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Abstract  This paper discusses solving one of the important equations in Physics; which is the one-dimensional heat 
equation. For that purpose, we use cubic B-spline fin ite elements within a Collocation method. The scheme of the method is 
presented and the stability analysis is investigated by considering Fourier stability method. On the other hand, a comparative 
study between the numerical and the analytic solution is illustrated by the figure and the tables. The results demonstrate the 
reliability and the efficiency of the method. 
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1. Introduction 
Consider the one dimensional init ial-boundary value 

problem  
2α 0 , 0 , 0xx tu u x L t− = ≤ ≤ >    (1) 

with init ial condition 
( ,0) ( )u x f x=                    (2) 

and boundary conditions  
(0, ) ( , ) 0u t u L t= =  for 0t > .        (3) 

This problem is one of the well-known second order linear 
partial d ifferential equation[1-3]. It shows that heat equation 
describes irreversible p rocess and makes a distance between 
the previous and next  steps. Such equations arise very often 
in various applications of science and engineering describing 
the variation of temperature (or heat d istribution) in a given 
region over some time[4]. It can be expressed as the heat 
flow in the rod with diffusion 2α xxu  along the rod where 
the coefficient α  is the thermal diffusivity of the rod and 
L  is the length of the rod[5]. In this model, the flow of the 

heat in one-dimension that is insulated everywhere except at 
the two end points. Solutions of this equation are functions of 
the state along  the rod and the time t . In  the past, this 
problem has been widely worked  over a number of years by 
numerous authors. But it  is still an interesting problem since 
many physical phenomena can be formulated into PDEs with 
boundary conditions. The heat equation is of fundamental 
importance in diverse scientific fields. It is the prototypical  

 
* Corresponding author: 
duygu.donmez@cbu.edu.tr (Duygu Dönmez Demir) 
Published online at http://journal.sapub.org/xxx 
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved 

parabolic partial differential equation in mathematics. In 
probability theory, the heat equation is connected with the 
study of Brownian motion via the Fokker–Planck 
equation[6]. Numerical solutions of those equations are very 
useful to study physical phenomena. One of the linear 
evolution equation which we deal with the numerical 
solution is the heat equation[7].  

In 1946, Schoenberg first proposed the theory of 
B-splines[4]. Recurrence relations for the purpose of 
computing coefficients are given by Cox and de Boor[8,9]. 
The cubic B-splines collocation method was developed for 
Burgers’ equation and used for the numerical solution of the 
differential equations in[10,11]. Recently, spline function 
theory has been extended and developed to solve the 
differential equations numerically  by various papers[12-14]. 
Furthermore some ext raordinary  problems has been 
numerically investigated by finite element methods such as 
Galerkin method, least square method and collocation 
method with quadratic, cubic, quintic and septic B-splines 
[15-17].  

Various techniques of both the cubic spline and cubic 
B-spline collocation methods and their application have been 
developed to obtain the numerical solution of the differential 
equations. They possess some of advantages and are worth 
on using in the numerical techniques. So cubic spline 
collocation procedures exhibits the following the desirable 
features: (1) obtained governing system is always diagonal 
which permits easy algorithms; (2) it provides low computer 
cost and easy problem formulation. The requirement of the 
continuity up to the second degree are guaranteed at the mesh 
points over the domain and the first and second degree of the 
derivatives are direct ly evaluated[7,12,18]. 

In this study the cubic B-splines collocation method is 
used for solving the heat equation (1) subject to (2) and (3) 
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and the solutions are compared with the exact solution[19]. 
For constructing the cubic B-splines finite element method, 
we use collocation techniques as it was extensively used 
in[7,20,21]. In the section two, proposed method is presented 
and it is also given how to apply the collocation method with 
cubic B-splines finite  element technique. In  the section three, 
the stability analysis is investigated considering Fourier 
stability method. Finally, the numerical results and the 
related tables are given in the next section. 

2. Collocation Method 
Let  us consider the domain [0, ]L  that is equally-div ided 

with nodal points jx  such that 

0 10 Nx x x L= < < < =
, i.e ., fin ite elements of length 

1j jh x x+= −  for 0,..., 1j N= − , and also suppose that 

φ ( )m x  to be cubic B-splines at the nodal points mx  for 

1, , 1m N= − +
. Using cubic B-splines φ ( )m x , the 

exact solution ( , )U x t  is approached by an approximation 

( , )NU x t  such that 
1

1
( , ) δ ( )φ ( )

N

N m m
m

U x t t x
+

=−

= ∑      (4) 

where δ ( )m t  is parameter in terms of the time t  for 

1, , 1m N= − +
 to be identified by the boundary 

conditions and the collocation conditions.  
The cubic B-splines φ ( )m x  are defined 
in[19].  

