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Abstract  This paper examines the dynamics of HIV/AIDS with treatment and vertical transmission. A nonlinear 
deterministic mathematical model for the problem is proposed and analysed qualitatively using the stability theory of 
differential equations. Local stability of the disease free equilibrium of the model was established by the next generation 
method. The results show that the disease free equilibrium is locally stable at threshold parameter less than unity and unstable 
at threshold parameter greater than unity. Globally, the disease free equilibrium is not stable due existence of forward 
bifurcation at threshold parameter equal to unity. However, it is shown that using treatment measures (ARVs) and control of 
the rate of vertical transmission have the effect of reducing the transmission of the disease significantly. Numerical 
simulation of the model is implemented to investigate the sensitivity of certain key parameters on the spread of the disease. 
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1. Introduction 
Diseases can be transmitted many ways, some of which 

can be classified as either horizontal or vertical. In the case of 
HIV/AIDS, horizontal transmission can result from direct 
physical contact between an infected individual and a 
susceptible individual. Vertical transmission, on the other 
hand, can result from direct transfer of a disease from an 
infected mother to an unborn or newborn offspring. Diseases 
that can be transmitted vertically include chagas, dengue 
fever, hepatitis B and HIV/AIDS just to name a few. Vertical 
transmission of HIV/AIDS can occur during pregnancy, 
delivery or breastfeeding and is influenced by many factors, 
including maternal viral load and the type of delivery[1]. 
According to[2] and[3], about 20% of the children infected 
with HIV develop AIDS in the first year of their lives, and 
most of them die by the age of 4 years. The others, up to 80% 
of infected children, develop symptoms of HIV/AIDS at 
school entry age (7-9 years) or even during adolescence. 

HIV/AIDS transmission in Africa is primarily through 
heterosexual sex and vertical transmission (mother-to-child). 
Forty percent of all HIV/AIDS cases result from mother to 
child transmission[4]. Fewer than 300 infants in the U.S 
acquired HIV through vertical transmission in 1997. In 
sub-Saharan Africa over 2.5 million children under the age 
of 15 have died of AIDS. Most of these children were 
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exposed to HIV during labour or breastfeeding. HIV/AIDS is 
globally a serious threat to future development 

The impact of vertical transmission of HIV/AIDS has 
been felt mainly in Africa[1], where the level of literacy is 
low, the poverty level is very high and the quality of health 
services is generally very poor. A number of studies 
involving treatment of HIV-infected pregnant mothers (in 
Abidjan[5], and Thailand[6]) have shown that when HIV 
-infected mothers are treated with AZT (Zidovudine) and 
Nevirapine, the number of babies born infected is reduced 
significantly. Other studies[6, 7, 8] involving treatment of 
HIV-infected children have demonstrated further that 
effective treatment for these children can prolong their 
survival and significantly improve the quality of their lives. 
The current antiretroviral drugs (ARV) are known[9] to be 
effective in lowering viral loads, and the infected children 
may as a result reach adulthood and become sexually active. 

[10] studied a mathematical model on the dynamics of 
HIV/AIDS epidemic with vertical transmission.[11] 
proposed an HIV/AIDS model with vertical transmission 
and the period of sexual maturity of infected newborns 
which is incorporated in the model as a time delay.[12] 
proposed a model on the scope of the HIV/AIDS epidemic 
generally, and two of the major modes of transmission 
(mother–to–child and heterosexual intercourse) with respect 
to population distributions (0 – 5) years and 15 years and 
above. 

In this study, we extend the model by[10], who considered 
vertical transmission of HIV/AIDS without treatment.[10] 
assumed that no juveniles born infected with HIV/AIDS 
lived long enough to reach the adolescent stage. This 
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assumption was justified in 1991, since antiretroviral drugs 
capable of prolonging lives up to adulthood were unknown 
or not widely available. Using models which assumeconstant 
total population in arriving at or in assessing theeffectiveness 
of public health policies aimed at the control of such 
epidemics may fail to capture the severity of the epidemic in 
populations which are undergoing demographic changes. In 
this paper it is therefore intended to extend the work of[10] 
so as to incorporate treatment. Therefore we study and 
analyse the dynamics of HIV/AIDS with treatment and 
vertical transmission. Consequently, we formulate anon 
-linear system of differential equations that models the 
dynamics of transmission in a varying population. Models of 
HIV/AIDS dynamics that ignore the impact of vertical 
transmission, particularly during the current high usage of 
antiretroviral drugs, may fail to capture the actual impact of 
HIV/AIDS in a population. 

