There are 
various generalizat ions of almost periodic functions[15]. We 
will consider such control objects, whose dynamics obeys 
the laws of classical mechanics, in particu lar, second order 
differential equation of Newton, for example, in the form of 
cÿ(t) = f(t) , ÿ(t) - the second derivative, for example, the 
output signal , f(t)  - force. According to the known 
existence theorem[16] function ÿ(t), f(t)  must be 
continuous. In many cases[16] the function f(t)  is the 
Fourier series. Since the functions ÿ(t), f(t) are continuous 
functions, the Fourier series for these functions are 
convergent series in the known space[17]. In the Hilbert 
space of almost periodic functions in the sense of 
Besicovitch each element appears to be convergent Fourier 
series[15]. Therefore, we assume that each component of the 
approximate init ial data is elements of the Hilbert space of 
almost periodic functions in the sense of Besicovitch

),(2 +∞−∞B . 
We consider the ergodic properties of random processes in 

this space. Let the stationary random process x(t)  with 
bounded non-zero expectation E{x(t) } = m belongs to the 
Hilbert space of almost periodic functions in the sense of 
Besicovitchx(t) ∈ B2(−∞ , +∞). It is known[12], that in this 
space, the notion of average 

M{xi (t) } ≡ limT→∞
1

2T
∫ xi (t) dt

T
−T , 

where i - number of implementation. 
Known ergodic theorem Birkhoff - Khinchin proved that 

for non-Hilbert space of integrable functions on Riemann[2], 
that is, for the space  L1(−∞, +∞) . This theorem is 
generalized to the Hilbert space of almost periodic functions 
in the sense of Besicovitch. 

It is theorem 4. Suppose that, in general, a  stationary 
random process belongs to the set of random processes 
xi (t) ∈ Xm  with limited non-zero expectationE{Xm } = m. If 
a random stationary process is an element of the Hilbert 
space of almost periodic functions in the sense of 
Besicovitch, then with probability 1, the average value of 
any implementation of this set Xm  equal to the mean 
stationary random process. 

It is proof. Every realization of a random process from a 
variety of xi (t) ∈ Xm  = {xi (t) ∈ Xm : E{Xm } = m } can be 
represented as xi (t) = m + x�i (t) , where x�i (t) - centered 
stationary random process. Each cantered stationary random 
process that belongs to the Hilbert space of almost periodic 

functions in the sense of Besicovitch is convergent 
trigonometric series[4] 

x�i (t) = � (ai (ωk )cos(ωk t)
k =∞

k =1
 

+ + bi (ωk )sin⁡(ωk t)),            (6) 
where ωk > 0.  

It is M{xi (t) } = E{Xm } = m   since with probability 1, 
the average value of a centered random process is zero. It 
follows that a stationary random process with discrete 
spectrum has the ergodicity of the first order[1]. Theorem 4 
is proved. 

We show that the second and mixed  moments, e.g., 
centred random stationary processes belonging to the Hilbert 
space of almost periodic functions in the sense of 
Besicovitch, Ergodic properties of second order do not 
possess. Let x�i (t) ∈ Xρ , where Xρ  - the set of almost 
periodic functions by generating a correlation function of a 
certain species[4] 

Rx (τ) = ∑ E{Ci
2(ωk )}cos⁡(ωkτ)k =∞

k =1  ,          (7) 
where E{Сi

2(ωk )} = E{ai
2(ωk )} + E{bi

2(ωk )} .  
The operators display the space B2(−∞ , +∞)  into 

itself[12], because it is completely continuous operator of 
convolution type[12]. Let the operator equation of 
convolution type Axi = zi  kernel is generated by a function 
of  xi (t− τ) . In this case, we find that 

zi (τ) = M{xi (t − τ)xi (t)} =               (8) 

= � Ci
2

k =∞

k =1
(ωk ) cos(ωkτ), 

This shows that the stationary processes that belong to the 
Hilbert space of almost periodic functions in the sense of 
Besicovitch, do not possess the second-order ergodicity 
asRx (τ) ≠ zi (τ).  

