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Abstract  In this paper, we use two integral methods, the first integral method and the direct integral method to study 
(2+1)- dimensional Davey-Stewartson equation . The first integral method was used to construct travelling wave solutions, 
those solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. By using 
the direct integration method shock wave solution and Jacobi elliptic function solutions are obtained.  By comparison be-
tween the two methods, the direct integration is more impressive than the first integral method. The results obtained con-
firm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear systems of par-
tial differential equations. 
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1. Introduction 
We consider the (2+1)-dimensional Davey-Stewartson 

equation[1]. 
𝑖𝑖𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑥𝑥𝑥𝑥 − 𝑢𝑢𝑦𝑦𝑦𝑦 − 2|𝑢𝑢|2𝑢𝑢 − 2𝑢𝑢𝑢𝑢 = 0 

𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑦𝑦𝑦𝑦 + 2(|𝑢𝑢|2)𝑥𝑥𝑥𝑥 = 0           (1) 
This equation is completely integrable and often used to 

describe the long time evolution of a two-dimensional wave 
packet[2,3]. In recent years, various methods such as inverse 
scattering, Darboux transformation, variable separation and 
Bäckland transformation have been used to solve the equa-
tion respectively[4-7]. The objectives of this work are two-
fold. First, we apply the first integral method[8-11] on the 
(2+1)-dimensional Davey-Stewartson equation to obtain 
solitary and periodic wave solutions. Second, we aim using 
the direct integration on the reduced nonlinear ordinary 
differential equation obtained after using the travelling wave 
transformation on the equation to get more exact solutions in 
the form of shock wave and Jacobi elliptic functions.  

2. The First Integral Method 
Consider the nonlinear partial differential equation in the 

from 
𝐹𝐹(𝐴𝐴, 𝐴𝐴𝑡𝑡 , 𝐴𝐴𝑥𝑥 , 𝐴𝐴𝑥𝑥𝑥𝑥 , 𝐴𝐴𝑡𝑡𝑡𝑡 , 𝐴𝐴𝑥𝑥𝑥𝑥 , … ) = 0,       (2) 

where A=A(x,t) is a solution of the nonlinear partial dif-
ferential equation (2). We use the transformation 
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𝐴𝐴(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝜂𝜂),                                    (3) 

where 𝜂𝜂 = 𝑥𝑥 + 𝛾𝛾𝛾𝛾 + 𝛽𝛽𝛽𝛽. This enables us to use the folow-
ing changes: 
� 𝜕𝜕
𝜕𝜕𝜕𝜕

(. ) = 𝜆𝜆 𝜕𝜕
𝜕𝜕𝜂𝜂

(. ), 𝜕𝜕
𝜕𝜕𝜕𝜕

(. ) = 𝜕𝜕
𝜕𝜕𝜂𝜂

(. ), 𝜕𝜕²
𝜕𝜕𝑥𝑥²

(. ) = 𝜕𝜕²
𝜕𝜕𝜂𝜂²

(. ), … � (4) 
Using Eq. (4) to transfer the nonlinear partial differential 

Eq. (2) to nonlinear ordinary differential equation 
𝐺𝐺(𝑓𝑓(𝜂𝜂), ((𝜕𝜕𝜕𝜕(𝜂𝜂))/(𝜕𝜕𝜕𝜕)), ((𝜕𝜕²𝑓𝑓(𝜂𝜂))/(𝜕𝜕𝜕𝜕²)), . . . . ) = 0.(5) 
Next, we introduce a new independent variable 

  𝑋𝑋(𝜂𝜂) = 𝑓𝑓(𝜂𝜂),   𝑌𝑌 = �𝜕𝜕𝜕𝜕(𝜂𝜂)
𝜕𝜕𝜂𝜂

�,                                 (6) 
which leads to a system of nonlinear ordinary differential 
equations  