2. Model Formulation 
A non linear mathematical model is proposed and 

analyzed to study dynamics of HIV/AIDS with treatment and 
vertical transmission. In modelling the dynamics, the 
population of size ( )N t  at time t  with constant inflow of 
susceptible with rate Nπ  where π  is the rate of 
recruitment into susceptible population is divided into five 
groups: Susceptibles ( )S t , infectives ( )I t  (also assumed 

to be infectious), pre-AIDS patients ( )P t , treated class 

( )T t  and AIDS patients ( )A t  with natural mortality rate 
µ  in all classes. 

 

Figure 2.1.  Flow diagram of the model 

The interaction between the classes will be assumed as 
follows: the susceptibles become HIV infected via sexual 
contacts with infectives which may also lead to the birth of 
infected children. A fraction of new born children are 
infected during birth and hence are directly recruited into the 
infective class with a rate ( )1 ε θ−  and others die 

effectively at birth ( )0 1ε≤ ≤  where ε  is the fraction of 
newborns infected with HIV who dies immediately after 
birth and θ  is the rate of newborns infected with HIV. We 
do not consider direct recruitment of the infected persons but 
by vertical transmission only. 

It is also assumed that some of the infectives join the 
pre-AIDS class, depending on the viral counts, with a rate 

1σ δ  where δ  is the rate of movement from infectious 

class and 1σ  is the fraction of δ  joining the pre-AIDS 
class. They then proceed with a rate γ  to develop full 
blown AIDS. Some of the infectives proceed to join the 
treated class with a rate 2σ δ  where 2σ  is the fraction of 

δ  joining treated class and then proceed with a rate k  to 
develop full blown AIDS while others with serious infection 
directly join the AIDS class with a rate ( )1 21 σ σ δ− − . A 
Fraction of γ  is assumed to get treatment. Taking into 
account the above considerations, we then have the 
following schematic flow diagram 

It is also assumed that some of the infectives join the 
pre-AIDS class, depending on the viral counts, with a rate 

1σ δ  where δ  is the rate of movement from infectious 

class and 1σ  is the fraction of δ  joining the pre-AIDS 
class. They then proceed with a rate γ  to develop full 
blown AIDS. Some of the infectives proceed to join the 
treated class with a rate 2σ δ  where 2σ  is the fraction of 

δ  joining treated class and then proceed with a rate k  to 
develop full blown AIDS while others with serious infection 
directly join the AIDS class with a rate ( )1 21 σ σ δ− − . A 
Fraction of γ  is assumed to get treatment. Taking into 
account the above considerations, we then have the 
following schematic flow diagram 

The model is thus governed by the following system of 
non linear ordinary differential equations: 

1 1 2 2c IS c PSdS
N

dt N N

β β
π= − −

 
3 3 4 4c TS c AS

S
N N

β β
µ− − −

 
3 31 1 2 2 4 4c TSc IS c PS c ASdI

dt N N N N

ββ β β
= + + +

 
( ) ( ) ( )1 ,I I P Aδ µ ε θ− + + − + +  

( )1 ,
dP

I P
dt

σ δ γ µ= − +
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( )2 ,dT I m P A k T
dt

σ δ γ ν µ= + + − +
 

( ) ( )1 21 1dA I m P
dt

σ σ δ γ= − − + −
 

( ) ,kT Aν α µ+ − + +             (1) 

where 
, 1, 2,3, 4i iβ =  are the sexual contact rates 

c  is the average number of sexual partners per unit time 
α  is the disease induced death rate in the AIDS patients 

class 
ν  is the rate at which AIDS patients get treatment 
The initial conditions are taken as 
( ) 00 ,S S=  ( ) 0,0I I=  ( ) 0,0P P=  ( ) 0,0T T=  and 

