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Abstract In this paper, comp lete classifications of all BKM Lie superalgebras (with finite order and infinite order Cartan
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1. Introduction

In[4], the theory of Lie superalgebras was given and in[5],
theory of Kac- Moody Lie superalgebras was described.
Borcherds[2] initiated the study of generalized Kac-Moody
algebras(GKM algebras). Wakimoto[19] introduced BKM
superalgebras(BKM Lie superalgebras). The existence of
special imaginary roots for Kac-Moody algebras(KM
algebras) were shown in[l] and the concept of special
imaginary roots was extended from KM algebras to GKM
algebras in[7]. In[11], some properties of roots of GKM
algebras were studied and in[12],[14], special imaginary
roots of these classes were found out and finally in[15], a
complete classification of GKM algebras possessing special
imaginary roots was found out.

The notion of special imaginary roots of BKM algebras
was generalized to BKM superalgebras in[16] and certain
classes of BKM Lie superalgebras possessing special
imaginary roots were found out in[16]. In[18], a complete
classification of BKM Lie superalgebras possessing special
imaginary roots was given. The concept of strictly imag inary
roots for KM algebras was introduced by Kac([5],[6]).
Casperson[3] gave a comp lete classification of KM algebras
possessing strictly imaginary property. The concept of
purely imaginary roots for KM algebras was introduced
in[10] and therein the KM algebras possessing purely
imaginary property were comp letely classified.

Again in[13], the concept of purely imaginary roots from
KM algebras to GKM was extended, and the GKM algebras
possessing purely imaginary property were completely
classified. In[14], the properties of strictly imaginary roots
and purely imaginary roots of GKM algebras were compared
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and using the classification of GKM algebras possessing
purely imaginary property, the algebras whose purely
imaginary roots are strictly imaginary roots were found.
Complete classification of GKM algebras possessing special
imaginary roots and strictly imaginary property were given
in[15].

The concepts of strictly imaginary roots and purely
imaginary roots of Borcherds Kac-Moody algebras(BKM
algebras) were extended to BKM superalgebras in[17]. A
complete classification of those BKM superalgebras with
purely alien imaginary property and purely imaginary
property were given in[l7]. Moreover, the properties of
strictly imaginary roots and purely imaginary roots of BKM
superalgebras were compared and the BKM superalgebras
whose purely imaginary roots are also strictly imaginary
were found out in[17].

Aim of this paper is to give a complete classification of
BKM Lie superalgebras possessing strictly imaginary
property.

2. Preliminaries

2.1. Basic Definitions

In this section, we briefly recall the fundamental
definitions regarding BKM Lie superalgebras, their Weyl
groups and root systems as given in[19].

For the definition of Generalized Generalized Cartan
matrix(GGCM ) one can see[9].

Definition 2.1.1:[19].

Let [={1,2,---,n} be a finite index set and let

A = (a;'j)i,jel
of [ . If A satisfies the following conditions, then
(A,y) is called a BKM super matrix.

@1) a;=2 or @, <0

bean nXn real matrix. Let y beasubset
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(c2) i#j=>a,; <0
(©€3) a,=0=a,=0
(©4) i a; =2 then a, € Z forall j
(©5) " ey
a, €2Z forall j.

and then

aii :2

Define, subsets [® and [™ of [ by
I“={iel;a, =2}, 1" ={iel;a, <0}.

Let m=(m, eZ.,|ie€l) be a collection of positive

integers such that m, =1 for all i€ ™. We call m

charge of A.
Also set

lﬂm ::{lewza” :2}:[remy/;
Vo = {iEW;aﬁ :O};l//_ = {ievl;aii <0}
Wim ={iey;a, <0} =y, Uy .

Remarks:

and

1 If Y is an empty set then the BKM super matrix
coincides with the corresponding BKM matrix( or GKM
matrix).

(2) For description of the quasi- Dynkin diagram,
qDyn(4), one can refer to[19]. A Generalized
Generalized Cartan Matrix is called indecomposable if it
cannot be reduced to ablockdiagonal form by shuffling rows
and columns[8].

For the sake of completeness we repeat the following

fundamentals already explained in[17].
Definition 2.1.2:[6]

Let [/ be an index set. (4,¥) be an indecomposable

BKM super matrix where A:(aij)i,je] and vl .

Then one and only one of the following three possibilities
holds for 4.

(Fin) det 4 # 0; there exists # >0 such that Au >0
and 4420 =u>0 u=0.

(Aff) Corank =1; there exists # >0 such that Au =0
and Au20 = Au=0

(Ind) det A # 0 ; there exists # >0 such that Au <0

and Au>0,u>0=>u=0

Referring to the above three cases, we say that A is of
finite, affine or indefinite type respectively and write
A€ Fin, Ae Aff or A€ Ind respectively.

Definition 2.1.3:[18]

We say that a BKM super matrix (4,¥) is of
hyperbolic type, if it is indefinite type and every principal

submatrix of A is either finite or affine type BKM super
matrix.
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Definition 2.1.4[19]:
If a BKM super matrix 4= (a,),, ;, decomposes as

A= DB where, D= (‘91'51])131',]511 :

and B=(b,),; , isasymmetric matrix, then A is said

a diagonal matrix

to be symmetrizable.
If 4 is a symmetrizable BKM supermatrix, then taking

the diagonal matrix D satisfying &,¢&,,...,&, >0, by

a; = eb. we  have a, < 0= bi]. <0 and

(a7

al.j.20<:>bl.j20forall i and /-

We assume that (4.¥) is a symmetrizable and

indecomposable BKM supermatrix.

Definition 2.1.5:[19]

(h,IT,ITY)

For any supermatrix, where

AZ(aij)lsl.’an , we have a triple , where

[I={a;iel} and 1" ={a ;iel} satisfying the
following relations:

(i) h is a finite dimensional (complex) vector space
such that dimh = 2n— rank A.

(i) TT={a,},,
I ={a/},, ch s
h" = Hom(h,C).

ch’ s linearly independent and

linearly independent, where

iii) (a‘/,aiv> =ay, where ) denotes a duality pairing
(h,IT,ITY)

between h and h’. This triple is called a

realization of A.

Call an element of [T (respectively I1")a fundamental
root or a simple root (respectively fundamental coroot or a
simp le coroot).

Moreover, set and

" ={a;iel™}
" = {a;;ie ]im}. We call an element of TT (resp.
" )areal simple root (resp. an imaginary simple root).

Also divide IT as Il :={a,;iel\y}, the set of

even

all even simple roots and I1 ,, := {a;;i €y}, the set of

all odd simple roots.