�
𝜕𝜕𝜕𝜕(𝜂𝜂)
𝜕𝜕𝜂𝜂

� = 𝑌𝑌(𝜂𝜂),      

�𝜕𝜕𝜕𝜕(𝜂𝜂)
𝜕𝜕𝜂𝜂

� = F1�𝑋𝑋(𝜂𝜂), 𝑌𝑌(𝜂𝜂)�.           (7) 
By the qualitative theory of ordinary differential equa-

tions[12], if we can find the integrals to Eqs. (7) under the 
same conditions, then the general solutions to Eqs. (7) can 
be solved directly. However, in general, it is really difficult 
for us to realize this even for one first integral, because for a 
given plane autonomous system, there is no systematic the-
ory that can tell us how to find its first integrals, nor is there 
logical way for telling us what these first integrals are. We 
will apply the Division Theorem to obtain one first integral 
to Eqs. (7) which reduces Eq. (5) to a first order integrable 
ordinary differential equation. An exact solution to Eq. (2) 
is then obtained by solving this equation. For convenience, 
first let us recall the division theorem for two variables in 
the complex domain C. 

Division Theorem : (see[13, 14]) Suppose that P(ω,z) and 
Q(ω,z) are polynomials in C[ω,z]; and P(ω,z) is irreducible 
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in C[ω,z]. If Q(ω,z) vanishes at all zero points of P(ω,z), 
then there exists a polynomial G(ω,z) in C[ω,z] such that  

𝑄𝑄(𝜔𝜔, 𝑧𝑧) = 𝑃𝑃(𝜔𝜔, 𝑧𝑧)𝐺𝐺(𝜔𝜔, 𝑧𝑧).                 (8) 

3. The Application of the First Integral 
Method on the (2+1)-dimensional 
Davey-Stewartson Equation 

In this section, we study the (2+1)-dimensional 
Davey-Stewartson equation using the first integral method 

Use the transformation 
𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡))𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), (9) 
where k, 𝛼𝛼 and 𝜆𝜆 are constants, all of them are to be de-
termined. 

Substituting Eq. (9) into Eq. (1), yield 
𝑖𝑖�𝑓𝑓𝑡𝑡 + 2𝑘𝑘𝑓𝑓𝑥𝑥 − 2𝛼𝛼𝑓𝑓𝑦𝑦� + 𝑓𝑓𝑥𝑥𝑥𝑥 − 𝑓𝑓𝑦𝑦𝑦𝑦 + (𝛼𝛼2 − 𝑘𝑘2 − 𝜆𝜆)𝑓𝑓 − 2𝑓𝑓3

− 2𝑓𝑓𝑓𝑓 = 0, 
𝑣𝑣𝑥𝑥𝑥𝑥  + 𝑣𝑣𝑦𝑦𝑦𝑦  + 2𝑓𝑓𝑥𝑥𝑥𝑥

2 = 0         (10) 
Using the transformation 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑓𝑓(𝜂𝜂), 𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(𝜂𝜂), 𝜂𝜂 = 𝑥𝑥 + 𝛾𝛾𝛾𝛾 +
2(𝛼𝛼𝛾𝛾 − 𝑘𝑘)𝑡𝑡,             (11) 

where  𝛾𝛾  is a constant, system (11) become the following 
(1 − 𝛾𝛾2 )𝑓𝑓′′ + (𝛼𝛼2 − 𝑘𝑘2 − 𝜆𝜆)𝑓𝑓 − 2𝑓𝑓3 − 2𝑓𝑓𝑓𝑓 = 0,      

     (1 + 𝛾𝛾2 )𝑤𝑤′′ + 2𝑓𝑓2′′ = 0,         (12) 
where prime denotes the differential with respect to  𝜂𝜂. 

