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Abstract  In this paper, the exact traveling wave solutions of thegeneralized forms B(n, 1) and B(-n, 1) of Burgers’ 
equation are obtained by using (G`/G)-expansion method. It has been shown that the (G`/G)-expansion method, with the help 
of computation, provides a very effective and powerful tool for solving non-linear partial differential equations 
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1. Introduction 
The study of non-linear partial differential equations plays 

a very important role in many fields of mathematics and 
physics such as fluid dynamics, plasma physics, astro phys-
ics, solid state physics and quantum field theory. To obtain 
the solutions of non-linear partial differential equations, 
many methods were used, such as the Similarity transfor-
mation method[6,10], Backlund transformation method[7], 
the sine-cosine method[3,4], the Jacobi elliptic function 
method[8], the tanh method[11-14], the exp-function 
method[9,17], the inverse scattering method[1], and so on. 
One of the most powerful and direct methods for construct-
ing solutions of non-linear partial differential equations is the 
(G`/G)-expansion method[2,5,16]. This method is first in-
troduced by Wang et al.[16], and it has been widely used for 
finding exact solutions of non-linear partial differential 
equations. In this method, the linearization of non-linear 
differential equations for traveling wave is performed with a 
certain substitution which leads to a.second-order differen-
tial equation with constant coefficients. The calculations are 
performed with a computer algebra system for finding solu-
tions of the non-linear equations The generalized forms 
B(n,1) and B(-n,1) of Burgers’ equation[18] are 

( ) 0, 1, , 0,

( ) 0, 1, , 0,

n
t x xx

n
t x xx

u a u bu n a b
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+ + = > ≠

+ + = > ≠
           (1) 

where the dependent variable u  is a function of space vari-
able x and time variable t, a and b are arbitrary constants.  
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The generalized forms of Burgers’ equation appear in vari-
ous areas of mathematics, such as in the modeling of fluid 
dynamics, the propagation of waves, and traffic flow. Here, 
our goal is to obtain the exact traveling wave solutions for 
the generalized forms of Burgers’ equation by using 
(G`/G)-expansion method. 

2.The (G`/G)-expansion method 
The (G`/G)-expansion method ([2,5,16]) is a powerful 

solution method for the computation of exact traveling wave 
solutions of partial differential equations (PDEs). 

We consider the non-linear PDE for ),( txu in the form: 
( , , , , , ,...) 0,t x xx tt xtP u u u u u u =               (2) 

where ),( txu is the unknown function depending on 
space variable x and time variable t , and P  is a polyno-
mial in ),( txu  and its partial derivatives, in which the 
highest orderderivatives and nonlinear terms are involved. 
To find the traveling wave solution of PDE (2), we introduce 
the variable x tξ ω= −  so that ( , )u x t  = ( )U ξ , where ω  is a 
constant. Based on this, we use the following changeof par-
tial derivatives  

,d
t d

ω
ξ
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= −

∂
 ,d

x dξ
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2 2

2 2 ,d
x dξ
∂

=
∂

 

and so on for the other derivatives. Thus PDE (2) reduces to 
an ordinary differential equation (ODE) 

' '' '''( , , , ,...) 0,Q U U U U =             (3) 
where the primes denote the derivative with respect to

ξ .Eq. (3)is then integrated as long as all terms contain de-
rivatives, where integration constants are considered zeros. 

Now, we suppose that the solution of the ODE (3) can be 
expressed by apolynomialin 'G

G
 
 
 

)as follows: 
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where ( )G G ξ=  satisfies the second order linear ODE in the 
form 

'' ' 0,G G Gλ µ+ + =              (5) 

where ' dGG
dξ

= ,
2

''
2

d GG
dξ

= , and 0mα ≠ , ..., 1 0, ,α α λ  and µ are 

real constants which are to be determined.  
Using (4) and (5), we obtain 
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Using the general solution of (5), we have for 2 4 0,λ µ− >  
2 2
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and for 2 4 0,λ µ− <  
2 2
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To determine U explicitly, we take the following four 
steps: 

Step 1. Determine the integer m  by substituting (4) 
along with (5)into (3), and balancing the highest order 
nonlinear term(s) and the highest order partial derivative. 

Step 2. By substituting (4)and (5)into (3)with the value of 
m  obtained in Step 1, and collecting all term(s) with the 
same order of '( / )G G together, the left-hand side of(3) con-
verts into polynomial in '( / )G G . Then setting coefficients 

of 
' i

G
G

 
 
  , ( 0,1,2)i = to zero, we obtaina set of algebraic 

equations in 1 0, , ,α α ω λ and .µ  
Step 3. Solve the system of algebraic equations obtained in 

step 2 for 1 0, ,α α and µ  by use of Mathematica. 
Step 4. By substituting the results obtained in the above 

steps, we can obtain a series of fundamental solutions of (3). 

3.Applications 
In this section, we apply the (G`/G)-expansion method to 

construct the traveling wave solution of generalized forms of 
Burgers’ equation. 