Let “2is the residue class ring mod 2 with elements 6
and i

Definition 2.1.6:[19]

A Z2 -graded vector space g = J; ® g; possessing the

operation called the bracket product,

bilinear map
L1:gxg3(x,y) — [x.yleg,
is called a Lie superalgebra if it satisfies the following
conditions:
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[gi’gj] (S P (i,jel,),
[v,x]=~(=D)"'[x, 1,
[ [y, 2]l= =Dy, [, 21+ 10 01 2], gy

X, V,Z €& g
Definition 2.1.7:[19]
The Borcherds Kac-Moody Lie superalgebra (abbreviated

as BKM Lie superalgebra or BKM superalgebra) 9(4)
associated to a symmetrizable BKM super
(Ajl//):(aij)lgi,jgn is the Lie superalgebra
generated by the vector space

e, f;(i € I) satisfying the following relations:
. [h,h]=0 h,h' eh

matrix
h and the elements

1 for

' [h’ei]:ai(h)ei fOI' hehalslsn
A, fi 1=~ (h) f; for hehl1<i<n
[ei:f]-] = 5iiaiv for 1< l’] <n.

iel“, jeli#]j,

N

(98]

&

s - then
l—aij _ N l_az/ _
(ad el.) e(,- =0; (ad fz) fj =0
[ei,ej] =0
6. if l',jEI,iijaaij:O’then [fz’f]] =0

7.if i ey, then [e, e ]=[f,, f]=0.
Remarks:

As we are assuming that the matrix (4,y) is
symmetrizable, the associated BKM superalgebra 9(4) is
simple (for a proof one can see[6], and also[19] ),which we

will denote by g(A). So for a BKM supermatrix (A’W),
a4

called BKM Lie superalgebra or BKM
superalgebra associated to (4,y).
In[5], Dynkin diagrams were defined for Lie

superalgebras. Dynkin diagrams were already extended from
KM algebras to GKM algebras in[11] and then extended to

BKM Lie superalgebras in[17], which are again given below.
Definition 2.1.8:[17]
To every BKM super matrix (4.y) , where
A=(a;); o> V<1 the index set 1 , is associated
with a Dynkin diagram S(4) defined as follows:

S(A) has n vertices and vertices i and J are
connected by max{|a, |,/a; |} number of lines if

a;a <4 and there is an arrow pointing towards i if
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|aij >1.1f |aij ||ale >4, i and J are connected by
a bold faced
(la; |,la; [). Moreover

edge equipped with the ordered pair

Lif a,=2andigy ,the i-thvertex will be denoted
by a white circle.

2.if a; =2 and i €y ,the i-thvertex will be denoted
by a white circle with (od) written within parentheses and

below the circle to denote the vertex corresponding to an odd
simp le root in this case.

3.if a, =0and i¢y,the i-thvertex willbe denoted
by a crossed circle.

4.if a, =0and i€y, the i-thvertexwillbe denoted
by a crossed circle with (od) written within parentheses and

below the circle to denote the vertex corresponding to an odd
simple root in this case.

5.if a,; = —k,k>0and i¢y, the i-th vertex will

be denoted by a white circle with (=k) written within
parentheses and above the circle.

6. if a, =—k,k>0and iy, the i-th vertex will

be denoted by a white circle with (=k) written within
parentheses and above the circle with (od) written within
parentheses and below the circle to denote the vertex
corresponding to an odd simple root in this case.

With these definitions, the Dynkin diagrams of all BKM
superalgebras can be drawn.

Some examples of Dynkin diagrams
superalgebras were drawn in[17].

A BKM Lie superalgebra g , like a KM or BKM algebra,
has the following natural root space decomposition:

g-@g,
g, =X eg|[h X]=a(hX ¥ heh)

is called the root space associated to . An element

of BKM

where

a€Q i called a root, if o #0 and g, #0. The

number mult o = dim g, is called the multiplicity of the

root & . A root o of 9(4) can be expressed as

a ZZ;mlai ,( m e”Z), where m,'sareall 20 or

all <0. Corresponding to whether m,'s areall >0 orall

<0, a is called a positive root or a negative root

respectively. Also zn m is called the height of & and
i=

is denoted by ht(e). We denote by AA, and A the

set ofall roots, positive roots and negative roots respectively.
Also note that g, = Ce, and 9. = Cf..

Definition 2.1.9:[19]
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Let G be a BKM Lie superalgebra. Set py :Z" Ca’
=1 i

and take a subspace h” of h satisfying h=h @®h".

Define the symmetric bilinear form ¢l on h as
follows:

(a;|h):=¢{a,hy(heh1<i<n),
(h |h):=0 forh ,h, eh’ '
and this

(|) is

the linear

Then

non-degenerate on h induces

isomorphism, v:h—h".

We completely identify h and h* via this map v and
omit the symbol v in the following results. The proofs of
these results are in[19].

Lemma 2.1.10:[19]

For I<i,j<n , one has the following:
L o' =¢a,,

2. (ai |a1) = bij)

3. (o) |a))=¢b

y',
41f a; #0, then A |2 _ Ae, ’M,/ieh*, in
(o, | o)) a;
particular if a, =2 , then
241D v ya et
(ai |al)
Remark:

For iE[im,jEID(Oti |a;)<0. In terms of inner
product 1) , we have IT" ={a;(a,|a,)>0} and
n" = {a;(a;|a;) <0}

Definition 2.1.11:[17]

. re

For each '€ 17, we define the simple reflection
r,eh’ by

r(A)=A—{Aa )a, deh’.

The Weyl group W of 9(4) is the subgroup of

GL(h")

. re
generated by the 7;'s (iel”) . Note that

(W, {r,;iel™}) is a coxeter system. So for a real root
a=w(a,) (weW,a, eI1*), we define the reflection
r, of h* with respectto o by
r,(A)=A—{L,aYa(Aeh),
where " =w(a,”) €h is the dual real root of «.

Note that 7, = wrl.w_1 ew.
Lemma 2.1.12:[19].

The bilinear form ¢ on h and h™ is invariant
under the action of the Weyl group.
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In  particular, have for

1<i,j<n.

Definition 2.1.13:[17]

The set of all real roots of a BKM Lie superalgebra is
defined as

we (a;|a;)=¢a,

A =W (IT*) OW ({2030 € ™)}

A" = A\A g,

Then the set of all imaginary roots is

have, @ e A = —-a@ € A and o e A" = —a € A".
Definition 2.1.14:[19]

n n
Let Q= Zi:1zai,Q+ = zi:1220ai , then we have

A+ < Q+ . Q is called the root lattice and Q+ is called the

positive root lattice.The root lattice 0 becomes a (partially)

azfeoa-peQ,

ordered set for

a,fe0

Now, for o = Zmial. € Q,supportof  is defined as

by putting

supp(a) ={iel;m, #0} . If supp(@) i a connected

subset of the Dynkin diagram of 4, we say that supp(a)
is connected.

Definition 2.1.15:[19]

Imaginary roots of BKM superalgebras are basically of
two types, domestic-type and alien-type.

Domestic-type imaginary root:

An imaginary root which is conjugate to a fundamental
root under the action of the Weyl group is called

domestic-type imaginary root. We denote by N , the set
of all domestic-type imaginary roots.

Alien-type imaginary root:

An imaginary root which is not a conjugate to a
fundamental root underthe action of the Weyl group is called

alien-type imaginary root. We denote by Aah.lm, the set of
all alien-type imaginary roots.

Since an imaginary root is either conjugate or not
conjugate to a fundamental root under the action of Weyl
group, each imaginary root is either domestic imaginary or
alien imaginary.

We have Alm _ Adom.im. UAali.im..

Lemma 2.1.16:[19]

L. A':” is invariant under the action of the Weyl group.

2. If aeA”, then there exists wel satisfying
wae—-C".

3.For aeA ,aeA” < (a]a)<0.