Integrating the second segment of  Eq. (12) with respect to  
𝜂𝜂 and taking the integration constant as zero yields 

𝑤𝑤 = −2
(1+𝛾𝛾2 )

𝑓𝑓2               (13) 
Substituting Eq. (13) into the first segment of Eq. (12) we 

get 
𝑓𝑓′′ + 𝑚𝑚1𝑓𝑓 + 𝑚𝑚2𝑓𝑓3 = 0,          (14) 

where  
 𝑚𝑚1 = �𝛼𝛼2−𝑘𝑘2−𝜆𝜆�

(1+𝛾𝛾2 )
, 𝑚𝑚2 = 2

(1+𝛾𝛾2 )
      (15) 

Using (7) we get 
𝑋̇𝑋(𝜂𝜂) = 𝑌𝑌(𝜂𝜂)              (16) 

 𝑌̇𝑌(𝜂𝜂) = −𝑚𝑚1𝑋𝑋 − 𝑚𝑚2𝑋𝑋3       (17) 
   According to the first integral method, we suppose that 

X(𝜂𝜂) and Y(𝜂𝜂) are nontrivial solutions of (16), (17) and  
𝑄𝑄(𝑋𝑋, 𝑌𝑌) = ∑ 𝑎𝑎𝑖𝑖(𝑋𝑋)𝑌𝑌𝑖𝑖𝑚𝑚

𝑖𝑖=0 = 0          (18) 
is an irreducible polynomial in the complex domain 

C[X,Y] such that  
𝑄𝑄(𝑋𝑋( 𝜂𝜂) , 𝑌𝑌((𝜂𝜂) ) = ∑ 𝑎𝑎𝑖𝑖(𝑋𝑋( 𝜂𝜂) )𝑌𝑌𝑖𝑖( 𝜂𝜂) 𝑚𝑚

𝑖𝑖=0 = 0   (19) 
where  𝑎𝑎𝑖𝑖(𝑋𝑋) (i=0,1,.......,m), are polynomials of X and 

𝑎𝑎𝑚𝑚(𝑋𝑋)≠0. Eq. (18) is called the first integral to (16), (17). 
Due to the Division Theorem, there exists a polynomial 
h(X)+g(X)Y, in the complex domain C[X,Y] such that 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜂𝜂

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑋𝑋

𝑑𝑑𝑑𝑑
𝑑𝑑𝜂𝜂

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑌𝑌

𝑑𝑑𝑑𝑑
𝑑𝑑𝜂𝜂

= (ℎ(𝑋𝑋) + 𝑔𝑔(𝑋𝑋)𝑌𝑌) ∑ 𝑎𝑎𝑖𝑖(𝑋𝑋)𝑌𝑌𝑖𝑖𝑚𝑚
𝑖𝑖=0 (20) 

In this example, we take two different cases, assuming that  
m=1 and m=2 in (19), we have 

Case 1: 
Suppose that m=1, by comparing with the coefficients of 

𝑌𝑌𝑖𝑖( ξ) (i=2,1,0) on both sides of (20), we have 
𝑎𝑎1̇(𝑋𝑋) = 𝑔𝑔(𝑋𝑋)𝑎𝑎1(𝑋𝑋)            (21) 

𝑎𝑎0̇(𝑋𝑋) = ℎ(𝑋𝑋)𝑎𝑎1 + 𝑔𝑔(𝑋𝑋)𝑎𝑎0(𝑋𝑋)        (22) 
𝑎𝑎1(𝑋𝑋)[−𝑚𝑚1𝑓𝑓(𝜉𝜉) − 𝑚𝑚2𝑓𝑓3(𝜉𝜉)] = ℎ(𝑋𝑋)𝑎𝑎0(𝑋𝑋)   (23) 

Since 𝑎𝑎𝑖𝑖(X) (i=0,1) are polynomials, then from (21) we 
deduce that 𝑎𝑎1(𝑋𝑋) is constant and g(X)=0. For simplicity, 
take 𝑎𝑎1(𝑋𝑋)=1, Balancing the degrees of h(X) and a₀(X), we 
conclude that deg(h(X))=1 only. Suppose that h(X)=AX+B, 
then from (22) we find a₀(X). 

𝑎𝑎0(𝑋𝑋) = 𝐷𝐷 + 𝐵𝐵𝐵𝐵 + 1
2
𝐴𝐴𝐴𝐴²         (24) 

where A,B are arbitrary constants , and D is an arbitrary 
integration constant to be determined. 