( )0 ,A A=  
To simplify the model, it is reasonable to assume that the 

AIDS patients and those in pre-AIDS class are isolated and 
sexually inactive and hence they are not capable of 
producing children i.e. ( ) ( )1 1 0P Aε θ ε θ− = − =  and 
also they do not contribute to viral transmission horizontally 
i.e. 2β  and 4β  are negligible[1]. 

In view of the above assumptions, the system reduces to 

3 31 1 c TSc ISdS
N S

dt N N

ββ
π µ= − − −

 
3 31 1 c TSc ISdI

dt N N

ββ
= +

 
( ) ( )1I Iδ µ ε θ− + + −  

( )1
dP

I P
dt

σ δ γ µ= − +
 

( )2
dT

I m P A k T
dt

σ δ γ ν µ= + + − +
 

( ) ( )1 21 1
dA

I m P
dt

σ σ δ γ= − − + −
 

( )kT Aν α µ+ − + +             (2) 

The total population N  at any time t  is given by 
( ) ( ) ( ) ( ) ( ) ( )N t S t I t P t T t A t= + + + + . 

This gives 

( ) ( )1
dN

N A I
dt

π µ α ε θ= − − + −
  

We note that in the absence of the disease and infectives, 
the total population size N  is stationary for  ,π µ=
declines for  π µ< and grows exponentially for π µ> . So 
we shall assume that mortality rate µ , will be a function of 
state variables. Since the model is homogeneous of degree 
one, the variables can be normalized by setting /s S N= , 

/i I N= , /p P N= , /h T N=  /a A N= . This leads to 
the normalized system 

1 1 3 3
ds

c is c hs
dt

π β β= − −
 

( )1 1 3 3 1
di

c is c hs i
dt

β β ε θ= + + −
 

( )1 ,a i iπ δ α ε θ− + − + −    

( )1 1 ,
dp

i a i p
dt

σ δ π γ α ε θ= − + − + −  
 

2
dh

i m p a
dt

σ δ γ υ= + +
 

( )1 ,k a i hπ α ε θ− + − + −    

( ) ( )1 21 1
da

i m p kh
dt

σ σ δ γ= − − + − +
 

( )1 ,a i aπ υ α α ε θ− + + − + −            (3) 

where 
1.s i p h a+ + + + =  

and ( ) 0s t > , ( ) 0i t ≥ , ( ) 0p t ≥ , ( ) 0h t ≥ , ( ) 0)a t ≥ , 
0t∀ ≥ . 

Continuity of right-hand side of the system (3) and its 
derivative imply that the model is well posed for 0N > . 

3. Model Analysis 
The nonlinear system (1) will be qualitatively analyzed so 

as to find the conditions for existence and stability of disease 
free equilibrium points[13]. Analysis of the model allows us 
to determine the impact of treatment and vertical 
transmission on the transmission of HIV/AIDS infection in a 
population. Also on finding the reproductive number 𝑅𝑅0 , 
one can determine if the disease become endemic in a 
population or not. 

3.1. Positivity of Solutions 
It is necessary to prove that all solutions of system (3) with 

positive initial data will remain positive for all times 0t > . 
This will be established by the following theorem. 

Theorem 1 
Let ( )0 0,  s >  ( )0 0,  i ≥  ( ) 0 0,p ≥

 ( )0 0,h ≥
 

( )0 0a ≥ . Then the solutions { },  ,  ,  ,  s i p h a  of the system 
(3) are positive 0t∀ ≥ . 

Proof 
From the first equation of the system (3), we obtain the 

inequality expression 
ds

s
dt

π π≤ −                 (4) 

which gives 

( ) 1 ts t ce π−≤ +
 As t →∞  we obtain ( )0 1s t≤ ≤ . Hence all feasible 

solution of system (3) enter the region 
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( ){ } }5,  ,  ,  ,  : 1s i p h a s i p h a+Ω = ∈ + + + + = . Similar 

proofs can be established for the positivity of 1 2,  ,  ,  i i h a . 