Theorem 2.1.17:[19]

For a symmetrizable BKM supermatrix (A,y), if we
set

A=W () OW (2a,i ey™}),
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A" = A\A°,
WEIT"YUW ({Raiey_}),
Aali-im = Aim \Adom-im’

then concerning A™ and A" we have the following

Adom-im =

results: 1. Aii'[m = W(IO(') =,y W( ]0{)

2 A" =W (K)OW AT YO ({2050 ey _}).
where

K={aeQ, |<a,a’ ><0and supp(c)is connected }

and K= {a e K || supp(a) [ 2}.
Also by notation h,’? = Z;Raiv = Z;Rai,
CY ={hehy{a’  h) >0(Gel)} and
C" ={hehy(a’,h) >0Gel™)}.
Lemma 2.1.18:[19]

For a €A and i e[, one has the following:

b
. The set {jeZ;a+ jo, € A} isa finiteset. Let p
be the minimum contained in this set, and let q be the

maximum in this set. Then,
@ p+q=—a’,a)
b) {jeZ,a+ja,eN={jeZ p<j<q},

(c) the sequence {mult(a+ ja,)} is bilaterally

P<Jjsq
symmetric, and the left half of this sequence is monotone
nondecreasing. Namely,

Jtk=p+q
= mudt(a+ ja,) = mult (a + ka,)
2 p<j<k<Prd

= mult (a+jo,) <mult(a+ka,).

3. (ala)>0=>a-a, €A,

(ala)<0=>a+a,eA,.

4. a+a, ¢ A= (ala;) 20,

a-a, ¢ A= (ale;)<0.

Strictly domestic type imaginary roots, strictly alien type
imaginary roots, strictly imaginary roots, purely imaginary
roots, purely domestic type imaginary roots and purely alien
imaginary root were already explained in[17]. We repeat the
following definitions which we need here.

Definition 2.1.19:[*17]
A domestic-type imaginary root y in a BKM super

algebra is said to be strictly domestic-type imaginary, if for
every o € A°, either a¢+y or a—y is a root. Let
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As'dom'im, Asjnm'im,As;dom'[m denote the set of all strictly

domestic-type imaginary roots, positive and negative strictly
domestic-type imaginary roots respectively.

Definition 2.1.20:[17]

An alien-type imaginary root y ina BKM super algebra

is said to be strictly alien-type imaginary, if for every
aeA”, a+y or q-y is Let
A Asfh'im, A denote the set of all strictly

alien-type imaginary roots, positive and negative strictly
alien-type imaginary roots respectively.

Definition 2.1.21:[17]

An imaginary root » in a BKM super algebra is said to

either a root.

be strictly imaginary, if forevery a € A*, either o +y
or ¢ —y is aroot. The set ofall strictly imaginary roots is

denoted by A™. Let A™ A" A™ denote the set ofall

strictly imaginary roots, positive and negative strictly
imaginary roots respectively.

Remark:

As it was noticed in[5],

WIf aeAN”, BeA”, then a+ A"

(2) A is a semigroup.

Definition 2.1.22:[17]

A BKM super matrix (A,y) is said to have strictly
imaginary property, if

K (A4) = A2 (A).

Ifa BKM supermatrix satisfies strictly imaginary property,
we say that corresponding BKM Lie superalgebra satisfies
strictly imaginary property.

Purely alien imaginary roots, purely domestic imaginary
roots were already explained in Sthanumoorthy et al.(2009).

Definition 2.1.23:[17]

Let o € A", we say that ¢ is purely imaginary, if
for any [ e AiT, a+pfe Ai:". We say that the BKM
super algebra g(A4) has the purely imaginary property, if
(A,w) this  property. We
Aim — Adom-im UAali-im

Similarly we say that a negative root y € Aii" is purely

satisfies have,

imaginary if —jy is a purely imaginary root. Denote by

A" (A)= A" ={a e A" | a is purely imaginary}

and
A" (A) = A" = {a e A" | a is purelyimaginary}.
Then, the set of all purely imaginary roots is
pim __ Apim pim
A= AP A
We omit the proof of the following theorem for BKM Lie
superalgebras which can be directly verified using the proof

for KM algebras already proved in[3].
Theorem 2.1.24:[17]
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For BKM Lie superalgebras, the following results are true:
@ If aeA, and (o, ,a)<0 forall i€l then
i
a E AS+£J 1 lm.
) i aeAy™ r(@)#a for all yeA, then
.ali.im
ae N,
© If aeN"™ and (a),a)<0 forall iel”,
then a+ €A, forall feA,.
(d) [f a EAS_;_alijm,ﬁEAil_i'im, then a+ﬁ€Aa_{_i'im.
s.ali.im . .
(e) N is a semigroup.
In addition to the above results, we prove the following

results for BKM Lie superalgebras.
Theorem 2.1.25:

a) If aeA”™\{a,} and supp(a+a,) is
connected, then o € A”.

D) If ae A" \{a;}, r(a)#a forall yeA”,
then o € A"

Proof:

a) Let aeA™ " \{a,} and supp(a+a,) be
connected. Then o+, €A,.

So by lemma 2.1.18. o € A™.

b) Let aeA™"\{a,} . If r(a)#a for al

a, e, then a-<a,a,>a,*a

=><a,a,>¥0 = <a,a,><0  or
<a,a,>> 0.
So, by lemma 2.1.18., we have « +a, € A, or
a—-a, e A,. Hence ¢ is astrictly imaginary root.
Remark:
From the property (d) ofthe Theorem (2.1.24), we have

sim im im
A A= A

3. Complete Classification of BKM Lie
Superalgebras Possessing Strictly

Imaginary Property
Remark:
In[17], a complete classification of BKM Lie

superalgebras possessing purely imaginary property was
given.
3.1. First we Give the following Results from|[3].

Definition 3.1.1:[3]
We say that the generalized Cartan matrix A has the
property  SIM(more AeSIM ) if

N™(A) = A" (A).

briefly:
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Definition 3.1.2:[3]
A is said to satisfy NCI, if there exists no subsets
S,T c{1,---,n} suchthat 4|§ is affine or indefinite

type,and 4 |SUT is decomposable.

The following theorem proved by Casperson (1994) is for
the indefinite Kac-Moody algebras possessing strictly
imaginary property. Casperson (1994) gave a complete
classification of Kac-Moody algebras possessing strictly
imaginary property.

Theorem 3.1.3:[3]

A GCM lies in SIM ifand only ifit satisfies the condition
NCl1 and has no principal submatrix contained in the
following list:

2 —a

1. The 2x2 matrices of the form _b 5

with

ab>4 and a=1 or b=1.
2. The matrices of the following Dynkin diagrams of
twisted affine type:

@

g p—
W gm——g g g
1
@) T
A, (az3) (1) > 72) o——— 4?<:c1)
(2)
D (n22)

t,
e
O

3)
D Oo——=0 o]
! 1 2 1

3. The strictly hyperbolic 3% 3 matrices associated with
the Dynkin diagrams of the form:

(a) O O O
(b) O—=C——0
) O @ O
(d)O @ O
(B]e: O O

4. The hyperbolic 4x4 matrices associated with the
Dynkin diagrams of the form:

() OO O0——=0
(b) O o) =0

(O O O——=0

From[3], we can conclude the following for affine
Kac-Moody algebras:
5. If an algebra is

A" ={nkSs|neZ\{0}} hence
A"\ A" ={nS|neZ\kZ}, where & is the unique

minimal positive imaginary root and k is the order of the
diagramautomorphismused to construct the algebra.

affine, we have that

and
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Again for the case of 2x2 matrices, the following
theorem gives a complete classification of the non-strictly
imaginary roots:

Theorem 3.1.4:[3]

Suppose, for the GCM 2 _Z . (a,bel)),

A=|-b

that T)(A)={yeK, :yta, ¢ A(A)}# 2.
Then, either

1. 2 -1
A=|-4 2

I (A)={2n+ 1)(0(1 + 20(2) |n >0} (or)
2. [ 2 1} where b>4, and
A=

and

—b 2

[ (4) ={a, +2a,}.
Corollary 3.1.5:[3]

2 —a

The GCM [l’ 2] is not in SIM if and only if 43 >4
and either 5 =1 or h=1.

