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Abstract  Similarity solutions are obtained for one-dimensional flow under the action of monochromatic radiation 
behind a cylindrical magnetogasdynamic shock wave propagating in a non-ideal gas in presence of an axial magnetic field. 
The initial density of the medium and initial magnetic field are assumed to be constant. It is investigated that the presence 
of the magnetic field or the non-idealness of the gas decays the shock wave, and when the initial magnetic field is strong 
the non-idealness of the gas affects the velocity and pressure profiles significantly. Also, it is observed that the 
flow-variables behind the shock are affected significantly, by an increase in the parameter of radiation, when the initial 
magnetic field is strong. It is, therefore, inferred that the effect of the non-idealness of the gas and of the monochromatic 
radiation on the shock propagation become more significant when the strength of the initial magnetic field is increased.  
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1. Introduction 
In gasdynamics, if the effects of radiation are taken into 

account, the basic non-linear equations are of a very 
complicated form and therefore it is essential to establish 
approximations which are physically accurate and can afford 
considerable simplifications. The problem of the interaction 
of radiation with gasdynamics has been studied by many 
authors by using the method of self-similarity developed by 
Sedov[1]. Marshak[2] studied the effect of radiation on the 
shock propagation by introducing the radiation diffusion 
approximation. He solved both the cases of constant density 
and constant pressure fields without invoking conditions of 
self-similarity. Using the same mode of radiation, Elliott[3] 
discussed the conditions leading to self-similarity with a 
specified functional form of the mean free-path of radiation 
and obtained a solution for self-similar explosions. Wang[4], 
Helliwell[5] and Nicastro[6] treated the problems of 
radiating walls, either stationary or moving, generating 
shock at the head of self-similar flow-fields. Assuming the 
shock to be isothermal and transparent the self-similar 
solution of the central explosions in stars has been obtained 
by Ray and Bhowmick[7] including the effects of radiation. 

The self-similar solutions have been used by Khudyakov  
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[8] to discuss the problem of the motion of a gas under the 
action of monochromatic radiation. Khudyakov[8] has  
considered that a homogeneous gas at rest occupies a  
half-space bounded by a fixed plane wall and assumed that a 
radiation flux moves through the gas in the direction of the 
wall with a constant intensity 0j  per unit area. From the 
instant of arrival of the radiation at the wall a shock wave is 
assumed to propagate out from the wall in the direction 
opposite to the radiation flux. The radiation flux is absorbed 
in the zone between the shock wave and the wall, and it is not 
absorbed in the undisturbed medium. It is also assumed that 
the gas itself does not radiate. Zheltukhin[9] has developed a 
family of exact solutions of one dimensional motion (plane, 
cylindrical or spherical symmetry) of a gas taking into 
account of the absorption of monochromatic radiation. Nath 
and Takhar[10] and Nath[11] have studied the propagation 
of cylindrical shock waves in a gas under the action of 
monochromatic radiation when the medium is rotating or 
non-rotating. 

Since at high temperatures that prevail in the problems 
associated with shock wave a gas is ionized, electromagnetic 
effects may also be significant. A complete analysis of such a 
problem should therefore consist of the study of the 
gasdynamic flow and the electromagnetic filed 
simultaneously. The study of the propagation of cylindrical 
shock waves in a conducting gas in presence of an axial or 
azimuthal magnetic field is relevant to the experiments on 
pinch effect, exploding wires, and so forth. This problem 
both in the uniform or non-uniform ideal gas was undertaken 
by many investigators, for example, Pai[12], Cole and 
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Grefinger[13], Sakurai[14], Bhutani[15], Christer and 
Helliwell[16], Deb Ray[17] and Vishwakarma and 
Yadav[18]. Nath[19] and Shinde[20] have considered the 
effect of magnetic field on the propagation of cylindrical 
shock waves under the action of monochromatic radiation by 
using the method of self-similarity. In all of these works, the 
medium is assumed to be a gas obeying the equation of state 
of an ideal gas. 