Substituting a₀(X) and h(X) into (23) and setting all coef-
ficients of X powers to be zero, then we obtain a system of 
nonlinear algebraic equations and by solving it, we obtain 

𝐴𝐴 = �−2𝑚𝑚2,𝐵𝐵 = 0, 𝐷𝐷 = −𝑚𝑚1
�−2𝑚𝑚2

       (25) 
𝐴𝐴 = −�−2𝑚𝑚2, 𝐵𝐵 = 0, 𝐷𝐷 = 𝑚𝑚1

�−2𝑚𝑚2
      (26) 

Using conditions (25) and (26) in Eq. (19), we obtain 
𝑌𝑌(𝜂𝜂) + �−𝑚𝑚2

2
 𝑋𝑋2 − 𝑚𝑚1

�−2𝑚𝑚2
= 0       (27) 

and 

𝑌𝑌(𝜂𝜂) − �−𝑚𝑚2
2

 𝑋𝑋2 + 𝑚𝑚1
�−2𝑚𝑚2

= 0        (28) 
respectively. Combining Eq. (27)  and Eq. (28) with Eq. 

(16), we obtain the exact solution to Eq. (16) and Eq. (17) 
and the exact solutions to the (2+1)-dimensional Davey- 
Stewartson equation can be written as 
𝑢𝑢1(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =

�
𝑚𝑚1
𝑚𝑚2
𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡)) tan ��

𝑚𝑚1
𝑚𝑚2

 ��−𝑚𝑚2
2

(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c0            (29) 

𝑣𝑣1(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑚𝑚1tan2 ��
𝑚𝑚1
𝑚𝑚2
��−𝑚𝑚2

2
(𝑥𝑥 + 𝛾𝛾𝛾𝛾 + 2(𝛼𝛼𝛾𝛾 −

𝑘𝑘𝑡𝑡+c0,               (30) 

and 
𝑢𝑢2(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =

�
𝑚𝑚1
𝑚𝑚2
𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡)) tan ��

𝑚𝑚1
𝑚𝑚2

 �−�−𝑚𝑚2
2

(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c0,           (31) 

𝑣𝑣2(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑚𝑚1tan2 ��
𝑚𝑚1
𝑚𝑚2
�−�−𝑚𝑚2

2
(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c0,           (32) 

where c0 is an arbitrary integration constant, 𝑚𝑚1 and 𝑚𝑚2  
expressed by Eq. (15). 
Case 2 
Suppose that m=2, by comparing the coefficients of 

𝑌𝑌𝑖𝑖( ξ) (i=3,2,1,0) on both sides of (20),we have 
𝑎𝑎2̇(𝑋𝑋) = 𝑔𝑔(𝑋𝑋)𝑎𝑎2(𝑋𝑋),           (33) 

𝑎𝑎1̇(𝑋𝑋) = ℎ(𝑋𝑋)𝑎𝑎2(𝑋𝑋) + 𝑔𝑔(𝑋𝑋)𝑎𝑎1(𝑋𝑋),       (34) 
 𝑎𝑎0̇ (𝑋𝑋) = −2𝑎𝑎2(𝑋𝑋)(−𝑚𝑚1𝑋𝑋 − 𝑚𝑚2𝑋𝑋3) + ℎ(𝑋𝑋)𝑎𝑎2(𝑋𝑋) +

𝑔𝑔(𝑋𝑋)𝑎𝑎0(𝑋𝑋)               (35) 
𝑎𝑎1(𝑋𝑋)(−𝑚𝑚1𝑋𝑋 − 𝑚𝑚2𝑋𝑋3) = ℎ(𝑋𝑋)𝑎𝑎0(𝑋𝑋)     (36) 