Proposition 3.1.6:[3]

A GCM of affine type is a member of SIM if and only if it
is of non-twisted affine type.

Remarks:

From[17], the set of all strictly imaginary roots of any
BKM superalgebra is a subset of set of all purely imaginary
roots, that is , AP \A™ may be an empty set or
non-empty set depending upon the algebras. So, for the
BKM superalgebras possessing purely imaginary property,

we verify whether theset A" \ A" is empty or not. In the
case where AP \A™ = (A" =A™) all purely

imaginary roots are strictly imaginary as A™ < AP™ is
always true. BKM superalgebras which satisfy the condition

A" \A™ =@ will be in the class of BKM algebras
possessing strictly imaginary property.Hence the condition

A'™ =A™ is equivalent to A™ =A™, which is

equivalent to SIM property.

3.2.As in the Cases of S pecial And Purely Imaginary
Roots We Divide The Classes of BKM Superalgebras
Into Two Categories. We Divide these BKM Lie
Super algebr as into Two Categories.

Category 1: BKM Lie superalgebras without odd
roots(GKM algebras only)

Category 2: BKM Lie superalgebras with a non-empty
set of odd roots:

We discuss category 1 below.

Category 1: BKM Lie superalgebras without odd
root:(GKM algebras only) Complete classification of GKM
algebras possessing Strictly imaginary property was already
given in[17].
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Category 2: BKM Lie superalgebras with a non-e mpty
set of odd roots:

We divide this category 2 into two classes, which are

Category2: Class(I): BKM Lie superalgebras of finite
order Cartan matrices and with a non-empty set of odd
roots

Category2: Class(I): BKM Lie superalgebras of
infinite order Cartan matrices and with a non-empty set
of odd roots

We discuss below these two classes separately .

Category 2:Class(I): BKM Lie superalgebras with a
non-empty set of odd roots
We classify these BKM superalgebras into three

subclasses (i),(ii) and (iii).

(1).BKM superalgebras with all simple roots being real
with a non-empty set of odd roots:

These are BKM superalgebras which do not have any
imaginary root. So this set of BKM superalgebras do not
possess strictly imaginary property.

(1)).BKM superalgebras all whose simple roots are
imaginary with a non-empty set of odd roots:

These are BKM superalgebras whose supermatrices do not
appear as the extensions of KM matrices. So all the diagonal
elements are negative. Hence there is no real simp le root and
all the roots are imaginary and also strictly imaginary.

(ii1). BKM superalgebras with finite (non-zero) number of
real simple roots and finite (non-zero) number o f imaginary
simple roots with a non-empty set of odd roots:

Remark:

Hereafter we denote by GGX, a Generalized Generalized
Cartan matrix ( BKM super matrix or BKM matrix). We
prove the following theorem for this case.

Theorem 3.2.1:

Let A= (al.j)n;il (the symmetrizable GGX)

i,

7](] 7al 7“2 7“1‘71 7ar T T 7a,,+,,|
—b 71‘2 —C —Cra —C, T Chira
- bz - dz — ks °
=| —b,, —d,, —k, X1 Knsr-t
—b —d, w,
: : : : GX
=byen —d Woira

Here k(1<i<r)el,,, a,,b,c;, d, are positive
integers . Moreover, GX is KM matrix of finite, affine or
indefinite type of order 7 >1 and GGX is a supermatrix of
finite, affine or indefinite type with  simple imaginary
roots added to that of GX. Then the following results are true
for BKM superalgebras with odd roots.

1. GX is of finite type:

@If a=>]a e W (K) with Z la, <2l (for
i=1

i=l,i#j

all j € [")is true forall ¢, then the corresponding BKM
superalgebra satisfies SIM property.
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®)If a e W(IT" \y,) ) UW () VW 2, |iey ™}
(y,=licy™ k=0 andy™ ={iey™ [k <0}), with
bl.,dl.,..., GGX  for
r+1<i<n+r istrueforall ¢, then the corresponding

x,w;>1 in the above
BKM superalgebra satisfies SIM property.

Here in (a) and (b), ¥ =W, Uy is the set of all odd

roots and
A" = w)\ @™\ pi2a, |a, ey} s the
weW

set of all positive imaginary roots.

2. GX is of untwisted affine type:

n+r n+r
@If a= Zla € W(K) with Z la, <2l (for
i=li#j

all jel™)is true for all ¢, then the corresponding
BKM Lie superalgebra satisfies SIM property.

oIf  aeWII"\y,) Uy, VW 2a, |icy}
with bl.,dl.,..., GGX for

r+1<i<n+r istrueforall ¢, then the corresponding

x;,w,>1 in the above

BKM Lie superalgebra satisfies SIM property.

3. If GX is of twisted affine type, then Strictly imaginary
property does not hold.

4. If GX is of indefinite type, then Strictly imaginary
property does not always hold.

Proof:

In the usual notation, let [={1,2,...,

I ={12,.,r}
I1={e,,a,,..,a

n+r} with
I={r+l,r+2,.,
n+r} is the set of all simple roots with

and n+r}.

" = {al,az,,,,,ar} is the set of all simple imaginary

roots and 1" ={a ,« } is the set of all

r+1o 200 n+r

simple real roots.

Ingeneral and

y=1iliel™} (or)
{i|ieli”1}u{j|ajk622‘v’k and jel™}
(or) {jla, €2ZV k and jel™}.

(1) Let GX be of finite type GCM and & be an positive
imaginary root. Then

aeN” = Jwr)\ Jpram\ e, o, ey ).

wel

<a,a;>=a;l<i,j<n+r

Here

K={aeQ, [<a,a/ ><00el")and |supp(a)[>2}. Case(b)2):Let o =

We discuss Case(b) and Case(c)

separately.

below Case(a),
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n+r °
Case(a): If o = z]a_ eW(K) then we have
i=1
n+r
<a,a] >=< ZZiai,alY > forr+1<j<r+n
i=1

n+r n+r

— v —
=2 <la,a)>=3]a,.
i=1 i=1

By Theorem 2.1.24.(a), it is clear that if o eA’T and

n+r

leaﬂ <0,

Case(b): If o e W(I1" \y,)Uy,, then & can be

written as

then Strictly imaginary property holds.

r+n

a=[]n(@), forallieTl™,

i=r+l
Here 7, (O{) =, —a,,,0,.,
r+2 r+1 (a ) r+2 (ai - ar+1,iar+1)
r+2 r+2
- Z“ L Ha/l djn ;&
J=r+l j=r+l
rr+3 rr+2 rr+1 (ai )
r+3 r+3
= ai - Z aj,iaj + (ar+1,[ z aj,r+1aj + ar+2,iar+3,r+2ar+3)
Jj=r+l j=r+2
r+3
+ Hajl Aj &
j=r+l
Finally,
rr+)1rr+n I r+3 r+2 r+l (Cf )
r+n r+n r+n
=a; - zakiak T4y z Q@ T4, Z Ay 12O
k=r+1 k=r+2 k=r+3
n+r
t..t+ ar+n—1,iar+n,r+n—lar+ ) -t I | ajl Jj+1, ]
j=r+l

We divide this case(b) into Case(b)(1), Case(b)(2)
(Case(b)(2)(i),Case(b)(2)(ii)) and Case(b)(3) separately.