Because of high pressure and density that generally occur 
behind a shock wave, produced by an explosion, the 
assumption that the gas is ideal is no more valid. The popular 
alternative to the ideal gas is a simplified van der Waals 
model. Roberts and Wu[21] and Wu and Roberts[22] 
adopted this model to discuss the shock wave theory of 
sonoluminescence. In the present work, we too adopt this as 
our model of a non-ideal gas to discover how deviations from 
the ideal gas can affect the self-similar solutions for the flow 
with monochromatic radiation behind a magnetogasdynamic 
cylindrical shock wave propagating in a non-ideal gas 
permeated by an axial magnetic field. The non-ideal gas is 
assumed to have infinite electrical conductivity and constant 
specific heats. The initial density of the medium and the 
initial magnetic field are assumed to be constant. 

Effects of a change in the strength of initial magnetic field, 
in the parameter of non-idealness of the gas and in the 
parameter of the flux of monochromatic radiation on the 
shock propagation are investigated. It is observed that the 
effects of non-idealness of the gas and the monochromatic 
radiation on the flow variables in the flow-field behind the 
shock are significant when the initial magnetic field is strong. 
The present work may be considered as an extension of the 
work of Nath[11] by taking the medium a non-ideal gas in 
place of an ideal gas. 

2. Basic Equations and Boundary 
Conditions 

The fundamental equations for cylindrically symmetric 
motion of a non-ideal gas under the action of monochromatic 
radiation and axial magnetic field, neglecting 
heat-conduction, viscosity and radiation of the medium, may 
be written as (Khudyakov[8], Greifinger and Cole[13], 
Nath[19], Zedan[23]) 
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where r , v, p, h, e and j are the density, radial velocity, 
pressure, axial magnetic field, internal energy per unit mass 

and the monochromatic radiation at distance r from the axis 
at time  t, and K is the absorption coefficient. Here the 
magnetic permeability is taken to be unity and the electrical 
conductivity to be infinite. 

Most of the phenomena associated with shock wave arise 
in extreme conditions under which the ideal gas is not a 
sufficiently accurate description. To discover how deviations 
from the ideal gas can affect the flow behind a shock wave, 
we adopt a simple model. We assume that the gas obeys a 
simplified van der waals equation of state of the form 
(Roberts and Wu[21], Wu and Roberts[22]) 

r - r
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       (2.6) 

where R  is the gas constant and = g -vC R ( 1)  is the 
specific heat at constant volume and g  is the ratio of 
specific heats. The constant b is the “van der Waals excluded 
volume”, it places a limit, r =max 1 b,  on the density of the 
gas. 

The absorption coefficient K is considered to vary as 
(Khudyakov[8], Nath[19], Nath and Takhar[10]) 

= rn m q s l
0K K p j r t    (2.7) 

where the coefficient 0K  is a dimensional constant and 
the exponents n, m, q, s, l are rational numbers. 

A diverging cylindrical shock is assumed to be 
propagating in the perfectly conducting non-ideal gas with 
constant density, in presence of a uniform axial magnetic 
field. The jump conditions across the shock front which is 
transparent for the radiation flux, are as 
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where the suffices ‘1’ and ‘0’ refer to conditions just 
behind and just ahead of the shock respectively and D is the 
shock velocity. 

If the shock is strong, the boundary conditions (2.8)-(2.12) 
take the form 
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where the quantity b  < b <(0 1)  is obtained by the 

relation  
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 being the Alfven-Mach number and 

= r0b b  the parameter of non-idealness. 
The dimensions of the constant coefficient 0K  in 

equation (2.7) are given by 
- - - + - - + -= n m q 3n m s l 2m 3q l

0[K ] M L T .    (2.19) 
Following the approach of Sedov[1], we get the 

conditions under which the formulated problem will have 
self-similar solutions. The dimensional constants in the 
present problem will be 1 2

0 0h (or p ) , r0 , 0j , and 0K  in 
which 0h , r0  and 0j  are dependent given by  

-= r3 1 2
0 0 0j [h ] [ ] .     (2.20) 

For self-similarity the radiation absorption coefficient 
0K  must be dependent on the dimensions of r0 0j ,  which 

is equivalent to + = -s l 1.  The self-similar independent 
dimensionless variable l  is taken in the form l = 1r r ,  
where 

= b r1 3 1 3
1 0 0r j t,     (2.21) 

1r  being the radius of the shock surface. The value of the 
constant b  is so chosen that l = 1  at the shock surface. 

