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Abstract  Chikungunya is a vector borne communicab le disease which is transmitted in human population through the 

bite of an infected Aedes-Aegeypti mosquito. In order to study the spread of Chikungunya disease a model has been proposed 

and analyzed in this paper. In the proposed model the human population and the mosquito population have been divided into 

three and two classes respectively. For controlling the disease, vector control measures such as, reduction in the breeding of 

vector population, killing of mosquitoes and isolation of infected humans have been also taken in to account in the model. 

Linear and non-linear stability analysis of the model has been carried out. From the analysis  we have derived a threshold 

condition involving control reproductive number , and we have found that the disease free equilibrium point is locally 

asymptotically stable when and unstable when .We have also proved that a unique endemic equilibrium point 

exists and is locally asymptotically stable when . Thus, we have concluded from the analysis of the model that the 

disease will either die out or will remain endemic depending on the value of control reproductive number.  This study will 

assist the health department in controlling the spread of Chikungunya disease by introducing the control measures such as 

increasing the awareness in the society, killing of mosquitoes and isolating the infected individuals. 

Keywords  Chikungunya Disease, Epidemic Model, Control Reproductive Number , Stability, Disease Free Equilibrium 

Point, Endemic Equilibrium Point  

1. Introduction 

Chikungunya is a vector borne communicab le disease. It 

is caused by a Buggy creek virus or better known as Chi-

kungunya virus. This virus is an enveloped positive-strand 

RNA virus capable of rep licat ing in  a mosquito species 

known as ades-aegeypti. Aedes-aegeypti mosquitoes usually 

dwell in human habitats. Chikungunya virus is transmitted in 

the human individuals through the bite of an  Aedes-Aegeypti 

mosquito. Chikungunya disease has become a g lobal con-

cern due to an escalation in the d isease outbreaks, in Africa, 

India and South East Asian countries. The epidemic is a 

consequence of heavy rains favoring the active breeding of 

these mosquitoes in urban habitats that synchronize with 

humans, who serve as reservoir host for Chikungunya virus. 

Aedes-aegeypti is a household container breeder and ag-

gressive anthrophilic day time b iter. Apart from other con-

tainers like clay jars, drums, cement tanks and coolers, west 

bottles are also found to be positive for aedes breeding. 

According to a survey report[15] more than 80% breeding 

has been found in small and midsized containers. 
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Since no vaccine or specific antiviral t reatment available 

for Chikungunya fever, vector avo idance and  contro l is at  

present the only way to limit the disease transmission. As we 

know that most of the Chikungunya vector population grows 

in household containers therefore education of society can 

play an effective role to curb the vector breeding. Simulta-

neously chemical spray can eliminate the vector presented in 

the surroundings of human habitat. A new ULV technique 

consisting of aerosol spray of ultra low volume quantities of 

insecticide has been found to be effective in  killing the 

mosquito in the air as well as on the water. With the help of 

ULV treatment the Aedes Research unit Bangkok was able 

to reduce adult mosquito density by more then 98% for 

several weeks[12]. Further, spread of the infection can be 

reduced by isolating infected humans from mosquitoes. This 

can be done by staying indoors and sleeping under mosquito 

nets. 

Dynamics of various vector borne diseases has been 

studied by various researchers  such as N.T.J.Bailey[3], 

Aron[2], Anderson and May[1], Esteva and Vardos[9,10], 

Diekmann and Heesterbeek[7], Chitnis et. al[5,6] and Ba-

caër[4] using mathemat ical models. 

Ramchurn et. al[13] have specifically studied the trans-

mission dynamics of chikungunya epidemic outbreak with 

the help of a SI model. In the present work we have devel-

oped and extended the model in light of the dynamics of the 
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chikungunya disease. 

Thus in this paper we have studied an epidemic model for 

chikungunya disease by considering SIR dynamics for hu-

man population and SI dynamics for mosquito population . 

Through this model we have discussed effects of control 

measures on the transmission dynamics of chikungunya 

disease. 