Case(b)(1): Let a =a, € A" (n=0).

We have (¢, | aj) =¢a; for jel”.

Since ajl.'s are always negative integers and &, are

always positive, by theorem 2.1.25., it is clear that

a, e N™.
r+1 (a )(”l - 1)
a=r,(@)n=1) wih

Case(b)(2)(i): Let

r+l1+j.
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If rj(ai —a,,,a; )Fa; - a,,,&;, by the theorem
2125, a;—a,,,Q, e A",

On the contrary, if 7, (a;— a,,,,Q; )=a, - a,,, ;0.
Then

a;—a,, ;& —a;q,; ta,., G =0 ar+l,iai'

:aji_aer Jor+l 0(07")6!

As @; is a real simple root, «;F0,
A=Ay ;A5 = 0. This is also not true, because
Ay 54, are negative integers. So by theorem
2125, a;—a,,, o € X",

Case(b)2)Gi): Let a=r,(a)n=1) with

r+1=j. Then
re,—ao) =, —a0; —a0; +aga 0,

=a;,—2a,0,+2a, —u
-
But
r(e—a;0;)=a;—a;a;.
o =0-a,a,=a;a=0.

_ or i =0.

Here «; # 0 because a; is a simple real root and
a #0 for jey”™ witha €2Z and i# j. So
r(@)*a

|a, [>1. Hence by theorem 2.1.25,

r(a,—aa)*a,—a,0; = with

= aecAN™ if

la; > 1.
Case(b)(3):Let
a= rr+nrr+n 1° rr+3rr+2rr+l (ai )(n > 1)
We have
rl +nrl +n-1"* rr+3 rr+2 rr+1 (az)
r+n r+n
=a; - z Al T4, z A1
k=r+1 k=r+2
r+n
+ ar+2,i Z ak,r+2ar+3 +..+ ar+n—l,iar+n,r+n—l
k=r+3
r+n
ot Hajjl.ajﬂ’jaw *a,.
j=r+l

] . .
As all the ajl. s are negative integers , by theorem2.1.25.,
r w4

rr+n r+n-1 r+3 r+2 r+1 ((Z ) € A”m
Case(c): If ae W{2a[ liey ™},

written as

then & can be
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r+n
a= Hr,.(2al.), Joralliey".
i=r+l
Here
r+1 (2(Z ) 2(Z 2ar+1 k)
r+2 r+l (2& ) r+2 (2ai - 2ar+1,iar+1)
r+2 r+2
=2a,- > 2a,0,+ [[2a;,a,, 2,
j=r+l Jj=r+l
rr+3 r+2 r+1 (2(1 )
r+3 r+3
=20, - Z 20,0, + (2a,,, Z a;,.a;+ 24,.,5,0,.5,,9,.3)
Jj=r+l Jj=r+2
r+3
+ H 2ajl %
Jj=r+l
Finally,
rr+nrr+n 1° rr+3 r+2 r+1 (2a )
r+n r+n
=20, — Z 2a,00, +| 2a,,, Z A O T
k=r+1 k=r+2
r+n
2ar+2,i Z ak,r+2ak t..t 2ar+n—l,iar+n,r+n—lar+
k=r+3
n+r
+....+ HZaJ,,iaH,jaHn
j=r+

We discuss below Case(c)(1), Case(c)(2) and Case(3)
separately in Case(c).

Case(c)(1): Let o =2a, € A" (n=0).
Wehave 2o, |a;)=2¢ga, for jel”.

Since aﬂ.'s are always negative integers and &, are
always positive, by theorem 2.1.25., it is clear that
20, € A

Case(c)2): Let a =71.,,2a,;)(n=1).

Case(c)(2)(i): Let a=r,Q2a)n=1) with
r+l1+j.

it r,Qa —-2a,,,0,)%2a,-2a,,,0, then

sim
2a,-2a,,,,a;, €N
We have,
rj(zai _2ar+lz )
=2a,-2a,,,a,-2a,a,+2a,,,a,,.,a,.
But
2a,-2a,,,,a;, 20,0, +2a,,,a,,,,
= 20[ 2arJrl S
= 2a, 2arm i =0(0r)2a; =
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As a; is a real simple root with a; #0,
A=, 4, =(0. This is not true, because
a;,a,,,,d;,, are negative integers. So by theorem
2125, a,—a,,a €N

Case(c)(2)(ii): Let r.,Qa)n=1) with
r+1=j. Then

r,2a; —2a,a;)
=20, -2a,a,-2a,a; +2a,a 0,
=2a;,-4a,0,+4a,a, =2a,.

But
r,Qa, -2a,0,)=2a, -2a,a,
=2a, =2a,-2ae,a;, > 2a,a, =0

N a,=0 or a;=0.

Here «; # 0 because a; is a simple real root and

a; #0 for jey”™ with a ; €2Z and i+ j. So
rQa,—2a,0,)#2a,-2a,a,.

|a; [>1. By theorem2.1.25., = a e A™ if |a, [>1.
Case(c)(3):Let

a= rr+nrr+n 1° Vr+3 r+2 r+1 (2(1 )(f’l > 1) We have

rr+nrr+n 1° rr+3 r+2 r+1 (2a )

ri(@) #a with

r+n r+n
=2a, - z a2, +2a,,,; Z A r 1%
k=r+1 k=r+2
r+n

+2a,,,, Z Ay ,nCyy +.t2a a

r+n=1,i " r+n,r+n-1

k=r+3
r+n
+.. +H2a/l a, a,, *2a,.
Jj=r+l
As all the a ..' s are negative integers, by theorem 2.1.25.,
sim
rr+nrr+n 1""I/;+3 r+2 r+1 (2a )E A

(2) Let GX be of untwisted affine type. For KM algebras
of untwisted affine type, SIM property holds as per
Casperson(1994). For BKM algebras with odd roots which
we get as extensions of KM algebras untwisted affine type,
the proofiis exactly same to case(1) and hence SIM property
holds.

(3) Let GX be of twisted affine type. As per
Casperson(1994) mentioned above, SIM property does not
hold for KM algebras and the same is true for BKM Lie
superalgebras which appear as extension of KM algebras of
twisted affine type. Hence SIM property does not hold.

(4)Let GX be of indefinite type. As far as indefinite BKM
Lie superalgebras are concerned, extension of finite and
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untwisted affine type of KM algebras will hold SIM property,
where as other algebras do not hold.
The following example will illustrate the above theorem.
Example: Extension of finite type

Let A= (al );’71 (the symmetrizable GGX)

-k -a -—a,
=-b 2 -1
-b, -1 2

This is a BKM supermatrix of indefinite type denoted by
SBGA, , which is an extension of finite type A, .