Since  𝑎𝑎𝑖𝑖(𝑋𝑋) (i=0,1,2) are polynomials, then from (33) 
we deduce that 𝑎𝑎2(𝑋𝑋) is a constant and g(X)=0, For sim-
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plicity, take 𝑎𝑎2(𝑋𝑋) = 1 , Balancing the degrees of 
h(X), 𝑎𝑎1(𝑋𝑋)and 𝑎𝑎2(𝑋𝑋), we conclude that deg(h(X))=1 only. 
Suppose that h(X)= 𝐴𝐴1X+ 𝐵𝐵1, then from (34)  and (35) we 
find 𝑎𝑎1(𝑋𝑋) and 𝑎𝑎0(𝑋𝑋) as follows 

𝑎𝑎1(𝑋𝑋) = 𝐷𝐷₁ + 𝐵𝐵1𝑋𝑋 + 1
2
𝐴𝐴₁𝑋𝑋²        (37) 

𝑎𝑎0(𝑋𝑋) = 𝐸𝐸 + 𝐵𝐵₁𝐷𝐷1𝑋𝑋 +
1
2
�𝐵𝐵1

2 + 2𝑚𝑚1 + 𝐷𝐷₁𝐴𝐴₁�𝑋𝑋2                
+ 1

2
𝐴𝐴₁𝐵𝐵1𝑋𝑋3 + 1

4
�2𝑚𝑚2 + 1

2
𝐴𝐴1

2� 𝑋𝑋4       (38) 
where 𝐴𝐴₁, 𝐵𝐵1are arbitrary constants, and 𝐷𝐷₁, E are arbi-

trary integration constants. 
Substituting 𝑎𝑎1(𝑋𝑋), 𝑎𝑎0(𝑋𝑋) and h(X) in the last equation 

in (36) and setting all coefficients of X powers to be zero, 
then we obtain a system of nonlinear algebraic equations and 
by solving it with aid of Maple program, we obtain 

𝐴𝐴1 = 2�−2𝑚𝑚2,   𝐵𝐵1 = 0,    𝐷𝐷1 = −𝑚𝑚1�
−2

𝑚𝑚2
, 𝐸𝐸 = −𝑚𝑚1

2

2𝑚𝑚2
,  (39) 

𝐴𝐴1 = 2�−2𝑚𝑚2,   𝐵𝐵1 = 0,    𝐷𝐷1 = 𝑚𝑚1�
−2

𝑚𝑚2
, 𝐸𝐸 = −𝑚𝑚1

2

2𝑚𝑚2
.    (40) 

Using conditions (39) and (40) into Eq. (19), we get 

𝑌𝑌(𝜂𝜂) + �−𝑚𝑚2
2

 𝑋𝑋2 + −𝑚𝑚1
�−2𝑚𝑚2

= 0,         (41) 

𝑌𝑌(𝜂𝜂) − �−𝑚𝑚2
2

 𝑋𝑋2 − −𝑚𝑚1
�−2𝑚𝑚2

= 0,        (42) 
Combining Eq. (41) and Eq. (42) with (16), we obtain the 

exact solution to Eq. (16)and Eq. (17) and the exact solution  
to Eq. (1) can be written as 

𝑢𝑢3(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =

�
−𝑚𝑚1
𝑚𝑚2

𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡)) tanh ��
−𝑚𝑚1
𝑚𝑚2

 �−�−𝑚𝑚2
2

(𝑥𝑥 +

𝛾𝛾𝑦𝑦+2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c1,          (43) 

 𝑣𝑣3(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑚𝑚1tanh2 ��−
𝑚𝑚1
𝑚𝑚2
�−�−𝑚𝑚2

2
(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c1             (44) 

and 
𝑢𝑢4(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =

�
−𝑚𝑚1
𝑚𝑚2

𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡)) tanh ��
−𝑚𝑚1
𝑚𝑚2

 ��–𝑚𝑚2
2

(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c1,              (45) 

 𝑣𝑣4(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑚𝑚1tanh2 ��−
𝑚𝑚1
𝑚𝑚2
��−𝑚𝑚2

2
(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c1,               (46) 

where 𝑐𝑐1 is an arbitrary integration constant. 