2. Model Formulation 

In the formulation of the proposed model the human 

population have been classified into three categories, namely 

susceptible, infected and removed. Similarly  mosquito 

population has been classified into two categories namely 

susceptible and infected mosquitoes. When an infected 

mosquito bites a susceptible human then he gets infection 

and goes to the infected human class. As chikungunya is not 

a killer disease[14] and after recovery infected human ac-

quires immunity for significant time therefore after recovery 

infected humans go to removed class. It has been also as-

sumed in the model that the infected human individuals are 

kept away  from the contact of the mosquitoes by different 

means such as use of mosquito net, staying at isolated place 

in the house. Similarly when a susceptible mosquito bites an 

infected human then it gets infected and joins the infected 

mosquito class. The transfer d iagram of this process is shown 

in fo llowing figure 1. 

 

Figure 1.  Transfer diagram of Chikungunya 

Let  are the proportions of the susceptible, in-

fectious and removed individuals in the human population 

and are the proportions of the susceptible and infected 

mosquitoes in the mosquito population. The dynamical sys-

tem representing the epidemic spread in human and vector 

population are then given by the following system of non 

linear ordinary d ifferential equations. 

     (2.1a) 

      (2.1b) 

       (2.1c) 

      (2.1d) 

          (2.1e) 

With init ial condit ions 

Sh(0)=Sh0, Ih(0)=Ih0, Rh(0) = Rh0, Sm(0)=Sm0, Im(0)=Im0 (2.2) 

The description of parameters is as follows  

 = birth and death rates of humans. 

η = b irth and death rates of mosquitoes. 

= rate of transmission from infected mosquito to sus-

ceptible human. 

= rate of transmission from infected human to suscepti-

ble mosquito. 

γ = recovery rate of humans. 

= rate at which infected humans are isolated from mos-

quitoes. 

= Rate of awareness programme for reducing vector 

breeding. ( ). 

 = Killing rate of mosquitoes by spraying chemicals.  

Let   and are total popula-

tion sizes of human and mosquitoes respectively. Then 

      (2.3a) 

    (2.3b) 

This implies that  and  

It can be easily seen that the feasible region 

is 

positively invariant for the model(2.1). 

Thus, we restrict our attention to the dynamics of the 

model in .Using  in  equation(2.1c) can 

be removed from the model. Therefore we have to study only 

following four equations. 

       (2.4a) 

       (2.4b) 

     (2.4c) 

       (2.4d) 

3. Disease Free Equilibrium Point and 
Reproductive Number 

The model (2.4) has exactly one equilibrium point E1(1, 0, 

, 0) in the region  , with no disease in the popu-

lation. 

We use the next generation matrix approach as described 

by Diekmann et. al[8] and Hefferman et. al[11] to define the 

reproductive number  which we call control reproductive 

number, as the number of secondary infections that one 

infectious individual would create over the duration of the 

infectious period in the presence of control meas ures, pro-
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vided that everyone else is susceptible. For the model (2.4)  

           (3.1) 

When there is no control measure applied, then

. In this condition the control reproductive 

number become basic reproductive number  and  

                 (3.2) 

it is clear that . 

4. Stability of the Disease Free    
Equilibrium Point 

Applying the transformat ions, 

 in (2.4) we have, 

       (4.1a) 

      (4.1b) 

   (4.1c) 

   (4.1d) 

4.1. Local Stability Analysis of Disease Free Equilibrium 

Point 

The linearized system of (2.4) around E0 is 

       (4.2a) 

       (4.2b) 

       (4.2c) 

      (4.2d) 

The Jacobian of linearized system around E0 is 

 

Two characteristic roots of are -  and -  

which are negative and remaining two characteristic roots 

are obtained by solving quadratic equation. 

  (4.3) 

Roots of the equation (4.3) are either negative or have 

negative real parts only when  and has exactly one 

positive root if . 

Thus we have established the following result.  

Theorem 4.1. The d isease free equilibrium point E0 is 

locally asymptotically stable if  and unstable if . 

4.2. Non Linear Stability Analysis of Disease Free      

Equilibrium Point 

Consider a positive definite function  (4.4) 

then using the non-linear system (4.1) in , we get 

 

Now using the inequality  on the right 

hand side of  we find that 

  (4.5) 

Again using the region  on the right hand side of the 

above inequality (4.1) we get 

  

Now, it can be easily seen that is negative definite 

under the following conditions. 