If k>0, ab >4 and a,=b,=2,
Dynkin diagram can be drawn as follows:

then the

I'\___/'

2 3
Figure 1. Dynkin diagram of SBGA,

The Weyl group for corresponding BKM Lie superalgebra
is W={1,r,1,n5,10, L1}

AT = WKy oW (T W 2a, [iey .
welW
Here

Uw )

welW
_ {plal +q,a, +na; [ (p,q,,1) =
(ki,k,,ky)or (ki kb, —k, +ky,ky),
or (k,,k,, kb, +k, —k;)or
(ky,ky(by + b)) = ky, kb, + Ky —ks) or
Or(k1:k1(b1+b2)_k3=k1(b1+bz)_k2)
with 20k, — kb, <k, <0 Tk
_ P2 +q,0, +ra5 | (py,q,,1,)
=(1,0,0) or (1,5,,0) or (1,0,b,) or
(1,(b, +by),1)or (1,(b, +b,),(b, +b,))
or (1,b,,(b, +b,))



N. Sthanumoorthy ef al.:

W{2a, |licy }
_ {p3a1 +q 0, +1,05 | (P3,q5,73)
=(2,0,0) or (2,2b,,0) or (2,0,2b,) or
(2,2(b, +b,),2) or (2,2(b, + b,),2(b, +b,))
or (2,2b,,2(b, +b,)) }

Case(a): € W(Io< ) . The following relations (i),
(ii),...,(vii) can be directly verified.

(i)If a=ka +ka,+ka,
kb, + k,
B

with

2k, —kb, <k, < then

<a,a, >=-kb +2k, -k, and
<a,a; >=-bk, —k, +2k,.
() If a=ka +kb -k, +k)o, +ka,, with

2k, — kb, < k, s%, then

<a,a, >=kb -2k, +k;;
<a,a;] >=—(b,+b)k, +k, +k;.
(i) If a=ka +ko,+ kb, +k,—k;)a,, with

kb, + k,

2k, —kb, <k, < then

<a,a, >=—(b +b)k +k, +kj;
<a,a; >=kb, +k,-2k,.
(iv)If
a=ka, + (k| (b, +b,) = ky)a, +(k\b, + k, - ky)a,

kb, +k,
2 b

with 2k3 —klb2 < k2 < then

<a,a, >=(b +b)k, —k,—k;;

<a,o; >=—kb, +2k, —k,.
WIf
a =k, +(k (b +b,)—ky)a, +(k (b, +b,) -k, )5,
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By Theorem 2.1.24., and from the above results (i), (ii),

(iii), (iv), (v) and (vi), it is clear that if — kb, —k, <2k,

—kb —k; <2k,, that is if (in general),

n+r °

Z la, <2l then a e A™ forall a e W(K).

i=li#j

Case (b): Let o € W(IT™). The following relations (i),

(ii),...,(vi) can be easily verified.

OIf a=a,eA”,

n(a)=a +ba, and r,(a)) = a, +b,a;.
By Theorem 2.1.25., if b,,b, >1, then r,(a,)# ¢,

we get

and r;(@,) # @, which implies o, € A™.

() If a=a, +bo, € A"

L, weget

r(a, +ba,)=a, and

r,(a,+ba,)=a,+ba, + (b +b,)a,.
(i) If o =a, +b,a, € A",
r(a, +ba,)=a, + (b, +b,)a, +b,a,

we get

and r,(a, +b,a;) = a.

W) If a=a, +(b +b)a, +a, e A",

r(a,+ (b +b)a, +a;)=a,+(1-b))a, +a; and

Koy + (b +b,)a, +b,a;) = a, + (b +b))a, + (b +2b, - 1)ax,.

W) If a=a,+(b +b)a, +(b +b,))a, e A", we
get

we get

ry(a, + (b +b))a, + (b, +b,)ay)
=a,+ba,+(b +b,)a,; and
r(a, + (b +by)a, + (b +b,)as)
=a,+(b +b,))a, +b,a;.
Vi) If a=a, +ba, +(b +b,)a, e A",
(o +ba, +(b +b))as)
=a,+(b +b))a, +(b,+b,)a, and

we get

with 2k, —kb, <k, < % then From?h(ea ;;)]32:02;1(3 (j:)bz(i(j){3 )(iv),O{EvJ)r fﬁz('v i) with
<a,a;, >=bk, +k, —2k;; b,b,>0, it is clear that 7, ()Fa  for

<a,a) >=kb, -2k, +k,. a=aq,+ba, n (i, a=a+ba, i (i,

(viIf a=a,+(b +b)a, +a, in (iv),
a=ka, + (kb +k,+k;)a, +(k (b, +b2)_k2)a3a=al +(b, +b,)a, + (b, +b,)a, in W),
with 2k —kb, <k, < %, then a=a,+ba,+(b +b,)a, in (vi). Hence, by Theorem

<a,a, >=-bk —k, +2k;;

<a,a; >=kb -2k, +k,.

2.1.25., SIM property holds.

b,b,>1 then aeA™ for

In general, if

aeWII™).
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Case(c): Let aeW{2a,|icy }. The following
relations (i),(ii),...,(vi) can be directly verified.
OIf a=2a,eA”,

r,(2a,)=2a, +2ba,
and r,2a,) = 2a, + 2b,a;.

we get

By  Theorem  2.1.25, if  b,b,>1, then
rnQa,)#F2a, and r,(2a,)# 2a; which implies
2a, € A,

(i) If @ =2a, +2ba, € A", we get

r,Q2a, +2ba,) =2a, and

r,2a,+2ba,)=2a, +2ba, +2(b, +b,) ;.
(i) If & =2a, +2b,a, € A",

r,(2a, +2b,a;) =20, +2(b, +b,)ax, +2b,a,4

and r,2a, +2b,a;) = 2.

(W) If a=2a,+2(b +b)a, +2a, € A",
1 Qa +2(b +b,)a, +2a;)
=2a,+2(1-b))a, +2a, and

r,Qa, +2(b, +b,)a, +2b,a;)
=2a, +2(b, + b)), +2(b, +2b, - 1);.
WIf  a=2a,+2(b +b,)a, +2(b, +b,)a, € A",

we get

we get

we get

1o, +2(b,+b))a, +2(b, + b));)
=2a,+2ba, +2(b +b,)a, and
2oy +2(b +b,)a, +2(b, + by)ars)
=2a,+2(b +b,))a, +2b,c;.
i) If a=2a,+2ba,+2(b +b,)a, e A", we
get
r,(2a, +2bo, +2(b, +b,)a,)
=2a,+2(b +b,))a, +2(b, +b,)a; and
r,(2a, +2ba, +2(b, + b)) = 2a, + 2ba,.
From the above results (i), (iii), (iv), (v) and (vi) with
b,b,e2Z, it is that 1, (a)#F«a
a=2a+2ba, n (i), o=2a +2ba; in (i),
(iv),
a=2a,+2(b,+b,)a, +2(b, +b,)a, in V),
a=2a,+2ba,+2(b,+b,)a; in (vi). Hence, by
theorem 2.1.25., SIM property holds.
In general, for ¢ € W{2a,|i€y_} SIM property
holds if b,,b, >1.

clear for

a=2a,+2(b +b,))a, +2a, in
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Example: Extension of untwisted affine type

Let A= (ay)l";; (the symmetrizable GGX)
-k -a -—a,
=|=-b 2 —2 |. This is a BKM supermatrix of
-b, -2 2

indefinite type denoted by SBGAI(I) , which is an extension
of untwisted affine type Al(l) .