3.2. Disease Free Equilibrium (DFE) 
The disease free equilibrium of the normalized model (3) 

is obtained by setting 

0
ds di dp dh da
dt dt dt dt dt

= = = = =         (5) 

At disease free equilibrium we have 1s = , 
0,i p h a= = = =  and the system (3) becomes 

0.sπ π− =  
Therefore the disease free equilibrium (DFE) denoted by 
0E  of the system (3) is given by 

( ) ( )0 , 0, 0, 0, 0 1, 0, 0, 0, 0E s= =         (6) 

3.3. Local Stability of DFE 

The disease free equilibrium of the model (3) was given by 

( ) ( )0 , 0, 0, 0, 0 1, 0, 0, 0, 0E s= =         (7) 

3.4. Model Reproduction Number 

In order to assess the local stability of the 0E  established 
by the next generation method on the system (3), 
computation of the basic reproduction number is essential. 
The basic reproduction number 0R  is defined as the effective 
number of secondary infections caused by typical infected 
individual during his entire period of infectiousness[14]. 
This definition is given for the models that represent the 
spreading of infection in a population. It is obtained by 
taking the largest (dominant) eigenvalue (spectral radius) of 

1
0 0( ) ( )i i

j j

F E V E
X X

−
   ∂ ∂
   

∂ ∂      
            (8) 

where 

iF  is the rate of appearance of new infection in 
compartment i , 

iV +  is the transfer of individuals out of the compartment 
i  by all other means, 

0E  is the disease free equilibrium. 
By linearization approach, the associated matrix at disease 

free equilibrium is obtained as 

1 1 3 30 0
0 0 0 0
0 0 0 0
0 0 0 0

c cβ β

=

 
 
 
 
  

F

 
and 

( )

( ) ( )

1

1 2

1 0 0 0
0 0

0
1 1

m k
m k

π σ ε θ
σ δ π γ

γ π υ
σ σ δ γ π υ α

+ − −

− +
=

− + −

− − − − − + +

 
 
 
 
  

V

 
It can be shown that the Eigen values of 1−FV  are 

( )0,0,0, Z . 
where 

1 1c
Z

β
π δ θ θε

=
+ − +  

( )
( )( )( )

2
3 3 2 2 2 2 1 1 1

2

c m m

k

β σ π σ πα σ γπ σ γα σ γπ σ γα νπ νγ σ νπ δ

π δ θ θε π γ απ π π ακ νπ

+ + + + + + + +
+

+ − + + + + + +
(9) 

It follows that the basic reproduction number 0R  for the 
normalised model system (3) with treatment and vertical 
transmission is given by 

1 1
0

cR β
π δ θ θε

=
+ − +  

( )
( )( )( )

2
3 3 2 2 2 2 1 1 1

2

c m m

k

β σ π σ πα σ γπ σ γα σ γπ σ γα νπ νγ σ νπ δ

π δ θ θε π γ απ π π ακ νπ

+ + + + + + + +
+

+ − + + + + + +
 (10) 

The disease free equilibrium of the treatment model 
system (3) with infective immigrants is locally 
asymptotically stable if 0 1R <  and unstable if 0 1,R >  

Remark: It is noted that with high 0R , which is a 
function of the number of  sexual partners c , the number of 
invectives will increase which in turn increases the AIDS 
patients population. Thus in order to keep the spread of the 
disease at minimum, the number of sexual partners should be 
restricted. 

