# Equivalent Function to the Implicit Function $X^{Y} = Y^{X}$

#### José María Mínguez

Dpto. de Física Aplicada II, Universidad de Bilbao, Bilbao, 48930, Spain

**Abstract** This short paper deals with the implicit function  $X^{Y} = Y^{X}$ , X, Y > 0, and shows surprisingly how accurately it is equivalent to another very much simpler and explicit function.

**Keywords** Power Exponential Function, Equivalent Function, Approximation

### 1. Introduction

The literature devoted to the equation  $X^{Y} = Y^{X}$ , X, Y > 0, is really limited. From[1] we know that L. Euler treated it and gave a parametric representation, from which the rational solutions were drawn. He also deduced the existence of the two asymptotes (X = 1 and Y = 1) to the curve. The same paper gives notice that also Daniel Bernouilli found the rational solutions. Later E. J. Moulton[2] writes a discussion of the curve defined by  $X^{Y} = Y^{X}$ , X, Y > 0, and recently Y. S. Kupitz and H. Martini[3] demonstrate the following two propositions: (1) *There is a non-trivial solution*  $X(\neq Y)$  to the equation  $X^{Y} = Y^{X}$ , X, Y > 0, *if and only if*  $1 < Y \neq e$ , *and for such a* Y *the solution is unique*, and (2) *The only non-trivial integer solutions to the equation*  $X^{Y} = Y^{X}$ , X, Y > 0, *are* (2, 4) *and* (4, 2).

Recently this function has also focussed the attention of mathematicians[5,6], although little has been added to its knowledge and development.

In brief, it is well known that the implicit power- exponential function

$$X^{Y} = Y^{X}, \quad X, Y > 0 \tag{1}$$

admits the trivial solution, which will be named as solution (A),

$$Y_A = X \tag{2}$$

and another solution (B), which may be found either by successive iterations or by using some software, like Mathematica[4], in a computer.

Obviously, solution (B) is symmetrical with respect to the straight line defined by solution (A).

#### **2.** Non-Trivial Solution (B)

To find out the solution (B) one can proceed as follows:

\* Corresponding author:

josemaria.minguez@ehu.es (José María Mínguez)

Published online at http://journal.sapub.org/am

From (1)

$$Y\ln X = X\ln Y \tag{3}$$

$$\ln Y = \frac{Y \ln X}{X} \tag{4}$$

$$Y = e^{\frac{Y \ln X}{X}} \tag{5}$$

$$-\frac{Y\ln X}{Y} = -\frac{\ln X}{Y} e^{Y\ln X/X}$$
(6)

$$-\frac{\ln X}{X} = -\frac{Y \ln X}{X} e^{-Y \ln X/_X}$$
(7)

And,

$$\frac{Y \ln X}{X} = \Pr oductLog\left(-\frac{\ln X}{X}\right)$$
(8)

being ProductLog[z] the function which gives the principal solution for w in

$$z = w e^w \tag{9}$$

as defined and tabulated by Mathematica. Then solution (B) may be tabulated from

$$Y_{B} = -\frac{X}{\ln X} \operatorname{Pr} oductLog\left(-\frac{\ln X}{X}\right)$$
(10)

Both, equation (10) and direct iterations, yield the results shown in Table I, by means of which figure 1 represents the solution (B) (continuous line), together with solution (A) (discontinuous line).

## **3. Equivalent Function**

Figure 1 shows at first glance that the function  $Y_B$  looks very close to the hyperbola

$$(11) X - 1(Y - 1) = 3$$

which, by the way, also admits the integer solutions (2, 4) and (4, 2) as equation (1).

In order to analyse how close the function (11) is to the original function  $Y_B$ , a third column ( $Y_{Hl}$ ) is added in Table I, showing

$$Y_{H1} = \frac{3}{X - 1} + 1 \tag{12}$$

as given by (11), whereas the fifth column shows the distance  $Y_{HI} - Y_B$ .

Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

Then, accounting for the fact that the curve  $Y_B = Y_B(X)$ also goes through the point (*e*, *e*), the hyperbola

$$(X-1)(Y-1) = (e-1)^2$$
(13)

is considered too and

$$Y_{H2} = \frac{(e-1)^2}{X-1} + 1 \tag{14}$$

as given by (13), is shown in the fourth column of table 1, whereas the distance  $Y_{H2}$  -  $Y_B$  appears in the sixth column.

Table 1.