The exact component of the input signal generates a 
forced movement control channels. Noise, distorting the 
exact component of the input signal, no effect on the forced 
movement of the control channels. The output signals 
induced motion  is d istorted by other noise not associated 
with precise input to any obstacle that distorts the exact input. 
Interference and accurate random processes are of different 
nature. If the components are the exact image and inverse 
image of the observed signals of linear time-invariant 
operators, then the interference is linearly independent and 
therefore uncorrelated processes. In the theory of random 
processes produce correlated and uncorrelated random 
processes. Uncorrelated random processes in the sense of the 
conditions 0}{ =iqiqnxE , 0}{ =iqipnyE , 

0}{ =ipipmyE , 0}{ =ipiqmxE , 0}{ =iqipnmE , 

for all qi,  and p  where {.}E - the symbol of averaging 
over infinite-d imensional set pieces implementations. If, for 
example, the control channel between the input and output q 
p is the control channel, the exact components have a 
nonzero cross-correlation  E{xip yiq }≠ 0 . In the theory of 
random processes, these differences in the correlat ions used 
to combat interference. To check that these conditions are 
necessary baseline data in the form of sets containing an 
infinite number of realizations. It is practically impossible. 
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We consider the conditions under which, firstly, the 
primary source data given in the form only isolated 
implementations and, secondly, the single realizat ion of 
random processes do not possess the ergodic property. 
Receipt of secondary source data in the form of deterministic 
correlation  functions in such circumstances is impossible. 
Therefore, we use the condition of linear independence of the 
individual realizations, under which condition is 
uncorrelated to be checked on a set of implementations, is 
always satisfied. 

Consider the equation for the submission of a centered 
random process (6). In this expression, the amplitude of 
random ai (ωk )  and bi (ωk )  determin istic harmonic 
oscillations with frequencies ωk  generates lots of random 
processes. From th is expression it fo llows that all of a  given 
set of random processes is conceived as a whole because it is 
the linear hull spanned by a deterministic  basis of harmonic 
functions whose frequencies coincide with frequencies of the 
harmonics of the correlat ion function  Rx (τ) . The set of 
frequencies of harmonic components of the observed signals 
is a deterministic  secondary source data. The main d ifference 
between the proposed methods for dealing with noise from 
the known method is that as secondary informat ion is not 
used correlation functions, and set the frequency of the 
harmonic components. It turned out that the properties of 
systems of sets of frequency harmonic components of the 
observed signals depend on the correlat ion (linear 
dependence) constitute the observed signals. 

5. Properties of Independent Random 
Processes 

Distinguish mult idimensional control objects with linearly  
dependent (correlated) and linearly independent 
(uncorrelated) input actions. First, consider the control 
objects with linearly  independent input actions. You can 
specify a number of linearly independent systems of sets of 
random processes. In particu lar, a system of linearly 

independent sets of exact input actions 
1

q l

x q
q

S X
=

=
=


 where 

qiq Xtx ∈)( - exact sets of random input processes (impacts). 

Elements qiq Xx ∈ are linearly  independent if the equality 

021 =+⋅⋅++ ilii xxx γβα  follows from the equality 
0==⋅⋅== γβα  for all  i . 

System of linearly independent sets of exact input signals 
and additive noise, distorting the accurate baseline data

1 1 1

q l c l b d

xnm q c b
q c b

S X N M
= =

= = =

=
=
  

, where cic Ntn ∈)( , 

bib Mtm ∈)( . Each set of a lot of thought as a whole due to 

the fact that xnmS  averaging over the set of products 
centered random processes, such as 

=−=∈ )}()({:{)( txtxExXtx iqiqiqqiq τ  

)(τxqR= . 
Generates a deterministic correlation function  
In systems of sets, for example, xnmS  introduce a scalar 

product for complex centered random functions 

qiq Xtx ∈)(  and pip Xtx ∈)( ,
 for example, 

),(( txiq ))(txip
1 ( ) ( )

2lim
T

ip
T T

iqx t x t dt
T

+

→∞ −

≡ =∫
)}()({ txtxM ipiq= , 

where xip (t) and  x� ip (t) - complex conjugate functions. 
It is known[12] that uncountable harmonic basis has a 

non-separable complex Hilbert  space of almost periodic 
functions ),(2 +∞−∞B . In this space, each vector is only a 
countable sum of nonzero orthogonal projections. Therefore, 
we assume that, for example, xS ⊂ ),(2 +∞−∞B  is a 
separable subspace of complex functions. In this regard, 
given the above mathemat ical expression is translated into 
the complex plane. 