3.5. The Endemic Equilibrium 

To obtain an endemic equilibrium Ε∗ , we set each 
equation in the model (3) equal to zero. Solving the system 
while expressing each equilibrium point in terms of *i  at 

steady state, we get ( )*s t , ( )*p t , ( )*i t , ( )*h t , and 

( )*a t  as an endemic equilibrium point. Thus 

 
( ) ( ) ( ) ( ) ( )( )* * * * *, , , ,E s t i t p t h t a t=

 
is an endemic equilibrium  
where 

( ) ( )( )
( )

* * * *
*

* *

1 1

1

i a i i
s

a i

π ε θ π δ α ε θ

π α ε θ

+ − − + − + −
=

− + −
 

( )
*

* 1
* *1

i
p

a i

σ δ

π γ α ε θ
=

+ − + −
, 

* k
h

φω
=  , 
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( ) ( ) ( )
( )

* * * *
* 1 11 2 1 2 1i m i k i m i

a
k

σ σ δ φψ σ γδ ψ σ δ φ γσ δ

φ ωψ ν

− − + − + +
=

−  
with 

( )( )* *1a iφ π γ α ε θ= + − + −  

( )( )* *1k a iψ π α ε θ= + − + −   

( )( )* *1a iω π ν α α ε θ= + + − + −   

and 

 

* *
2 1k i m iσ δ φ γσ δ= +  

( ) ( ) ( )** * *
1 2 1 2 11 1i m i k i m i

k

ν σ σ δ φψ σ γδ ψ σ δ φ γσ δ

ωψ ν

− − + − + +
+

−  
We note that * * * *,  ,   ,  s p h a  are always positive and this 

will happen if and only if 0 0R > . The model also exhibits a 
forward bifurcation for some estimated parameters as seen in 
figure 3.1 below: 

A Forward or Transcritical bifurcation at the stationary 
solutions occurs at 0 1R = . If 0 1,R <  no biologically 
meaningful endemic stationary solution exists, and the 
disease free stationary solution is a global attractor. But if

0 1,R > the endemic solution exists and it is a global 
attractor, while the disease free solution is a saddle point. 
This is referred to as a forward bifurcation because in the 
neighbourhood of the bifurcation point, the endemic disease 
prevalence is an increasing function of 0.R  

 

Figure 3.1.  Forward Bifurcation of the model (3) 

3.6. Global Stability of the Endemic Equilibrium  

Theorem 2 
If 0 1R > , the endemic equilibrium Ε∗ of the model (3) is 

globally asymptotically stable. 
Proof 
To establish the global stability of the endemic 

equilibrium ∗Ε , we construct the following Lyapunov 
function: 

( )
*

* * * * * * *, , , , log
s

V s i p h a s s s
s

= − −
 
 
 

 *
* * * *

*
log log

i p
i i i p p p

i p
+ − − + − −
   
         

* *
* * * *log log

h a
h h h a a a

h a
+ − − + − −
   
   
      

By direct calculation of the derivative of V  along the 
solution of (3) we obtain 

* * *dV s s ds i i di p p dp
dt s dt i dt p dt

− − −
= + +
     
     
       

* *h h dh a a da
h dt a dt
− −

+ +
   
   
   

        (11)
  

which gives  
dV Z Y
dt

= −  
where 

( )2*
* *

1 1 3 3

s s
Z c i c h a i i

s
β β α θ εθ

−
= + + + +  

 

[ ] ( )2*

1 1

i i
c s a

i
β θ α

−
+ + +  

( ) ( )
2 2*

* *p p h h
a i i a i i

p h
α θ εθ α θ εθ

− −
+ + + + + +        

( )2* *3 *
* *

3 3

a a i i
i i c h

a i i
θ εθ θ β

−
+ + + +  

 
* * *

* * *
1 2

p h h
i i m p

p h h
σ δ σ δ γ+ + +  

* * * *
*

1 2
h a a a

a i i i
h a a a

ν σ δ σ δ δ+ + + +
 

* * *
* * *3

a a a
p m p kh ii

a a a
γ γ θ+ + + +  

2 *2
3 3 13i i c h iεθ εθ π β σ δ+ + + + +  

2 *2
2 3i m p a a a iσ δ γ ν α α δ+ + + + + +  

* * *
1 2i i p m p khσ δ σ δ γ γ+ + + + +  

and  

( )2*
* *

1 1 3 3

s s
Y c i c h a i i

s
β β π α θ εθ

−
= − + + + + +    

( )2*
*

1 1

i i
c s a

i
β εθ π δ α

−
− + + + +    



82 Abdallah S. Waziri et al.:  Mathematical Modelling of HIV/AIDS Dynamics with Treatment and Vertical Transmission  
 

 