If k=0, a,b,>4 and a,b, >4, then the Dynkin
diagram can be drawn as follows:

Figure 2. Dynkin diagram of SBGA; ).

The Weyl group of the corresponding BKM Lie superalgebra
is
W= {1:rz(’”ﬂ’z)j:73(r2’§)j:(r2r3)j+1a(r3r2)j+1 |jel.}.
Then

A= WKy oW (T W 2a, iey .
weW
Here

UW(K )={ Py + 4, +ras | (prag.n)

welW

= (ky,ky,ky)or(k,,(k,b, —k, +2k;),k;)
or(k,,k,,(k,b, + 2k, —k;))or(k,,(k, (b, +2b,)
+ 3k, —2k;),k;)or
(k,,(k,b, =k, +2k;),
(k, (2D, +b,) =2k, +3k;)),...... with
— kb, + 2k, — 2k, <0 and — kb, — 2k, + 2k, <0 }.
w(I1™)
_ {pzal +q,0, + 105 [ (py.q,,1) =
(1,0,0) or (1,5,,0) or (1,0,b,) or
(1,(b, +2b,),b,) or (1,b,,(b, +2b)))
or (1,(4b, +2b,),(b, +2b,)) or
(1,(b, +2b,),2(2b, +b,)) or
(1,(4b, +2b,),(4b, + 6b,)) or
(1,(7b, + 6b,),(4b, +6b,)) or
(1,(7b, + 6b,),(7b, + 8b,)) or
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(1,1,(4b, +6b,)) or .... }
W{2a,|licy }
_ {[%al +q;0, + 1305 [ (P3,45,13)
=(2,0,0) or (2,2b,,0)or (2,0,2b, )or
(2,2(b, +2b,),2b,) or (2,2b,,2(b, +2b,))
or (2,2(4b, + 2b,),2(b, +2b,)) or
(2,2(b, +2b,),4(2b, +b,)) or
(2,2(4b, +2b,),2(4b, + 6b,)) or
(2,2(7b, + 6b,),2(4D, +6b,)) or
(2,2(7b, + 6b,),2(7h, + 8b,)) or
(2,2,2(4b, +6b,)) or ... }
Case(a):let €U, _, W(K) The following relations
(1),(ii), ....,(vi) can be easily verified.
(i) If a=ka +ka,+ka,
2k, <2k, + kb, and 2k, < kb, —2k,, then
<a,a, >=-kb +2k, -2k
<a,a; >=—kb, -2k, +2k,.
() If a=ka + (kb —k,+2k)a, + ko, with
2k, <2k, + kb, and 2k, < kb, —2k,, then
<a,a; >=kb -2k, +2k;
<a,a; >=-kb, -2kb, -2k, +2k,.
(i) If a=ka, +ko, +(kb, +2k, —k;)a; with
2k, <2k, + kb, and 2k, < kb, -2k, then
<a,oa, >=—kb, —2kb, -2k, +2k;;
<a,a; >=kb, +2k, - 2k,.
a = ko, +(kb, +2kb, +3k, -2k;)a,
+(k\b, + 2k, — k),
with 2k, <2k, + kb, and 2k, < kb, —2k,, then
<a,a, >=kb, +2kb, +2k, -2k;;
<a,o; >=3kb, -2k b, -2k, +2k,.
a=ka, + (kb —k,+2ky)a,
+ (kb, +2k,b, =2k, +3k;),
with 2k, <2k, + kb, and 2k, < kb, —2k;, then
<a,a; >=kb, +2kb -2k, +2k;
<a,a, >=3kb, —2kb, -2k, +2k;,.
o =k, + 4k, =3k, +2kb, + 4k b)),
+ (k,b, +2k,b, =2k, +3k;),

with

(iv) If

W) If

(vi)If
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with 2k, <2k, +kb, and 2k, < kb, —2k,, then
<a,oa; >=kb,+2kb, -2k, +2k,;
<a,a) >=3kb, —2kb, -2k, +2k,.

Similarly, we can find < Ot,Oll.v > for different

aeA” and j=273.

Hence by Theorem 2.1.24., and by the above results
(1),(ii), ....,(vi) and others, it is clear that a e ™ for all
it kb +2k, -2k, <0,

and

aey, w(Io{).
— kb, =2k, +2k, <0

— kb, —2kb, — 2k, + 2k, <O0. That is i

3
z ll.aji < 2lj, SIM property holds.
i=1i% )
Case(b): Let a e W(II")UW{2a,|icy™}.

The following relations (i), (ii),...,(iv) can be easily
verified.

OIf a=a, eA”, weget
rn(a)=a, +ba, and r,(a,) = a, +b,a;.
By 2.1.25, if  b,b,>1,

() # «, and r,(a,) # o, which implies a, € A™.

Theorem then

(i) If a=a,+ba, AT,

r,(a, +ba,)= o, and

ry(a, +ba,)=a,+ba, +(2b +b,)a,.

we get

(i If a=a,+b,a; €A

L we get

r(a, +b,a,)=o, + (b, +2b))a, +b,c,
and r,(a, +b,a;) = a.
a=a, +(7b,+6b,)a, +(8b, +7b))a, € A",
e (a, +(7b, + 6b,)ar, +(8b, +7b,)x;)
=a,+(10b, +8b,)a, + (8b, +7b,)x,
and ry(a, + (7b, + 6b,))a, +(8b, + 7b,)r;)
=a, +(7b, + 6b,)a, + (6b, + 6b,);.

Similarly, we can find 1’7(0() for aeA” and

@(v)If

we ge

yel™.

Hence by Theorem 2.1.25.; and by the above results (ii),
(iij) and others, with b,,b, >0, it is clear that
r(@)#a
a=a,+ba,,
a=a,+(7b,+6b,)a, +(8b,+7b)a; ...
e W(I1™). Ingeneral,if b,,b, >1 weget a € A™ for
aeWw (™).

for a=a a=a +ba,,
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Case(C): If aeW{2a,|icy_}. The following
relations (i), (ii),...,(iv) can be easily verified.

DIf a=2a e Aii" , we get
1 Q2a,)=2a, +2ba,andr(a,) = 2a, +2b,a,.

By  Theorem  2.1.25, if  b,b,>1, then
1 (Q2a,) #2a, and r,2a;) ¥ 2y which  implies
20, e N7,

(i) If o =2a,+2ba, € Ai:", we get

rQ2a, +2ba,) = 2a, and

r,2a, +2ba,) =2a, +2ba, +2(2b, +b,)a;.
(i) If @ =2a, +2b,a, € A",
r,Qa, +2b,a;) =2a, +2(b, +2b,)a, +2b,a,

and r,(2a, +2b,a;) = 2q,.
(V)If
a =2a,+2(7b +6b,)a, +2(8b, +7b,)ay € AT,
r,(2a, +2(7b, + 6b,)ax, +2(8b, +7b,)cx;)
N 24, +2(10b, +8b,)a, +2(8b, +7b, )t and
r, 2o, +2(7b, + 6b, ), +2(8b, +7b,)ary)
=2a, +2(7b, + 6b,)ax, +2(6b, +6b,);.