By hypothesis, any two simultaneously recorded sale 
qiq Xtx ∈)(  and pip Xtx ∈)( must be linearly independent 

for all pq ≠ . It is known[11], if the vectors qiq Xtx ∈)(  and 

pip Xtx ∈)( are orthogonal, then they are linearly 
independent. This implies another condition of linear 
independence of random realizations of random processes (

0))(),( =txtx ipiq , where )(),( txtx ipip - complex conjugate 

functions. 
From formula (6) shows that for each i - th realization of 

a random process, belonging to a particular set of random 
processes qiq Xtx ∈)( , exists regardless of the number of 
realization of certain determin istic set of frequencies of 
harmonic components xqkq Ω∈ω  in the representation of 
random processes. Relat ionship between the sets of 
realizations x

q
qqiq SXXtx =⊂∈



)( and the system of 

multip le frequencies x
q

xqxqkq Ω=Ω⊂Ω∈


ω , generating a 

basis of subspace establishes qX the following lemma 1. 
It is lemma 1. Given a fin ite or countable system of sets, 

for example, 


q
qx XS =  random stationary in the broad 

sense of nonergodic processes with discrete spectra 
qiq Xtx ∈)(  where ,..3,2,1=i  number of implementation, 

,...3,2,1=q  set number. Each set qX  system of sets xS  
generates a correlation function of the general form 

2

1
( ) ( ) cos( )

k

q kq kq
k

R τ γ ω ω τ
=∞

=
= ∑  where



q
xqxqkq Ω⊂Ω∈ω , 2

1
( )kqk

k

ωγ
=∞

=
< ∞∑  for everyone q . If 
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the system sets xS  is the union of linearly  independent sets 
of random processes, the system sets the angular frequency 



q
xqx Ω=Ω  generating orthonormal trigonometric basis 

for each set of random processes qiq Xtx ∈)( is a semiring. 
It is proof. Rewrite the orthogonality condition for the 

realization of random processes in complex form 

{ ( ) ( )
k m

ikq md
k m

iM C j C jω ω
=+∞ =+∞

=−∞ =−∞
− ∗∑ ∑          (9) 

0)})(exp( =−∗ tj mdkq ωω
 

where ( ) exp( ) ( )
k

i kq kq iq
k

C j j t x tω ω
+∞

=−∞

=
=∑ - randomly 

chosen realization of a random process in a complex form, 

( ) exp( ) ( )
m

md md id
m

iC j j t x tω ω
=+∞

=−∞
− − =∑  - other 

arbitrarily chosen the complex conjugate of realizat ion of a 
random process )(txid , ,...3,2,1, =dq . 

Condition (9) holds for all values of products of 
coefficients )( kqi jC ω ( )mdiC jω− , if for all dq ≠  and all 

,...3,2,1, =mk  0≠− mdkq ωω . This condition is always 
satisfied if the system of sets of angular frequency 

1

q l

x xq
q

=

=
Ω = Ω


 is a semiring, which suppress the pair wise 

for all dq ≠  is empty is empty ∅=ΩΩ
 xdxq [11]. 

Lemma 1 is proved. 

6. Properties of Linearly Dependent 
Random Processes 

In the multidimensional control objects on the arbitrarily  
chosen output synchronously with the input processes  

)(~ txiq  
there is an output random process 

1
( ) ( )

q l

ip iq qp ip
q

y t A k m t
=

=
= +∑    ,        (10) 

where the operators iqA  are generated by precise linearly 

independent random components of the input signals )(txiq . 
From equation (10) we find randomly selected dedicated 

channel controls for which the image and preimage 
associated operator equation )(tykA iqpqpiq = . Property for a 

set of orthogonal frequency of the harmonic basis for the 
dedicated control channel is defined by lemma 2. 

Lemma 2. If a linear stationary operator of convolution 
type )(tykA iqpqpiq = , defined in the Hilbert space of almost 

periodic functions in the sense of Besicovitch ),(2 +∞−∞B , 
generated by a stationary nonergodic process with a discrete 
spectrum ⊂∈ qiq Xtx )( ),(2 +∞−∞B , where ,..3,2,1=i - 

number of implementation, lq ...3,2,1= - set number, 

shows the weight function ),()( 2 +∞−∞∈Bkqp τ , where

dp ,...3,2,1=  on the set of processes piqp Yy ∈

),(2 +∞−∞⊂ B , the n-dimensional countable set of 
frequencies xqcq Ω∈ω , ,,...3,2,1 nc =  generated by a 

countable-dimensional harmonic basis in a separable 
subspace qX and n-dimensional countable set of 

frequencies ypcp Ξ∈ν , nc ,...3,2,1= , generated by a 
countable-dimensional harmonic basis in a separable 
subspace piqp Yty ∈)(  are equal ypxq Ξ=Ω . 