                    (5) 

Considering the approximat ion function (4) and the cubic B-splines defined in (5), the required values of  

and its first and the second derivatives with respect to  at the nodal points are identified in terms of  as 

                                  (6) 

For instance, let us take ,  and  in (1) and (2), respectively. Therefore the prob lem (1) 
subject to (2) and (3) is become  

                                           (7) 
with init ial condition 

                                                (8) 
and boundary conditions  

 for .                                       (9) 
One can obtain the approximate solution for the heat equation namely  

                                                 (10) 
by considering the solution of 

                                     (11) 
where 

                                           (12) 

Here  is a parameter that when it takes the value 0, the scheme is so called forward Euler and also if , then the 
scheme is called Crank-Nicholson, and if , the scheme is so called backward Euler. Then we d iscretize the time 
derivative by means of fin ite difference so we have 

1 2 2 1(1 ) ( ) ( ) 0n n n n
m m xx m xx mU U t U t Uθ α θα+ +− + ∆ − + ∆ =                         (13) 

3
2 2 1

3 2 2 3
1 1 1 1

3 2 2 3
1 1 1 13

3
2 1 2

( ) ,[ , ]

3 ( ) 3 ( ) 3( ) ,[ , ]
1φ ( ) 3 ( ) 3 ( ) 3( ) ,[ , ]

( ) ,[ , ]
0 ,

m m m

m m m m m

m m m m m m

m m m

x x x x
h h x x h x x x x x x

x h h x x h x x x x x x
h

x x x x
otherwise

− − −

− − − −

+ + + +

+ + +

 −


+ − + − − −
= + − + − − −
 −


φ ( )m x mU
x mx δm

1 1

1 1

1 12

( ) δ 4δ δ
3( ) (δ δ )

6( ) (δ 2δ δ ).

m m m m m

m m m m

m m m m m

U U x

U U x
h

U U x
h

− +

+ −

− +

= = + +

′ ′= = −

′′ ′′= = − +

1α = 1L = ( ) sin( )f x xπ=

0, 0 1 , 0xx tu u x t− = < < >

( ,0) sin(π )u x x=

(0, ) (1, ) 0u t u t= = 0t >

0xx tU U− =

1( ) (1 ) 0n n n
t m m mU f f ++ − + =θ θ

2 ( )n n
m xx mf Uα=

θ 1/ 2θ =
1θ =
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Substituting (6) into (13), we obtain the following difference equation system for the variables δ , which has 1n +  
difference equations with 3n +  unknown values as 

1 2 1 2 1 2 2
1 1 1 32 2 2

6 12 6(1 ) (4 ) (1 ) (1 )n n n
m m mt t t L t L

h h h
δ θα δ θα δ θα θ α+ + +

− +− ∆ + + ∆ + − ∆ = + ∆ −          (14) 

where 

1 1 14n n n
m m mL δ δ δ− += + +  , 2 1 1

3 ( )n n
m mL

h
δ δ+ −= −  , 3 1 12

6 ( 2 )n n n
m m mL

h
δ δ δ− += − + . 

Then this set of equations is a recurrence relationship of element parameters vector 1 0 1 1( , , , , , )n n n n n n
N Nd δ δ δ δ δ− += 

. 

Using the boundary conditions (9) and eliminating the parameters 1 1, N− +δ δ  in (14), then the system may be rewritten as  
1 1 1 1 1 1

0 1 0 1 1 0 1
1 1 1 1 1 1
1 1 1 1

( ) 4 0 (4 )

( ) 4 0 ( 4 )

n n n n n n

n n n n n n
N N N N N N N

U x
U x

δ δ δ δ δ δ

δ δ δ δ δ δ

+ + + + + +
− −

+ + + + + +
− + + −

= + + = ⇒ = − +

= + + = ⇒ = − +
                   (15) 

By these substitutions, the equation (14) is turned out to be 1N +  unknown at each level of the time n  in order to solve 
it using by Thomas algorithm.  

3. The Stability Analysis 
Now, the stability analysis is investigated by using very useful technique which is called Fourier stability method. 

Additionally the stability analysis is also used for various finite d ifference methods[22]. Considering the equation (13) and 
(14) together, then  

1 2 2 1(1 )( ) ( ) 0n n n n
m m xx m xx mU U t U t Uα θ α θ+ +− − ∆ − − ∆ =                    (16) 

is obtained. Now substituting (6) into (16) y ields 

1 2 1 2 1 2
1 12 2 2

2 2 2
1 12 2 2

6 12 6(1 ) (4 ) (1 )

6 12 6[1 (1 )] [4 (1 )] [1 (1 )]

n n n
m m m

n n n
m m m

t t t
h h h

t t t
h h h

δ α θ δ α θ δ α θ

δ α θ δ α θ δ α θ

+ + +
− +

− +

− ∆ + + ∆ + − ∆

= + ∆ − + − ∆ − + + ∆ −
           (17) 

Using the Fourier stability method, then 
n n i m
m e αδ ξ=  

may  be written where 1i = − , h  is the step size 

defined in Section 2 and hα β= . By this equality, (17) 
can be reduced as 

( ) (1 )+ = − −A B A Bξ θ θ              (18) 

where 2cos 4A µ= + , 2
2

12 (1 cos )B t
h
α µ= ∆ − . 