( )2*
* * p p

a i i
p

π γ α θ εθ
−

− + + + +  
 

( )2*
* * h h

k a i i
h

π α θ εθ
−

− + + + +    

( )2*
* a a

i i
a

π ν α θ εθ
−

− + + + +  
 

* * * *

3 3 1 2
s i p h

c h i i
s i p h

π β σ δ σ δ− − − −  

* * * *3

3
h h i a

m p a
h h i a

γ ν εθ α− − − − −
 

* * *
* *

1 2
a a a

i i i
a a a

δ σ δ σ δ− − −
 

* * *
* *3

a a a
p m p kh ii

a a a
γ γ εθ− − − −

 
* * * * *

3 3 13 3aa i i c h iα θ θ β σ δ− − − − −  

* *
2 1i m p a iσ δ γ ν σ δ− − − −  

* * *
2 i i p m p khσ δ δ γ γ− − − − −  

Therefore from (11), if Z Y<  then, 
dV
dt

 will be 

negative definite, implying that 0dV
dt

< . Also 0,
dV
dt

= if 

and only if * * * *, , ,s s i i p p h h= = = =  and *a a= . 
Therefore, the largest compact invariant set in 

( )* * * * *, , , , : 0
dV

s i p h a
dt

∈Ω =
 
 
 

is the singleton { }* ,E

where *E  is endemic equilibrium of the normalized model 
system (3). By LaSalle’s invariant principle, it then implies 
that *E  is globally asymptotically stable in Ω  if YΖ < . 

4. Numerical Simulations of the Model 
In order to verify the theoretical predictions of the model, 

the numerical simulations of the model (3) are carried out 
using the following set of estimated parameter values: 0.3,θ =

 
0.2,ε =

 
0.1,ν =

  
0.4,1β =  3 0.05,β =  1 0.2,σ =  2 0.01,σ = 0.08,k =  

0.9,γ =  1 3,c =  3 1,c =  0.4m = ,  
0.4,π =  0.6,δ =  1α =  

with the starting values  
( )0 0.5,s =  ( )0 0.3,i =  ( )0 0.12,p =  ( )0 0.07h = , 

( )0 0.01a = . 
The endemic equilibrium values for * * *, ,i p h  and *a  

versus susceptibles are computed and shown graphically in 
figures 4.1(a) - 4.1(d) 

The equilibrium points of the endemic equilibrium *E
was obtained as 

* 0.6028,s =  
* 0.2433,i =  * 0.2284,p =  

* 0.04236,h =  
* 0.08929a = . 

It is observed that for any starting initial value, the 
solution curves tend to the equilibrium point *E . Therefore 
it can be concluded that the system (3) is globally stable 
about this endemic equilibrium point *E  for the estimated 
parameters. 

 
Figure 4.1(a).  Endemic equilibrium of proportion of infectives Vs 
Susceptibles 

 
Figure 4.1(b).  Endemic equilibrium of proportion of Pre-AIDS population 
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Figure 4.1(c).  Endemic equilibrium of proportion of treated class 

 
Figure 4.1(d).  Endemic equilibrium of proportion of AIDS population 

Figure 4.2(a) shows the distribution of proportion of 
population with time in different classes with neither new 
infected children into the population nor recruitments i.e. 

0π =  and 0θ = . 

 
Figure 4.2(a).  Variation of population in different classes for 0π =  and 

0.θ =  

It is seen that in the absence of vertical transmission into 
the community, the proportion of susceptible population 
decreases continuously resulting in the increase of the 
proportion of infective population initially but then decreases 
as all infectives subsequently develop full blown AIDS and 
the die naturally or by disease-induced deaths. 