It is proof. The proof is an obvious consequence of the 
properties of completely continuous operators, the normal 
form. It is known[12] that in a Hilbert space ),(2 +∞−∞B , 
the operator of convolution type

)()}()({ tyktxMkA iqpqpiqqpiq =−≡ ττ , which completely 

continuous normal type operator is mapping ),(2 +∞−∞B  
into it. 

By definition, each basis vector is transferred by the 
operator of a normal form with a coefficient equal to the 
eigenvalue[17]. It follows that the orthonormal system of 
basis functions and transform the image of the same. 

Known[17] that each eigenspace corresponding nonzero 
eigenvalue of a completely continuous symmetric operator 

iqA  is finite. The angular frequency ypxq Ξ=Ω has n
-dimensional size. Lemma 2 is proved.  

7. System with Independent Input 
Actions 

It is theorem 5. Given mathematical model of a 
multid imensional linear stationary control object that 
contains mult iple inputs and multip le outputs. Each output is 
additively associated with each input through the control 
channel. The control channel is the operator of convolution 
type, defined in the Hilbert space of almost periodic 
functions ),(2 +∞−∞B  accurate input random process and 
the weighting function given by the number input and output 
number. Each input accurate and precise output processes 
are distorted by various additive noise and form approximate 
the original data. The exact components of the process and 
distort their noise is uncorrelated between a stationary 
nonergodic random processes with discrete spectra, 
belonging to the Hilbert  space of almost periodic functions in 
the sense of Besicovitch ),(2 +∞−∞B . If the system sets all of 
the approximate input signals is linearly  independent random 
processes, then all sets of projections on harmonic bases 
approximate the input and output processes can be 
approached to allocate the exact components of the 
projection of input actions and projection of the exact 
components of the output processes for each control channel. 

It is proof. Arbitrarily select the input q  on which there 
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is an exact realization of a random process, distorted by an 
additive uncorrelated noise ).()()(~ tntxtx iqiqiq +=  

According to Lemma 1 the set of frequencies of harmonic 
components (projections) in  the representation of this 
random process 

 nqxqxq ΩΩ=Ω
~  is a semiring

∅=ΩΩ
 nqxq . 

Each output is connected to the input signals according to 
the formula (10) in h igh-dimensional objects of control. 

The observed random process
 

q
pqpip MYy ∈~ , where

qpqpiq YkA ∈ , pip Mm ∈  is an element of a system of 

linearly independent sets. By  Lemmas 1 and 2, the system 
sets the frequency of the harmonic components (projections) 
of a random process observed at the output p , 

 mp

lq

q
xqyp ΩΩ=Ω

=

=1

~  is a  semiring 


∅=ΩΩ mpxq  for 

all q ,


∅=ΩΩ xdxq  for all dq ≠ . 
We find the source data as the intersection of the sets of 

frequencies 
 xqyp ΩΩ ~~

 approximate the original data, the 
observed input q  and p  output, 



=ΩΩ=Ω∈ xqypqpkqp
~~ν

 

1
( ) ( )

c l

xc mp xq nq
c

=

=
= Ω Ω Ω Ω =
   

 

xqΩ=
 at qc = , 

where nk ,...3,2,1= . The resulting intersection of the 
frequencies coincides with the set frequency, which 
determines the harmonic basis for accurate component of the 
input to the q -th input. In  the limit  of infinite observation 
time, you can find the projection )( kqpiq jx ν

))exp(),(~( tjtx kqpiq ν−=  exact spectra of the first 

implementation of the input )(txiq  at the inlet q  and the 
exact components of the projection of the second 
implementation )( kqpiqp jy ν ))exp(),(~( tjty kqpip ν−=  , 

observed at the output p , the harmonic basis, determined 
by a set of frequencies xqkqp Ω∈ν  accurate projections on 

the background of additive noise )(tniq and )(tmip . 
Theorem 5 is proved. 

Dedicated accurate pro jection of input and output 
components of the processes on the set of input data can be 
used to address a number of applications in the presence of 
interference. If we solve the problem of identification of 
dynamic performances, given the relationship )( kqpiqp jy ν =

)()( kqpiqkqpqp jxjw νν , You can find the frequency 
transfer function of the control channel between the q -th 
entrance and exit to p -th )( kqpqp jw ν  on the set of 

frequencies xqkqp Ω∈ν . If we solve the problem of indirect 

measurements, such as the acceleration input q  against the 
background of additive noise )(tniq , then filtered from the 
noise )(tniq  , i - i implementation of acceleration is given 

by ( ) exp( )( )
k n

iq iq kqp kqp
k n

x t x j j tν ν
=+

=−
= ∑  . 