| X     | $Y_B$  | $Y_{HI}$ | $Y_{H2}$ | $Y_{HI}$ - $Y_B$ | $Y_{H2}$ - $Y_B$ |
|-------|--------|----------|----------|------------------|------------------|
| е     | е      | 2.7459   | 2.7183   | 0.0276           | 0.0000           |
| 2.8   | 2.6405 | 2.6667   | 2.6403   | 0.0262           | -0.0002          |
| 2.9   | 2.5548 | 2.5790   | 2.5539   | 0.0242           | -0.0009          |
| 3.0   | 2.4781 | 2.5000   | 2.4763   | 0.0219           | -0.0018          |
| 3.5   | 2.1897 | 2.2000   | 2.1810   | 0.0103           | -0.0087          |
| 4.0   | 2.0000 | 2.0000   | 1.9842   | 0.0000           | -0.0158          |
| 4.5   | 1.8655 | 1.8571   | 1.8436   | -0.0084          | -0.0219          |
| 5.0   | 1.7649 | 1.7500   | 1.7381   | -0.0149          | -0.0268          |
| 6.0   | 1.6242 | 1.6000   | 1.5905   | -0.0242          | -0.0337          |
| 7.0   | 1.5301 | 1.5000   | 1.4921   | -0.0301          | -0.0380          |
| 8.0   | 1.4625 | 1.4286   | 1.4218   | -0.0339          | -0.0407          |
| 9.0   | 1.4114 | 1.3750   | 1.3691   | -0.0364          | -0.0423          |
| 10.0  | 1.3713 | 1.3333   | 1.3281   | -0.0380          | -0.0432          |
| 12.0  | 1.3122 | 1.2727   | 1.2684   | -0.0395          | -0.0438          |
| 14.0  | 1.2707 | 1.2308   | 1.2271   | -0.0399          | -0.0436          |
| 16.0  | 1.2396 | 1.2000   | 1.1968   | -0.0396          | -0.0428          |
| 18.0  | 1.2155 | 1.1765   | 1.1737   | -0.0390          | -0.0418          |
| 20.0  | 1.1962 | 1.1579   | 1.1554   | -0.0383          | -0.0408          |
| 25.0  | 1.1613 | 1.1250   | 1.1230   | -0.0363          | -0.0383          |
| 30.0  | 1.1377 | 1.1034   | 1.1018   | -0.0343          | -0-0359          |
| 35.0  | 1.1206 | 1.0882   | 1.0868   | -0.0324          | -0.0338          |
| 40.0  | 1.1075 | 1.0769   | 1.0757   | -0.0306          | -0.0318          |
| 45.0  | 1.0973 | 1.0682   | 1.0671   | -0.0291          | -0.0302          |
| 50.0  | 1.0889 | 1.0612   | 1.0603   | -0.0277          | -0.0286          |
| 60.0  | 1.0762 | 1.0508   | 1.0500   | -0.0254          | -0.0262          |
| 70.0  | 1.0669 | 1.0435   | 1.0428   | -0.0234          | -0.0241          |
| 80.0  | 1.0598 | 1.0380   | 1.0374   | -0.0218          | -0.0224          |
| 90.0  | 1.0541 | 1.0337   | 1.0332   | -0.0204          | -0.0209          |
| 100.0 | 1.0495 | 1.0303   | 1.0298   | -0.0192          | -0.0197          |
| 125.0 | 1.0410 | 1.0242   | 1.0238   | -0.0168          | -0.0172          |
| 150.0 | 1.0352 | 1.0201   | 1.0198   | -0.0151          | -0.0154          |
| 175.0 | 1.0309 | 1.0172   | 1.0170   | -0.0137          | -0.0139          |
| 200.0 | 1.0276 | 1.0151   | 1.0148   | -0.0125          | -0.0128          |
| 250.0 | 1.0228 | 1.0120   | 1.0119   | -0.0108          | -0.0109          |
| 300.0 | 1.0196 | 1.0100   | 1.0099   | -0.0096          | -0.0097          |
| 400.0 | 1.0153 | 1.0075   | 1.0074   | -0.0078          | -0.0079          |
| 500.0 | 1.0127 | 1 0060   | 1 0059   | -0.0067          | -0.0068          |

Thus, direct reading of table I shows that the hyperbola (11) is closer to  $Y_B$  than the hyperbola (13), and that

$$|Y_{H1} - Y_{R}| < 0.04 \tag{15}$$

for two reasons: 1) this value is not reached before X = 150, and 2) for X = 150 and onwards the distance between  $Y_B$ and the asymptote Y = 1, as well as between  $Y_{HI}$  and the same asymptote, is less than 0.04, which implies (15).

In fact, in figure 1 the points representing  $Y_{H1}$  are plotted over the curve  $Y_B$  and the closeness is very evident.



**Figure 1.** Trivial solution (A) (discontinuous straight line) and solution (B) (full line curve). Overlapping the curve the dots representing the equivalent hyperbolic function

#### 4. Conclusions

The little difference between the two functions  $Y_{HI}$  and  $Y_B$ , which remains always under 0.04, means that the much simpler hyperbola given by equation (11) is a very good approximation to the implicit power-exponential function defined by equation (1).

#### REFERENCES

- R. C. Archivald, "Problem notes, No. 9", Amer. Math. Monthly, vol. 28, pp. 141-143, 1921
- [2] E. J. Moulton, "The real function defined by  $x^{y} = y^{x}$ ", Amer. Math. Monthly, vol. 23, pp. 233-237, 1916
- [3] Y. S. Kupitz, and H. Martini, C. "On the equation  $x^y = y^x$ ", Elemente der Mathematik, vol. 55, pp. 95–101, 2000
- [4] Mathematica, Trade Mark. Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820-7237
- [5] Mitteldorf, "Solutions to  $x^{y} = y^{x}$ " [on line]. Available from: http://mathforum.org/library/drmath/view/53229.html (accessed November 2011)
- [6] Vogler, "Solving the equation  $x^{y} = y^{x}$  "[on line]. Available from: http://mathforum.org/library/drmath/view/66166.html (accessed November 2011)