Figure 4.2(b) shows the variation of proportion of 
population in all classes with both recruitment of 
susceptibles and fraction of new born children which are 
infected at birth. 

From figure 4.2(b) it can be seen that susceptibles first 
decrease with time. After undergoing ARV treatment their 
lives time are prolonged and thus their number increase 
reaching an equilibrium point.  

 
Figure 4.2(b).  Variation of population in different classes for 0.1π =  
and 0.2.θ =  

Figures 4.3(a) - 4.3(c) below show the role of vertical 
transmission in the model i.e. the rate of recruitment of 
infected children directly into infective class is explicitly 
shown in  

 

Figure 4.3(a).  Variation of infected population for different values of .θ  
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Figure 4.3(b).  Variation of AIDS population for different values of .θ  

 
Figure 4.3(c).  Variation of Treated class for different values of .θ  

 
Figure 4.4(a).  Variation of Susceptibles for different values of .π  

It is seen that in figure 4.3(a) that as the rate of infected 
born children ( )θ  increase, the proportion of infective 
population also increases. In figure 4.3(b) it is seen that if the 
value of θ  is increased, the proportion of AIDS population 
decrease with time and then increase until it reach its 
equilibrium position. Thus if infected born children are 
intervened by treatment, the overall infective population will 
remain under control thus reducing the AIDS population. In 
4.3(c) it is seen that as the rate of infected born children 
increase, the treated population decrease. 

Figures 4.4(a) – 4.4(c) below show the impact of 
recruitment rate for susceptibles, treated class and AIDS 
patients for different values of .π   

It is seen that for different values of π , as recruitment rate 
increase, the susceptible population also increase. While the 
inflow of susceptible increase, the treated population and 
AIDS population decrease with time until they reach 
equilibrium due to treatment. 

 
Figure 4.4(b).  Variation of Treated population for different values of .π  

 
Figure 4.4(c).  Variation of AIDS population for different values of .π  

Figures 4.5(a) – 4.5(d) depict the variation of infectives, 
pre-AIDS, Treatment and AIDS population respectively with 
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time for different values of movement rate ( )δ  of 
individuals from infective class to pre-AIDS, Treatment or 
AIDS depending upon the viral counts. 

 
Figure 4.5(a).  Variation of Infective population for different values of .δ  

 

Figure 4.5(b).  Variation of pre-AIDS population for different values of 
.δ  

 
Figure 4.5(c).  Variation of Treated class for different values of .δ  

 
Figure 4.5(d).  Variation of AIDS population for different values of .δ  

It is seen that with increase in the value of movement rate 
δ , the infected population decrease which in turn increase 
the treated population. Also with the increase of δ , the 
pre-AIDS and AIDS population decrease with time until they 
reach the equilibrium values. 

Figures 4.6(a) – 4.6(d) shows the Variation of population 
in the classes with fraction of movement rate from infectious 
classσ .  

 
Figure 4.6(a).  Variation of pre-AIDS population for different values of 

1.σ
 

 
Figure 4.6(b).  Variation of AIDS population for different values of 1.σ
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Figure 4.6(c).  Variation of Treated population for different values of 2.σ  

 
Figure 4.6(d).  Variation of AIDS population for different values of 2.σ  

It is seen that from the figures that when 1σ  increases, 
the pre-AIDS population decrease continuously. It might be 
it is because of treatment to the patients. The case is different 
for the AIDS class. It can be seen that when 1σ  increases, 
the AIDS population decrease with time it reaching 
equilibrium point and then increase with time. This is caused 
by ARVs treatment and its effect in prolonging the life span.. 
It can also be noted from the graph that, as 2σ  increases 
treated population initially increase. As time progress, it 
decrease, but the AIDS patients population decrease 
continuously reaching equilibrium and then increase 
implying that the disease still exist. 

Figures 4.7(a) – 4.7(d) predict the variation of the contact 
rates of susceptibles with respect to infectives 1β  and 

susceptibles with respect to treated class 3β  in the 
susceptibles and infectives classes. 