Apparently, the processes with d iscrete spectra are d ivided 
into periodic, non-periodic and almost periodic processes. If 
the process is periodic, there exist fin ite values of time 
n T, n = 1,2,3, . .,  where we have, for example, 
processx(t) = x(t + nT). Periodic process is predictable. It 
suffices to find the min imum value of the final periodT. The 
frequency of the first harmonic and other frequency 
harmonics in the Fourier series are comparab le (the 
frequency of the first harmonic is a measure for the multip le 
frequencies of the other harmonics).  

The main difference between non-periodic processes is 
that the frequencies (periods), the harmonics are 
incommensurable. For each harmonic is necessary to 
determine the angular frequency, which is expressed in 
non-periodic infinite decimal. Instrumental and 
methodological errors limit the accuracy of the frequencies. 
Find the exact mathematical model of the observed 
non-periodic process is impossible. Therefore, it is 
unpredictable throughout the time axis and on this basis is a 
model of a random process. 

Almost periodic processes occupy an intermediate value. 
Frequency harmonic components can be set arbitrarily. 
These may include harmonic components with multip le and 
disparate frequencies, i.e. contain periodic and a periodic 
components. Due to the non-periodic component of almost 
periodic processes are unpredictable, as well as non-periodic 
processes. 

There are various methods for determining the 
approximate frequency of the harmonic orthogonal basis of 
the observed random processes, such as input signals

 nqxqxq ΩΩ=Ω
~ . Among them are well known method of 

determining the amplitude of the current spectrum[18]. 
Seeking an array  of frequencies is determined by the 
frequency at which the current amplitude spectrum has a 
local maximum. 

8. System with Correlated Input Actions 
Described the frequency control method of noise is 

applied only in cases where all input actions are linearly 
independent. Moreover, for all inputs must be executed 
Conditions ∅=ΩΩ

 xdxq
~~  at xdxq ≠ , ,..3,2,1, =dq l . If 

at least one pair of different inputs of this condition is not 
satisfied, then it indicates that the test object is an object of 
control with correlated input actions. 

Degree of connection between the exact components of 
the input signals in real form observed on different inputs, 
for example, xq  and xd  can be estimated by the cosine of 
the angle between them cos�xq , xd �[11]. In this case, there 
are three cases. If �cos⁡(xq , xd )� = 1 , that the signals 
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observed at the entrances xq  and xd , coincide up to sign. If 
after determin ing the proper dimension of the object controls 
the number of entries it appears that all remain ing inputs, the 
condition cos�xq , xd � = 0 , this indicates that the condition 
of theorem 5 ho lds. 

In real terms, as a rule, fo r all inputs or a subset of inputs, 
the condition �cos⁡(xq , xd )� < 1 | for dq ≠ , which indicates 
the correlation of the input signals. In this case, the above 
method of dealing with noise is not applicable. The described 
method of interference mit igation can be applied if, instead 
of the original system with correlated effects using the 
subsystem with uncorrelated input actions. Based on 
theorems 6 a subsystem can be obtained. 

It is theorem 6. If the system is real accurate component of 
the input signal is a system that satisfies �cos⁡(xq , xd )� < 1 
when q ≠ d for all inputs or a subset of input signals, and 
for another subset of the input signalscos�xq , xd � = 0, then 
the original system input signals that are distorted correlated 
and uncorrelated noise, we can distinguish linearly 
independent subsystem of input signals, distorted only by 
additive uncorrelated noise. 

It is proof. Change the previously used model inputs so 
that would condition| cos�xq , xd �| < 1  holds for all  xq ≠
xd  . Such a system of sets of input actions denoted as  

1

q l

qxnf
q

S X
=

=
=

 



, 

where 
==∈ )(:)({)( txtxXtx iqiqqiq







 

1
( ) ( ) ( ), }

c l

iq iq iqc
c

x t n t f t c q
=

=
= + + ≠∑  

)(txiq  - the exact  components of the input signal and the 

random additive noise qiq Ntn ∈)(  at the input of q,
 )(tfiqp

- i - th realizat ion of the random correlated noise in the form 
of a stationary random function of communication, which  is 
also observed at different entrances q and p .  