4. The Direct Method 
In this section, we multiply Eq. (14) by 𝑓́𝑓, then we get 

 
𝑓𝑓′′ ( 𝜂𝜂)𝑓𝑓′( 𝜂𝜂) + 𝑚𝑚1𝑓𝑓( 𝜂𝜂)𝑓𝑓′( 𝜂𝜂) + 𝑚𝑚2𝑓𝑓3( 𝜂𝜂)𝑓𝑓′( 𝜂𝜂) = 0.(47) 

Case 1 
Integrating (47) once and considering the constant of in-

tegration to be zero, then we obtain 

𝑓𝑓′2( 𝜂𝜂) = −𝑚𝑚1𝑓𝑓( 𝜂𝜂)2  − 𝑚𝑚2
2
𝑓𝑓4( 𝜂𝜂).       (48) 

Eq. (44) has the following exact solution by using direct 
integration method 

𝑓𝑓5( 𝜂𝜂) =  �2𝑚𝑚1
𝑚𝑚2

 𝑐𝑐𝑐𝑐sech⁡[ �2𝑚𝑚1
𝑚𝑚2

 �−�−𝑚𝑚2
2

 𝜂𝜂 + 𝑐𝑐2�],(49) 

where 𝑐𝑐2 is an arbitrary integration constant. 
By back substitution we obtain the following new exact 

solution to the (2+1)-dimensional Davey- Stewartson equa-
tion  
𝑢𝑢5(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =

�2𝑚𝑚1
𝑚𝑚2

𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡)) cosech ��2𝑚𝑚1
𝑚𝑚2

 �−�−𝑚𝑚2
2

(𝑥𝑥 +

𝛾𝛾𝑦𝑦+2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c2         (50) 

𝑣𝑣5(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −2𝑚𝑚1cosech2 ��2𝑚𝑚1
𝑚𝑚2

�−�−𝑚𝑚2
2

(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡+c2           (51) 

Case 2 
Integrating (43) once then we obtain 

𝑓𝑓 ′2(𝜂𝜂) = 𝑎𝑎 − 𝑚𝑚1𝑓𝑓(𝜂𝜂)2  − 𝑚𝑚2
2
𝑓𝑓4(𝜂𝜂)     (52) 

where a is an arbitrary integration constant. 
Using Jacobi functions, this equation have many solutions 

by relations between values of (a, −𝑚𝑚1 , − 𝑚𝑚2
2

) and corre-
sponding f(𝜂𝜂) see[15], are given by the following 

𝑓𝑓6(𝜂𝜂) = 𝑠𝑠𝑠𝑠 �𝜂𝜂, �
−𝑚𝑚2

2
 � ,    𝑚𝑚1 = �1 − 𝑚𝑚2

2
�     (53) 

𝑓𝑓7(𝜂𝜂) = 𝑐𝑐𝑐𝑐 �𝜂𝜂, �
𝑚𝑚2

2
 � ,     𝑚𝑚1 = (1 −  𝑚𝑚2)     (54) 

𝑓𝑓8(𝜂𝜂) = 𝑛𝑛𝑛𝑛 �𝜂𝜂, �1 +
𝑚𝑚2

2
 � ,  𝑚𝑚1 = −(1 +  𝑚𝑚2)   (55) 

𝑓𝑓9(𝜂𝜂) = 𝑛𝑛𝑛𝑛 �𝜂𝜂, �1 −
𝑚𝑚2

2
 � ,  𝑚𝑚1 = −�1 + 𝑚𝑚2

2
�   (56) 

𝑓𝑓10(𝜂𝜂) = 𝑠𝑠𝑠𝑠 �𝜂𝜂, �1 +
𝑚𝑚2

2
 � ,  𝑚𝑚1 = �𝑚𝑚2

2
− 1�   (57) 

𝑓𝑓11(𝜂𝜂) = 𝑛𝑛𝑛𝑛(𝜂𝜂, √1 + 2𝑚𝑚2 ) ± 𝑠𝑠𝑠𝑠(𝜂𝜂, √1 + 2𝑚𝑚2 ),  𝑚𝑚1 =
 −(1 + 𝑚𝑚2).                (58) 