Then the solution is stable for 
1[ ,1]
2

θ ∈  using the 

Equation (14), since the inequality  1≤ξ  holds by the 
Fourier stability method. 

Table 1.  Comparison of the solutions for some α when 0.0001t∆ = and 0.0125h =  

x  
 t  1α =  

Numerical 
1α =  

Analytical 
0.1α =  

Numerical 
0.1α =  

Analytical 
0.01α =  

Numerical 
0.01α =  

Analytical 

0.25 
 

0.4 
0.6 
0.8 
1.0 
3.0 

0.01365 
0.00190 
0.00026 
0.00004 
0.00000 

 

0.01364 
0.00189 
0.00026 
0.00003 
0.00000 

 

0.67971 
0.66645 
0.67974 
0.64065 
0.52585 

0.67973 
0.66645 
0.65342 
0.64065 
0.52589 

0.70683 
0.70669 
0.70655 
0.70641 
0.70501 

0.70683 
0.70669 
0.70655 
0.70641 
0.70501 

0.50 

0.4 
0.6 
0.8 
1.0 
3.0 

0.01931 
0.00268 
0.00037 
0.00005 
0.00000 

 

0.01929 
0.00268 
0.00037 
0.00005 
0.00000 

 

0.96126 
0.94250 
0.92408 
0.90602 
0.74309 

 

0.96129 
0.94250 
0.92407 
0.90601 
0.74372 

0.99961 
0.99941 
0.99921 
0.99901 
0.99704 

0.99961 
0.99941 
0.99921 
0.99901 
0.99704 

0.75 

0.4 
0.6 
0.8 
1.0 
3.0 

0.01365 
0.00190 
0.00026 
0.00004 
0.00000 

0.01364 
0.00189 
0.00026 
0.00003 
0.00000 

0.67970 
0.66645 
0.65342 
0.64065 
0.52585 

0.67973 
0.66645 
0.65342 
0.64065 
0.52589 

0.70682 
0.70669 
0.70655 
0.70641 
0.70501 

0.70683 
0.70669 
0.70655 
0.70641 
0.70501 
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Table 2.  Comparison of the results for 0.1t = , 0.00001t∆ = , 1=α  

x  0.1h =  0.05h =  0.025h =  0.0125h =  0.00625h =  Analytical 
0.1 0.11425 0.11495 0.11513 0.11517 0.11518 0.11517 
0.2 0.21732 0.21865 0.21898 0.21907 0.21909 0.21907 
0.3 0.29911 0.30094 0.30140 0.30152 0.30155 0.30152 
0.4 0.35163 0.35378 0.35432 0.35446 0.35449 0.35446 
0.5 0.36972 0.37199 0.37256 0.37270 0.37273 0.37270 
0.6 0.35163 0.35378 0.35432 0.35446 0.35449 0.35446 
0.7 0.29911 0.30094 0.30140 0.30152 0.30155 0.30152 
0.8 0.21732 0.21865 0.21898 0.21907 0.21909 0.21907 
0.9 0.11425 0.11495 0.11513 0.11517 0.11518 0.11517 

 
4. Numerical Results and Discussion 

In this section, we applied the method in Section 2 to 
problem (7) with (8) and (9) in order to solve it numerically. 
Since than numerical results are obtained. In order to control 
the validity and efficiency of the numerical solutions of the 
equation (7) in the domain  under the initial condition 
(2) and the boundary conditions (3), we calculated the 
analytical solution of the equation (7) with the in itial and 
boundary conditions. Here, the time step is taken as 

 in calcu lations. Mainly, Table 1 shows the 
both numerical solutions for some  and the analytical 
solutions to comparing with the data for some values of . It 
is seen from table that the method with decreasing step size 
gives better approximate solutions than the others. 

When fixed   is taken in calculat ions with  
, the results are shown and compared  for  

different values of  in Table 2. It is also seen from the 
table that the results calculated for , 

 and coincide with the exact  
solution, while those for , are 
approached rapidly to the exact solutions.  

It is observed by two tables that the approximate solutions 
obtained for different step sizes are closed to the exact 
solutions. To further corroborate the applicability of the 
presented method, numerical solution profile has been 
plotted in Figs. 1 for , . 

 
Figure 1.  The numerical solution for 

 

5. Conclusions 
In this paper, we apply  the collocation method with cubic 

B-splines fin ite elements to the heat equation successfully. In 
section 3, the stability of this method is analyzed considering 
Fourier stability method and it is found that the method is 
stable for [1/ 2,1]θ ∈ . The results of the numerical 
solutions in Section 2 confirm that the accuracy, reliab ility 
and efficiency of the presented method which is applied in 
order to solve this type of the problem. 
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