All the components of each realizat ion of random 
processes are linearly independent (uncorrelated) with each 
other. Therefore, only the stationary random processes 

)(tfiqp  that occur at different inputs q  and p  generate 
non-trivial cross-correlation function

)()}()({ ττ fqpipiq RtxtxE =− 



. 
The set of frequencies of harmonic components of random 

processes at each input




lc

c
fqcnqxqxq

=

=
ΩΩΩ=Ω

1
,

lq ,...3,2,1= , for all qc ≠ . The set of frequencies of 
harmonic components of the function of communication

fqpΩ  observed between the inputs p  and q  are by 

definit ion the intersection of sets




=ΩΩ xqxp fqpΩ . 
Obtain the system sets the corner frequency of the 

harmonic components of all the functions of communication,

 fqpF Ω= lpq ,...3,2,1, =  for all qp ≠ . For an arbit rarily  
selected input q  will find the difference[11] systems of sets 
of angular frequency 

=Ω Fxq \


1
\

c l

xq nq fqc
c

=

=
Ω Ω Ω
 

F = 

xnqnqxq Ω=ΩΩ=
~

             (11) 
Performing  the operation (11) fo r all lq ,...3,2,1=  obtain a 

system of sets of frequencies 


q
xnqΩ

~  which is a semicircle, 

as 


∅=ΩΩ xnqxnp
~~  for all qp ≠ . Thus, applying the 

subtraction (11) to the original system input correlated 
effects xnfS



 You can select from it a different system xnS~  
with uncorrelated effects, which is determined by the system 
sets the frequency of all harmonics )(~

 nq
q

xqxn ΩΩ=Ω  

exact components of linearly independent input signals 



q
xqΩ  and all harmonic frequencies of additive noise 



q
nqΩ . Theorem 6 is proved. 

The method of identificat ion with uncorrelated effects 
generalized to the case, the code input signals are correlated 
with each other on the basis of  Theorem 6. 

9. An Example of Solving the Problem of 
Identification 

The proposed method of dealing with noise is used in 
solving the problems of identification of dynamic 
characteristics of the multid imensional control objects in  a 
class of linear stationary models. In  particu lar, the init ial data, 
observed in the regime of one automatic landing aircraft 
(class IL -96), the mathematical model of a control channel 
in a class of linear stationary models between input  x1(t) - a  
given pitch, at the input-wire control system for pitch, and 
output y(t)  - the actual angle pitch plane. On the pitch is 
affected by other inputs: the position of thrust lever x2  (t), 
the angular position of the flaps x3(t) and angular position 
of the stabilizer x4 (t). Synchronous records listed the output 
and input signals were provided in the form of 274 discrete 
samples in 0, 5 sec. (ZAK_51_IL_V30). Inputs x3(t)  and 
x4 (t) signals are relay type, derivatives of which are 
described by finite functions on the whole line in the form of 
rectangular pulses. As discussed above (Section 4), the 
proposed method is applied to random processes, which have 
a continuous second derivative. For signal relay type, this 
condition is not satisfied, making it  difficult for the solution 
of problem identification through x3 (t) - y(t)  and x4 (t) - 
y(t).  

Known method for solving the problem of identification 
of the dynamics of multid imensional control systems 
reduces to the solution of integral equations of the first 
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kind[19]. System of equations can be obtained only for the 
control objects for which the number of inputs equals the 
number of outputs. Baseline data are presented in the form of 
autocorrelation functions of all input signals, cross 
correlation functions between all the different inputs and 
cross correlation functions between all input and all output 
signals. Observed signals are stationary random fragments in 
the broad sense of processes that do not possess the ergodic 
property. This fact excludes the receipt of the correlation 
functions by averaging over time of indiv idual 
implementations. Obtaining the correlation functions over 
the set of realizations is hampered for the reason that it is 
impossible to perform many aircraft landings in the same 
conditions, such as weather. In addition, all aircraft like 
objects have a dimension of control over all inputs greater 
than that of all the exits. For these reasons, the task set cannot 
be solved by a known method. 

The task of identifying the dynamic characteristics of the 
channel management has been solved by a new method 
proposed in the fo llowing  sequence. First by local maxima of 
the current amplitude spectra of the observed signals were 
determined frequency harmonic components simultaneously 
observed signals, which are secondary source data? 
Received the original system sets the frequency of the 
harmonic components of input and output signals⋃ Ωxii ,Ωy , 
where Ωxi  - set the frequency of the harmonic components 
of input signals on the i -th entry,i = 1,2,3,4 Ωy  - set the 
frequency of the harmonic components of output signal y(t).  