Similarly, we can find ry(a) for aeA” and

we get

yel™.
Hence by Theorem 2.1.25 and by the above results (ii),
(iii),...,(iv) and others, with b,,b, >0, it is clear that

r(@#a for  a=2a, a=2a+2ba;,

a=2a+2bea,, ,
a =2a,+2(7b,+6b,)a, +2(8b, +7b))e;, ...
S W(Hi"i), Ingeneral,if b,,b, >1 weget a e A™ for
aeW{l2a|icy }.

Class(Il): BKM Lie superalgebras of infinite order and
with a finite non-empty set of odd roots

We divide this class into three subclasses.

(i) All simple roots are imaginary(odd or even)

(i1) One simple real root(odd or even) and infinite number
of imaginary roots(odd or even)

(iii) Finite number of simple real roots and infinite

number of imaginary roots.

We discuss these cases below

(i) All simple roots are imaginary(odd or even):

For this class, all the roots are imaginary. So these
algebras satisfy strictly imaginary property.

(i1) One simple real root(odd or even) and infinite number
of imaginary roots(odd or even):

We prove the following theorem for this case.

Theorem 3.2.2: Let A= (al].)szl (the symmetrizable
GGX)

2 —a, —a, —-a,, —a,
—-b -k —c, —c,.., —c,
-b, —-d, —k,

—-b, —d, —k,

Here k,(i=2)el,,, a,b,c,d, are positive
integers and GGX is the BKM supermatrix with one real
simple root and infinite number of imaginary roots. If

0{2211.0(1. with ZIia1i+2ll <0 is true for all ¢,
i=1 i=2
then the corresponding BKM Lie superalgebra satisfies
Strictly imaginary property.
Proof:

In the usual notation /={1,2,3...} with [ ={1}

and [" ={iel|i>2}. 1={a,,a,,a,,...}, with
IT° ={a,} and " = {0{1. |ie ]im}. We define
v eN and

y={1} (or) y={i>2|iel™} (or)
w={lyuli>2]iel™).

Let aZleai and ﬂ=a1 . Then by Theorem
i=1

2.1.24.,
n+r n+r n+r
\2 . \2 — \2 p—
<a,a; >=< Zliai’al >7Z<Iiai’al >7Zlia1i
i=1 i=1 i=1

n+r o0

If Zliall. < 0, which is same as Zliali +2/, <0
i=1 i=2
then Strictly imaginary property holds.
Remark:

For BKM superalgebras which appear as extension of
twisted affine type(Case 3) and extension of indefinite
type(Case 4), examples were given
in[17]( A™™ \ A" = null set)(Section 4, Case 3, subcase
2).

Remarks:

We have seen above that in the case of BKM Lie
superalgebras of infinite order with one simple real root (odd
oreven ) and infinite number of imaginary roots (odd oreven)

for w c{i>2]iel™}, SIM property holds only when
|a,; | and |a, | are all greater than one. As a counter

example, we consider Monster Lie superalgebra with one
simple real root and infinite number of simple imaginary

roots(odd or even). Consider (ZZZZZ.CZI. with

n=1
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dla,+2[,<0 and a,=0 for 2<i<c(l)+1
i=2
(c(1): multiplicity of the root corresponding to -2 ). As
a; =0 (2<i<c(l)+1), the corresponding BKM Lie
superalgebra does not satisfy SIM property. We prove this
below. Consider Monster Lie superalgebra which has the
following supermatrix as defined below:

Let [={-1}uU{l1,2,3,....} be an index set and
consider the Borcherds-Cartan
A= (—(l'+j))i,j€, with charge

super matrix
m=(c(i)|iel),
where ¢(7) are the coefficients of the elliptic modular

function

j(q)—744=q" +196884q +21493760¢> +.....
= c(nyg”.

n=-1

2 0 - -~ 0 -1

Here
0 —2 v eev e =3
A=CE+ Ny =| 0 -+ o e =20 =3

-3 -4

is the BKM supermatrix and [ ={-1}U{1,2,3.....}.

We define wc{iel|i=2}. a_ is the real root
corresponding to the diagonal element 2 and
a,(2<i<c(l)+1) are the imaginary roots

corresponding to the diagonal element -2
We consider any ¢, for 2<i<c(1)+1, then
\2 — —
<a,oa>=a_ =0.

This implies ¢; does not satisfy the strictly imaginary
property for 2<i<c¢(1)+1. Hence Strictly imaginary
property does not hold for a Monster Lie superalgebra.

(iii) Finite number(atleast two) of simple real roots and
infinite number of imaginary roots:

We prove the following theorem for this case.
Theorem 3.2.3:

Let A= (aij)fj:l (the symmetrizable GGX)

2 - “; - U; s —a, ..

— b, 2 —cf —c, .

—b. ) —a 2 —a —ay - —a,._, -—a

| =t —dl. =B =k —c - —c, —c
—b,.' —d.., —b, —d, —k .
—d,, —d, —b, —d, - - —k

Here k,eZ,,, a,b,c.,d.,a,b,c,d, are
positive integers and GGX is the BKM supermatrix with
r(r>2) real simple roots and infinite number of

imaginary roots. If a:i‘/iai with iliali+2[1<() is

i=1 i=r+l
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true for all ¢, then the corresponding BKM Lie

superalgebra satisfies Strictly imaginary property.
Proof:

In the wusual notations [={1,2,3...} with
1“={12,..,r} ( r>2 ) and
I"={ili>r+1}(i>3). Here,

IT={ea,,a,,a,,.....}, the set of all simple roots with
IT” ={a,,a,,...,a,}, the set of simple real root and

" = {a,|izr+1}, the set of all simple imaginary
roots.
We

define Ve N and

v=liliel™} (or)y={jljel™} (or)
w={iliel"yUij|jel™).

0
Let aZZZiai and {a,,,,.....,a,} €l1”.
i=1

0 0
\ — \ — . re
<a,a; >=< Zlial.,aj >= E la,, Vjel
i=1 i=1

As all Ay

[# ] are negative integers and a, = 2,
0
we have Zliajl. <0. Hence < ai,a; ><( and SIM
i=1
property holds.
Remarks:
As in the case of Monster Lie superalgebra with one
simple real root and infinite number of imaginary simple
roots with the condition a,, =a, = 0, we can consider

BKM Lie superalgebras with two simple real roots and
infinite number of imaginary simp le roots with the condition,

a;, =a; =0 for someiand for j=1,2.

. Vv — —_ o re
In this case,as <@, a; >=a,; =0 forall jel

and forsome i € ]im, (similar to Monster Lie superalgebra
as in theorem 3.2.3. ) SIM property does not hold . Hence we
understand that for the infinite order case, the SIM property

depends on the non-diagonal non-zero entries of the
corresponding BKM supermatrix.

4. Conclusions

In this paper, a complete classification of Borcherds
Kac-Moody Lie superalgebras possessing strictly imaginary
property is given. From this classification, one can
understand that strictly imaginary property depends mainly
on the coefficients of the corresponding BKM supermatrix.
With these findings, different complete classifications of
Borcherds Kac-Moody Lie superalgebras possessing special
imaginary roots, purely imaginary roots and strictly
imaginary roots were separately found out in different
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research papers. In fact, these classifications will be very
much helpful to the researchers to extend these classes of
root systems to other types of finite and infinite dimensional
Lie (super)algebras. Moreover, other characteristics of these
classes of Borcherds Kac-Moody Lie superalgebras
possessing these root systems can also be studied. These
findings may also lead to many other applications.
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