     (4.6a) 

     (4.6b) 

      (4.6c) 

Therefore by Lyapunov’s second method of stability we 

state the following result.  

Theorem 4.2. The d isease free equilibrium point E0 is 

non-linearly asymptotically stable if the following three 

conditions are being satisfied. 

(i)  

(ii)  

(iii)  

To predict the behaviour of  we have solved the lin-

earized system (4.2) around E0. 

From equations (4.2b) and (4.2d) we get  

1 (1 )

( ) ( )
cR

  

    




  

0    

0R

0
( )

R


  




0cR R

1 2 3 4

(1 )
1 , , &h h m mS x I x S x I x

 

 


     



1

1 4 1 4

dx
x x x x

dt
     

2

2 4 1 4( )
dx

x x x x
dt

         

3

2 3 3 2

(1 )
( )

dx
x x x x

dt

  
  

 


    



4

2 4 3 2

(1 )
( )

dx
x x x x

dt

  
  

 


   



1

1 4

dx
x x

dt
   

2

2 4( )
dx

x x
dt

       

3

2 3

(1 )
( )

dx
x x

dt

  
 

 


   



4

2 4

(1 )
( )

dx
x x

dt

  
 

 


  



0

0 0

0 ( ) 0

(1 )
0 ( ) 0

(1 )
0 0 ( )

J

 

   

  
 

 

  
 

 

  
 

  
 
 

    
 

 
  

 

0J  ( ) 

2 2( )
(1 ) 0

( )( )
cR

    
 

    

   
   

  

1cR 

1cR 

1cR  1cR 

2 2 2 2

1 2 3 4V x x x x   

dV

dt

2 2

1 1 1 4 2 1 2 4[2 2 (1 ) 2( ) 2 (1 )
dV

x x x x x x x x
dt

             

2 2

3 3 2 3 4

3 2 4

(1 )
2( ) 2 2( )

(1 )
2 ]

x x x x x

x x x

 
    

 

 


 

 
      

 

 
  

 
2 22 ( )ab a b  

dV

dt

2 2 2

1 1 1 4

2 2 2

2 1 2 4

2 2 2

3 3 2 3

2 2 2

4 3 2 4

[2 (1 )( )

2( ) (1 )( )

(1 )
2( ) ( )

(1 )
2( ) ( )]

dV
x x x x

dt

x x x x

x x x x

x x x x

 

   

 
  

 

 
  

 

     

     

 
     

 

 
    

 



2 2

1 2

2 2

3 4

[(2 ) {2( ) 2 }

{2( ) } {2( ) 2 } ]

dV
x x

dt

x x

      

      

       

      

dV

dt

2 0  

2( ) 2 0        

2( ) 2 0      

2 0  

2( ) 2 0        

2( ) 2 0      

hI



127 Applied Mathematics 2012, 2(4): 124-130  

 

 

  (4.7) 

Above equation is a second order ordinary differential 

equation with constant coefficient. 

The auxiliary equation of (4.7) is 

        (4.8) 

Where 

If two roots of (4.7) are and  then,

 and  

Since  

Therefore both the roots of (4.8) are real. Root is al-

ways negative and is negative if and positive if

. 

Again  

 

 

 

Thus  is negative if and is positive if . 

Now solution of (4.7) is       (4.9) 

Where,  are constants of integration. Now if 

is negative then as  and if is positive then 

 as , i.e. as  if and 

if . 

Thus we can say that for  infective population de-

creases with time and after a sufficient large t ime disease will 

die out due to the unavailability of infected human.  

5. Endemic Equilibrium Point 

Endemic equilibrium point is the steady state solution 

when the disease persists in the population i.e. are 

positive. In the model (2.4), a unique endemic equilibrium 

point E1( ), where 

 

 

 

 

exists only when . 