Theorem 5 implies that if the system sets the approximate 
data observed at all entry  points is linearly independent 
random processes, then all sets of projections on harmonic 
bases approximate the input and output processes close, you 
can select the exact components of the projection of input 
actions and projection of the exact components of output 
processes. Typically, the system sets the input signal does 
not satisfy Theorem 5. Therefore, by subtraction of sets (11) 
of the resulting system sets the frequency of the harmonic 
components of input signals is a subsystem of the sets of 
frequencies only independent of the harmonic components of 
input signals, which are tertiary source data. Software, this 
operation is performed as follows. Chosen criterion under 
which two frequencies are coincident. If |ωxkp  –ωxmq | ≤ δ , 
whereδ = 2π/T, T -duration of implementation, for∀(xk ≠
xm, q∈1,rm, pϵ[1,rk],pϵ[1,rk], rk− dimension array of 
frequencies Ωxk , rm  - the dimension of the array of 
frequencies∪ i Ω�xi , k, m ∈ [1,4]  then the frequencies are 
coincident and are removed from each source array 
frequency input signals. The array  of frequencies ∪i Ω�xi  it 
turns out, usually with smaller dimensions in the result. For 
example, the original dimension of the array of frequencies 
at the first entrance was r1 = 137 ,  and the dimension of the 
array of frequencies independent of harmonic components 
on the same first entry was r̅1 = 32. 

By lemma 2, for a g iven control channel x1 − y is defined 
by a set of frequencies of harmonic components that generate 
and describe the forced motion in the channel controls on the 
criterion that the frequencies of harmonic components of 

input and output signals of the selected channel management 
Ωx1 = { ωρ = ωρ = ωi ∈ Ωx1y : |ωi − ωk | ≤ δ, 
∀ωi ∈ Ω�x1,∀ωk ∈ Ωy  , i ∈ [1, r̅x1], k ∈ �1, ry �} 

where ry = 94  - the dimension of the resulting array of 
frequencies harmonic output Ωy , ρ ∈ [1, d] , where d - the 
dimension of the matching frequency harmonic components, 
generators, and describing the forced motion in the channel 
x1 − y.  In this example, it was found that d = 13. A subset 
of frequencies is Ωy  quaternary source data. 

For all received frequencies ωρ ∈ Ωx1y  determined by  
the Fourier exponents of the input signal Sx1�jωρ� =
a�ωρ� + jb�ωρ �  and the output signalSy  �jωρ� = γ�ωρ� +
jβ(ωρ ). At the lowest frequency ωρ1  sets of 
frequencies   ωρ1 ∈ Ωx1y  astatizma determines the order in 
the system for the control action. For what is the value of the 
frequency transfer function at the lowest frequency 
W�jωρ1� = Sy (j ωρ1)/Sx (jωρ1) = P + jQ   .  Depending on 
the position of the point W�jωρ1�  in the complex plane is 
determined by the order astatizma on the control action. 
Usually, the specified  point can be located in  the first, second 
or third quadrant of the complex plane, which corresponds to 
the zero, first or second order astatism pa [20]. 

Obtained by Fourier exponents and order astatism (in this 
example pa = 1) can make a number of systems of algebraic 
equations on the 2 nd to the d - th order, which are the 
Fourier transforms of systems of linear ordinary differential 
equations with unknown constant coefficients of the 2 to d  - 
order. For example, a  system of algebraic equations, given 
the current q -th order, where2 ≤ q ≤ d, is represented as 

∑ (jωp 1)k+p ak =q
k =0 Tk+p a Sy�jωp 1� = Sx1(jωp 1),  
∑ (jωpc )k +p ak =q

k =0 Tk+p a Sy�jωpc � = Sx1 (jωpc ),  
where  

c∈ [1, q] . 
From this system of equations should be two systems of 

equations for real and imaginary components. Solving these 
equations successively from 2 to d-th order with respect to 
coefficients Tk+p a , we find that the maximum order of the 
system of equations q = qma x , at which the system of 
equations is consistent. To solve this problem it turned out 
that the dynamic characteristics of the selected channel 
management, taking into account the elastic strain aircraft 
structure can be described as a first approximat ion of 
ordinary differential equations 9-th order with constant 
coefficients: T0 = 0; T1  =- 2,8531; T2  =- 14,5651; T3 =- 
5,4709; T4  =- 3,9165; T5  =- 1,0721; T6 =- 0,2584; T7  =- 
0,06054; T8  =- 0.004845; T9 =- 0,001023. In aerodynamics 
there is a rule for a given character and the actual pitch of the 
aircraft[21]. Therefore, the coefficients have negative signs 
for the differential equation. 

In a similar way was obtained a differential equation for 
the other control channel, which determines the effect of 
engine power control on the pitch. More information about a 
new method for identification of dynamic characteristics is 
published on http://asvt51.narod.ru. 