3. Similarity Solutions 
We introduce the following similarity transformations to 

reduce the equation of motion into ordinary differential 
equations; 
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where V, R, H, P and J are functions of the 

non-dimensional variable (similarity variable) l =
1

r .
r  

Using the transformations (3.1)-(3.5) the equations of 
motion take the form 
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is a dimensionless quantity. The quantity a  is taken as the 
parameter which characterizes the interaction between the 

gas and the incident radiation flux (Khudyakov[8], Nath[19], 
Nath and Takhar[10]). 

Solving equations (3.6)-(3.10) for 
l
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The shock conditions (2.11)-(2.15) are transformed into 
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At the inner boundary (surface) of the flow-filed behind 

the shock, the condition is that the velocity of the surface is 
equal to the normal velocity of the fluid on the surface. This 
kinematic condition from equation (3.1) can be written as 

l = lp pV( ) ,     (3.22) 
where lp  is the value of l  at the inner surface. 
For exhibiting the numerical solutions, it is convenient to 

write the flow variables in the non-dimensional form as 
l

=
1

v V( ) ,
v V(1)

r l
=

r1

R( ) ,
R(1)

l
=

1

h H( ) ,
h H(1)

  

l l
= =

1 1

p P( ) j J( ), .
p P(1) j J(1)

      (3.23) 

4. Results and Discussion 
The set of differential equations (3.12)-(3.16) are 

numerically integrated with the boundary conditions 
(3.17)-(3.21) to obtain the non-dimensional variables of the 
flow-field V, R, H, P and J against the similarity variable l  
by using the Runge-Kutta method of order four, for the 
values (Khudyakov[8], Nath[19], Nath and Takhar[10], 
Ranga Rao and Purohit[24], Singh et. al[25], Vishwakarma 
and Singh[26]) a = 0.1,0.2;  = -n 1 2;  =m 3 2;  

=q 0;  =s 1;  g = 5 3;  - = =2
AM 0.05, 0.06; b 0,  
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0.05, 0.1.  The case =b 0  corresponds to the perfect gas 
case (Nath[19]).  

In figure 1 we have plotted the radial velocity 1v v , in 
figure 2 the density r r1 , in figure 3 the axial magnetic 
field 1h h , in figure 4 the pressure 1p p  and in figure 5 
the radiation flux 1j j  against the radial distance 1r r  in 
flow-field between the inner expanding surface and the 
shock surface. Table 1 and table 2 show, respectively, the 
density ratio across the shock and the position of inner 
expanding surface for various values of the parameters 

- a2
Ab, M , .  This solution shows that all the flow variables 

the velocity, the density, the pressure, the magnetic field and 
the radiation flux decrease from highest at the shock front to 
lowest at the inner expanding surface. 

From table 1 and table 2 and figure 1, figure 2, figure 3, 
figure 4 and figure 5 it is observed that the effects of an 
increase in the value of -2

AM  (i.e. the effects of an increase 
in the strength of ambient magnetic field) are 

(i) to decrease px , i.e. to increase the distance of inner 
expanding surface from the shock front. Physically, it means 
that the gas behind the shock is less compressed, i.e. the 
shock strength is reduced; 

(ii) to decrease the value of b1 , i.e. to decrease the shock 
strength, which is the same as given in (i) above; 

(iii) to decrease the value of 1v v  and 1p p ; and to 
increase the value of 1j j  at any point in the flow-field 
behind the shock; and 

(iv) to enhance the effect of non-idealness of the gas on the 
profiles of 1p p . 

Thus the presence of magnetic field decays the shock 
wave and enhances the effect of non-idealness of the gas on 
the pressure profiles behind the shock. 