6. Stability of Endemic Equilibrium 

Point 

Applying the transformat ions, 

 in (2.4) 

We have, 

    (6.1a) 

  (6.1b) 

    (6.1c) 

    (6.1d) 

6.1. Local Stability Analysis of Endemic Equilibrium 

Point 

The linearized system of (2.4) around E1 is 

     (6.2a) 

     (6.2b) 

     (6.2c) 

    (6.2d) 

The Jacobian of linearized system around E1 is 

 

One characteristic root of  is -  which is 

negative and remaining three characteristic roots are ob-

tained by solving following cubic equation. 

      (6.3) 

Where, 
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Since  exists and are positive only  when , 

therefore  

 when . 

Thus by Hurwitz criterion all the roots of (6.3) are either 

negative or have negative real parts if . 

Hence we have established the following result. 

Theorem 6.1. The endemic equilib rium point E1 exists 

and is locally asymptotically stable if  and it does not 

exist if . 
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6.2. Non Linear Stability Analysis of Endemic     

Equilibrium Point 

Consider a positive definite function 

           (6.4) 

Then using the non-linear system (6.1) in , we get 

 

Now using the inequality,  on the right 

hand side of , we find that 

   (6.5) 

Again using the region on the right hand side of the 

above inequality (6.5), we get  

 

 

Thus, 

is negative definite if the following conditions hold 

good. 

 

 

 

Hence, we have reached the following result.  

Theorem 6.2 The endemic equilibrium point E1 is 

non-linearly asymptotically  stable if following conditions 

are being satisfied. 

(i)  

(ii)  

(iii)  

7. Discussion 

In this paper, we have analyzed a model to study the im-

pact of various vector control measures on the transmission 

dynamics of chikungunya disease. We have shown that there 

exists a feasible region where the model is well posed and for 

which a unique disease free equilibrium point is obtained. 

We defined a control reproductive number , and it has 

been concluded that DFE is linearly asymptotically stable if  

 and unstable if (Theorems 4.1&6.1). We have 

also shown that an endemic equilib rium point exists which is 

linearly asymptotically  stable if .When no vector 

control measure is applied  then the control reproductive 

number becomes the basic reproductive number  and it 

has been shown that .Thus we have verified that the 

intervention policy by means of vector control, decreases the 

reproductive number and level of d isease. 

Also the conditions for non linear stability o f both the 

equilibrium points have been derived (Theorems 4.2 

&6.2).The solution of linearized system (4.2) shows that the 

disease will die out after some t ime if  and it will 

remain in the population if .Finally, with the help of 

simulations the graphs between state variables and time have 

been plotted (fig.2,3,4&5), and phase plane plots between Ih 

and Im have been also shown(fig.6,7,8 & 9) for different 

values of . It has been shown from the figures that if we 

are able to reduce the control reproductive number to less 

than 1 using various control measures independently or 

simultaneously then disease likely to vanish. 

Table 1.  Parameter values and initial conditions used in the simulation 

/ day 

/ day 

/ day 

/ day 

/ day 

 

 

 

Figure 2.  Solution of chikungunya model without control measures and 

with parameter values given in table 1 which corresponds to Rc = 2.9580 
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Figure 3.  Solution of chikungunya model with parameter values given in 

table 1 and with  which corresponds to Rc = 0.8919 

 

Figure 4.  Solution of chikungunya model with parameter values given in 

table 1 and with  which corresponds to Rc = 0.6614 

 

Figure 5.  Solution of chikungunya model with parameter values given in 

table 1 and with which corresponds to Rc = 0.7395 

 

Figure 6.  Phase plane plot between Ih and Im of chikungunya model 

without control measures and with parameter values given in table 1 which 

corresponds to Rc = 2.9580 

 

Figure 7.  Phase plane plot between Ih and Im of chikungunya model with 

parameter values given in table 1 and with  which 

corresponds to Rc = 0.8919 

 

Figure 8.  Phase plane plot between Ih and Im of chikungunya model with 

parameter values given in table 1 and with  which 

corresponds to Rc = 0.6614 
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Figure 9.  Phase plane plot between Ih and Im of chikungunya model with 

parameter values given in table 1 and with  which 

corresponds to Rc = 0.7395 

Table 2.  Endemic values of state variables for parameter values given in 
table 1, where  = ε = =0 
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