 

Figure 4.7(a).  Variation of susceptibles population for different values of 
1β  

 
Figure 4.7(b).  Variation of infectives population for different values of 

1β   

 
Figure 4.7(c).  Variation of susceptibles population for different values of 

3β  
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Figure 4.7(d).  Variation of infectives population for different values of 

3β  

The graphs show that as the contact rate 1β  increases, the 
susceptibles decrease, infectives class decrease implying that 
treatment increase. Also as the contact rates of susceptible 
with treated population 3β  increase the susceptible initially 
increase with time and then it reaches its equilibrium point. 
But it is differerent to infectives as 3β  increases. The 
infectives decrease with time reaching its equilibrium point 
and then increase again. 

Figures 4.8(a) – 4.8(b) below show the variation of 
susceptibles and infectives population for different values of 
number of sexual partners of susceptibles with infectives 1c , 

and between susceptibles with treated population 3c . 

 
Figure 4.8(a).  Variation of Susceptibles population for different values of 

1c  

 
Figure 4.8(b).  Variation of Infectives population for different values of 

1c  

 
Figure 4.8(c).  Variation of Susceptibles population for different values of 

3c  

 
Figure 4.8(d).  Variation of Infectives population for different values of 

3c  

From the graphs, it is seen that as the number of sexual 
partners of susceptibles with infectives 1c  increases with 
time, susceptibles decreases continuously and infectives 
increases continuously. Also it is seen that if the number of 
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sexual partners of susceptibles with treated population 3c  
increases with time, susceptibles first increase and then 
decrease with time as shown in fig. 4.8(c) due to the loss of 
immunity. But for infectives, it seen that as 3c  increases, 
the infectives also increase. Thus it can be concluded that, in 
order to reduce the spread of the disease, the number of 
sexual partners as well as unsafe sexual interaction with an 
infectives should be restricted. 

Figures 4.9(a) and 4.9(b) shows the variation of treatment 
rates in treated class and AIDS population.  

 
Figure 4.9(a).  Variation of AIDS patients for different values of k  and 
ν . 

 
Figure 4.9(a).  Variation of treated patients for different values of k  and 
ν . 

It is observed that if treatment rate is zero, the disease 
increase with time whereas treated population decrease. Also 
the graphs show that as the rates of treatment increase, the 

AIDS patients decrease due to treatment. 
In figure 4.10 below, the effect of disease induced death 

rate α  is shown. 

 
Figure 4.10.  Variation of AIDS populations for different values of α . 

It can be seen that as α  increases, the population of 
AIDS patients decrease. It is found that the AIDS induced 
death rate α , can be controlled by ARVs strengthening 
health education regarding the AIDS disease. It can also be 
noted that the respective populations tend to the equilibrium 
level as time progresses. Hence the endemic equilibrium *E  
is globally asymptotically stable for the chosen set of 
parameter value. 

5. Discussion and conclusions 
In this paper, a non-linear mathematical model to study the 

transmission of HIV/AIDS in a population of varying size 
with treatments and vertical transmission was proposed. 
Both qualitative and numerical analysis of the model was 
done. The model incorporates the assumption that due to 
sexual interaction of susceptibles with infectives, the 
infected babies born increase the growth of infective 
population directly. It was shown that there exists a feasible 
region where the model is well posed in which a unique 
disease free equilibrium point exists. 

The disease free and endemic equilibrium points were 
obtained and their stabilities investigated. A numerical study 
of the model has been conducted to see the effect of certain 
key parameters on the spread of the disease. It was 
established that the disease-free equilibrium is locally 
asymptotically stable if the basic reproduction number 

0 1R <  and for 0 1R >  it is unstable and the infection is 
persists in the population. 

The endemic equilibrium, which exist only when 0 1R > , 
is always locally asymptotically stable. It is found that an 
increase in the rate of vertical transmission leads to the 
increase of the population of infectives which in turn 
increase the pre-AIDS and AIDS population. From the 
numerical simulation, it is shown that by controlling the rate 
of vertical transmission, the spread of the disease can be 
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reduced significantly. 
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