By back substitution we obtain the following new exact 
solutions of  Eq. (1) 

𝑢𝑢6(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡, −𝑚𝑚22 ,   𝑚𝑚1=1−𝑚𝑚22     (59) 

𝑣𝑣6(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑚𝑚2𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽2 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 + 2(𝛼𝛼𝛾𝛾 −

𝑘𝑘𝑡𝑡, −𝑚𝑚22 ,   𝑚𝑚1=1−𝑚𝑚22       (60) 

𝑢𝑢7(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡, 𝑚𝑚22 ,   𝑚𝑚1=1−𝑚𝑚2,      (61) 

𝑣𝑣7(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑚𝑚2𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽2 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 + 2(𝛼𝛼𝛾𝛾 −
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𝑘𝑘)𝑡𝑡),�𝑚𝑚2
2

 � ,    𝑚𝑚1 = (1 − 𝑚𝑚2)(62) 

𝑢𝑢8(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡, 1+𝑚𝑚22 ,   𝑚𝑚1=−1+𝑚𝑚2, (63) 

𝑣𝑣8(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑚𝑚2𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽2 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 + 2(𝛼𝛼𝛾𝛾 −

𝑘𝑘𝑡𝑡, 1+𝑚𝑚22 ,   𝑚𝑚1=−1+𝑚𝑚2,    (64) 

𝑢𝑢9(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡, 1−𝑚𝑚22 ,   𝑚𝑚1 =−1+𝑚𝑚22   (65) 

𝑣𝑣9(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑚𝑚2𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽2 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 + 2(𝛼𝛼𝛾𝛾 −

𝑘𝑘𝑡𝑡, 1−𝑚𝑚22 ,   𝑚𝑚1=−1+𝑚𝑚22      (66) 

𝑢𝑢10(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 +

2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡, 1+𝑚𝑚22 ,   𝑚𝑚1 =𝑚𝑚22−1     (67) 

𝑣𝑣10 (𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑚𝑚2𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽2 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 + 2(𝛼𝛼𝛾𝛾 −

𝑘𝑘𝑡𝑡, 1+𝑚𝑚22 ,   𝑚𝑚1=𝑚𝑚22−1        (68) 

𝑢𝑢11(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝛼𝛼𝛼𝛼 + 𝜆𝜆𝑡𝑡))[𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑥𝑥 +
𝛾𝛾𝑦𝑦+2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡±𝐽𝐽𝑎𝑎𝑐𝑐𝑜𝑜𝑏𝑏𝑖𝑖𝑆𝑆𝐶𝐶𝑥𝑥+𝛾𝛾𝑦𝑦+2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡], 1+2𝑚𝑚2 ,   𝑚𝑚1 

= −(1 + 𝑚𝑚2),    (69) 

𝑣𝑣11 (𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑚𝑚2[𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑥𝑥 + 𝛾𝛾𝛾𝛾 + 2(𝛼𝛼𝛾𝛾 − 𝑘𝑘)𝑡𝑡) ±
𝐽𝐽𝑎𝑎𝑐𝑐𝑜𝑜𝑏𝑏𝑖𝑖𝑆𝑆𝐶𝐶𝑥𝑥+𝛾𝛾𝑦𝑦+2𝛼𝛼𝛾𝛾−𝑘𝑘𝑡𝑡], 1+2𝑚𝑚2 ]2,   𝑚𝑚1=−1+𝑚𝑚2,                   

(70) 

where 𝑚𝑚1 and 𝑚𝑚2 expressed by Eq. (15). 
All previous solutions are new and different from solu-

tions mentioned in[1]. 

5. Conclusions 
In this work, we have obtained many exact solutions of  

the (2+1 )-dimensional Davey-Stewartson equation by using 
the first integral method and the direct method. The appli-
cation of the two methods was successfully used to estab-
lish travelling wave solutions for Eqs. (1).  

The two methods used have more advantages: it is direct 
and concise. By comparison between the two methods, the 
direct integral is more impressive than the first integral 
method. 
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