The obtained differential equations in two-channel pitch 
control allows the system to find the control of the aircraft 
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taking into account the elastic deformation the airframe in 
the space of states. 

10. Conclusions 
1. In the modern theory of random wide-sense stationary 

processes are the fundamental results of empirical research 
on E. Slutsky and the results of theoretical studies of A. 
Khintchine and Wiener respect to the representation of 
correlation functions of random stationary processes. 
Representation of themselves random stationary processes in 
a broad sense have been derived from empirical studies E. 
Slutsky and as a result of theoretical research in the papers of 
Kolmogorov, Cramer and other scientists. In theoretical 
studies suggest that, firstly, the independent variable is the 
angular frequency is a continuous variable. Secondly, the 
probability d istribution function of angular frequency 
includes a step and continuous components. It turned out that 
the results of empirical studies contradict the theoretical 
studies. It was conjectured that the contradictions are the 
result of incorrect assumptions. It turned out that theoretical 
studies were performed  at incorrect  assumptions. Following 
the theoretical studies with reasonable assumptions, it turns 
out that random stationary in the broad sense has a unique 
representation as a Fourier series, defined in the Hilbert 
space of almost periodic functions that have only a discrete 
spectrum, has the ergodic property of the first order and has 
no ergodic property of the second order. In this empirical and 
theoretical studies do not contradict each other.  

2. To combat the uncorrelated noise in Wiener instead of 
primary source data - observable input and output random 
processes using secondary source data in the form of 
deterministic correlation functions of random processes. Due 
to the non-ergodicity of random processes, second order, this 
method of dealing with noise is limited in  the application of 
those rare cases where there is a possibility of correlation 
functions by averaging over multip le realizations, and the set 
of processes generated by the forced motion in the channel of 
the control object is not distorted by even small interference. 
In this regard, has been tasked to develop a method for 
interference mit igation in  circumstances where the original 
data given in the form of single realizations of random 
nonergodic processes.  

3. A new method for interference mit igation, based on the 
separation of double frequency harmonic components of the 
sets of bases observed signals of multid imensional control 
systems. As a secondary determin istic data are encouraged to 
use the deterministic set of harmonic frequencies of bases 
observed at the inputs and outputs. In many cases the set of 
input signals is correlated with each other. This leads to a 
correlated noise output signals with input signals. To 
overcome this limitat ion is proposed tertiary treatment of the 
original input data. Harmonic frequencies of the sets of input 
signals are removed coincident frequencies. The task of 
identification of dynamic characteristics for dependent input 
signals is reduced to a simpler problem of identify ing the 

dynamic characteristics of the independent input signals. To 
identify the selected control channel used tertiary data input 
signals and the secondary data of output signals. The 
quaternary initial data there is a subset of conterminous 
frequencies between secondary and tertiary init ial source 
data. Quaternary source data contains only a subset of the 
frequencies of harmonic components of accurate baseline 
data. The identificat ion problem and the problem of filtering 
the input and output signals from noise is solved for the 
selected control channel only on a subset of the frequencies 
of Quaternary data.  

4. The described method of dealing with noise is used for 
solving the problems of identification of dynamic 
characteristics of the control channels of multid imensional 
control objects in a class of linear stationary models. Is an 
example of solving the problem of identificat ion of the 
control channel - given pitch angle, at the input-wire control 
system pitch - the actual pitch of the aircraft in the class of 
linear stationary models based on initial data obtained during 
one automatic landing (class of IL-96). Known method of 
solving the problem proved to be ineffective for two reasons. 
Firstly, in the test facility management is not satisfied the 
restriction on the number of inputs equal to the number of 
outputs. At one output simultaneously affect signals 
observed in the four entrances. This eliminates the need to 
obtain a system of integral equations of the first kind. 
Secondly, it is impossible to obtain the correlation functions 
by averaging the random signals to multip le 
implementations. The proposed method of dealing with 
noise in the conditions described above allowed us to obtain 
dynamic response of the control channel in a first 
approximation, taking into account the elastic strain aircraft 
structure in the form of ord inary differential equations 9-th 
order with constant coefficients. The control channel is first 
order astatism. After that, it was decided to identify the 
dynamic characteristics of the other control channel in the 
coordinates - the position of control levers engines - the pitch 
plane. The dynamics of this control channel is described as a 
first approximation, taking into account the effect of elastic 
deformation the airframe ordinary  differential equation of 
fifth order with constant coefficients.  

The informat ion obtained on the differential equations for 
the two channels control the pitch control system allows you 
to build a pitch in the space of states. 
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