3.1 The B (n, 1) Burgers’ equation 

This B(n, 1) Burgers’ equation is given as 
( ) 0,n

t x xxu a u bu+ + =  .0,,1 ≠> ban     (10) 
Using the transformation u(x, t)=U ( )ξ ,where x tξ ω= − , 

the PDE is reduced to an ODE 

' ' ''( ) ( ) 0,nU a U b Uω− + + =               (11) 
where primes denote the derivative with respect to
ξ .Integrating once with respect to ξ  and taking constant of 
integration to be zero, (11) reduces to 

'( ) ( ) 0.nU a U b Uω− + + =              (12) 

Now balancing nU and 'U , we obtain 
1 , 1

1
m n

n
= >

−
 

A necessary condition for obtaining a closed form analytic 
solution is that m  must a positive integer. Using the trans-
formation  

1
1nU V −= ,               (13) 

(12) converts to  
2 '( 1) ( 1) 0.n V a n V bVω− − + − + =          (14) 

Now, balancing 2V and 'V  we obtain 2m=m+1 so 1m = . 
Writing the solution of (14) in the form  

'
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           (15) 

Using (4) and (15), we obtain 
2' '
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Substituting (15), (16) and (17) into (14), and setting the 

coefficients of 
' i

G
G

 
 
 

( 0,1,2)i = to zero, we obtain a system of 

algebraic equations in 1 0, , ,α α ω λ and µ  as follows: 
0'
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Solving the system of equations (18)-(20) by Mathematica, 
we obtain 

1 ,
( 1)

b
a n

α =
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0 2 ( 1)
b n
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=
− , 

2 2 2 2 2
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By using (21), the expression (15) can be written as 
'

( ) ,
2 ( 1) ( 1)
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Where 'G
G

 
 
 

is defined by (8) and (9). Nowusing
1

1nU V +=  
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When 2 4 0λ µ− > we obtain hyperbolic function solution 
of (10) as  
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When 042 <− µλ , we obtain trigonometric functionso-
lution of (10) as  
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where, ,x tξ ω= −  and 1C and 2C  are arbitrary constants 

and
2 2 2 2 2

2

2
4
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b

λ ω ω ωµ − + −
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If we set 1 20, 0,C C≠ = 0, 2, 1n bλ = = = in (24), then soliton 
solution of (10) is obtained as 

( , ) 1 tanh ( ) .
2 2

u x t x t
a
ω ω ω  = + −    

       (26) 

If we set 1 2C 0,C 0,= ≠ 0, n 2, b 1λ = = = in (24), then soliton 
solution of (10) is obtained as  

( , ) 1 coth ( )
2 2

u x t x t
a
ω ω ω  = + −    

.        (27) 

We see that (26) and (27) are the particular cases of the 
general exact solution (24). The solutions (26) and (27) are 
exactly same solutions as obtained by Wazwaz[18] for the 
above values of constants. Hence, our solutions (24) and (25) 
are more general. 

3.2.The B(-n,1) Burgers’ equation 

The B(-n,1) Burgers’ equation is 
( ) 0,n

t x xxu a u bu−+ + =  1n >  , 0.a b ≠      (28) 
Proceeding as earlier, we obtain theODE 

' 0.nU aU bUω −− + + =     (29) 
Now balancing nU − and 'U , we obtain 
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Now using the transformation 
1

1nU V
−

+= in (29), we obtain 
2 '( 1) ( 1) 0.n V a n V bVω− + + + − =         (30) 

Now balancing 2V and 'V  we obtain 2m=m+1so 1m = . 

Setting the coefficients of
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system of algebraic equations in 1 0, , , ,α α ω λ µ as follows: 
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Solving the system of equations (31)-(33) by Mathematica, 
we obtain 
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Where 0≠ω free parameter, now using 
1
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solution of (28) is given by  
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 is defined by (8) and (9). 

When 2 4 0λ µ− >  
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When 2 4 0λ µ− <  
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where, x tξ ω= −  and 1C and 2C are arbitrary constants 

and 
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If we set 1 20, 0C C≠ =  and 0, 2, 1,n bλ = = = then (35) 
yields 
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Similarly, if we set 0,0 21 ≠= CC  and 
,1,2,0 === bnλ then (35) yields 
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We observe that the solutions (37) and (38) obtained for
( ,1)B n− Burgers’ equation (28) are particular cases of solu-

tion (35). These solutions are exactly same as the solutions 
obtained by Wazwaz[18] for the above values of constants. 

4.Conclusions 
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In this paper, we used the (G`/G)-expansion method to 
obtain the exact traveling wave solutions of the generalized 
forms of Burgers’ equation. The solution method is very 
simple and effective, and the solutions are expressed in the 
form of hyperbolic functions and the trigonometric functions. 
It is shown that this method is a good tool for handling 
non-linear partial differential equations. Correctness of the 
solutions is also checked by comparing with the solutions 
obtained by Wazwaz[18], and substituting them back into 
the original equations with the help of Mathematica. 
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