The effects of an increase in the value of the parameter of 
the non-idealness of the gas b  are 

(i) to increase the distance of the inner expanding surface 
from the shock front when - =2

AM 0.05 (see table 2);  
(ii) to decrease the value of b1  (table 1), i.e. to decrease 

the shock strength. Therefore the non-idealness of the gas 
has decaying effect on the shock wave; 

(iii) to decrease the value of 1j j  at any point in the 
flow-field behind the shock (see figure 5); and 

(iv) to change the values of 1v v  and 1p p  
significantly at any point in the flow-field behind the shock 
when the magnetic field is strong ( - =2

AM 0.06 ). 
Thus the non-idealness of the gas decays the shock wave, 

and affects the velocity and pressure profiles significantly 
when the initial magnetic field is strong. 

Effects of an increase in the radiation parameter a  are 
(i) to decrease px  (table 2), i.e. to decrease the shock 

strength; and 
(ii) to decrease 1v v ,  1p p , 1j j  at any point in the 

flow-field behind the shock. This decrease in these 
flow-variables are enhanced when the initial magnetic field 
is strong ( - =2

AM 0.06 ). 
The above effects show that the monochromatic radiation 

is more absorbed by the gas in the flow-field behind the 
shock by an increase in the parameter a . 

 
 

 

  
Figure 1.  Variation of radial fluid velocity v/v1 with radial distance r/r1 in the 

flow-field behind the shock for different values of Alfven-Mach number 2
AM  , 

parameter of non-idealness of the gas b and parameter of radiation a 

Figure 2.  Variation of density ρ/ρ1 with radial distance r/r1 in the flow-field 

behind the shock for different values of Alfven-Mach number 2
AM  , parameter 

of non-idealness of the gas b  and parameter of radiation a  
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Figure 3.  Variation of axial magnetic field h/h1 with radial distance r/r1 in 
the flow-field behind the shock for different values of Alfven-Mach number 

2
AM  , parameter of non-idealness of the gas b and parameter of radiation 

a 

 
Figure 4.  Variation of axial magnetic field p/p1 with radial distance r/r1 in 
the flow-field behind the shock for different values of Alfven-Mach number 

2
AM  , parameter of non-idealness of the gas b and parameter of radiation 

a 

 
Figure 5.  Variation of axial magnetic field j/j1 with radial distance r/r1 in 
the flow-field behind the shock for different values of Alfven-Mach number 

2
AM  , parameter of non-idealness of the gas b and parameter of radiation 

a 

Table 1.  Values of density ratio across the shock for different values of b  

and 
-2
AM  

 

b  

r
= b

r
0

1  
- =2
AM 0.05  

- =2
AM 0.06  

0 0.272955 0.278674 
0.05 0.305236 0.309878 
0.1 0.340960 0.345155 

Table 2.  Position of inner expanding surface px  for g = 5 3  and 

various values of  -2
AM , b  and a  

 

-2
AM  a  b  px  

 
0.05 

0.1 
0 0.679286 

0.05 0.650849 
0.1 0.598177 

0.2 
0 0.673043 

0.05 0.644710 
0.1 0.590655 

0.06 

0.1 
0 0.531759 

0.05 0.580765 
0.1 0.532257 

0.2 
0 0.501583 

0.05 0.568326 
0.1 0.517374 
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5. Conclusions 
The present work investigates the self-similar flow of a 

non-ideal gas under the action of monochromatic radiation 
behind a cylindrical shock wave in presence of a uniform 
axial magnetic field. The density of the ambient medium is 
also uniform. On the basis of this work, one may draw the 
following conclusions: 

(i) The presence of magnetic field decays the shock wave 
and enhances the effect of non-idealness of the gas on the 
pressure profiles behind the shock. 

(ii) The non-idealness of the gas decays the shock wave, 
and affects the velocity and pressure profiles significantly 
when the initial magnetic field is strong. 

(iii) An increase in a  decreases the shock strength and 
the  fluid velocity, the pressure and the radiation flux at any 
point in the flow-field behind the shock, and these behavior 
of the flow-variables show that the monochromatic radiation 
is more absorbed. These effects are significant when the 
initial magnetic field is strong. 

Thus it is inferred that the effect of the non-idealness of 
the gas and of the monochromatic radiation on the shock 
propagation become more significant when the strength of 
the initial magnetic field is increased. 
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