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Abstract  In this paper, nonclassical pseudospectral method is presented for solution of a classof nonlinear singular 
boundary value problems arising in physiology. Properties of non-classical pseudospectral method are presented. These 
properties are utilizeto reduce the computation of singular boundary value problems to system of equations. Numerical 
method is tested for its efficiency by considering two examples from physiology 
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1. Introduction 
There is considerable literature on the numerical treat-

ment of singular boundary value problems[1-4]. The nu-
merical treatment of singular boundary value problems has 
always been far from trivial, because of the singularity at 
some points. Consider a class of nonlinear singular boun-
dary value problems of the following form[4,9] 

𝑦𝑦′′(𝑥𝑥) + 𝑚𝑚
𝑥𝑥
𝑦𝑦 ′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥,𝑦𝑦),   0 ≤ 𝑥𝑥 ≤ 1      (1) 

𝑦𝑦′(0) = 0                  (2) 
𝛼𝛼𝛼𝛼(1) + 𝛽𝛽𝑦𝑦′(1) = 𝛾𝛾             (3) 

where α, β andγare real numbers and we assume that f(x, 
y) є{ L2[0,1]×R} is continuous, ∂f

∂y
 exists and continuous, 

and∂f
∂y
≥ 0,∀x ∈ [0,1]. For the case m = 2, α = γand β = 1 

the existence and uniqueness of the solution (1)-(3) has 
been given in[18].  

This work is based on the Michaelis-Menten kinetics[5] 
for the steady state oxygendiffusion in spherical cells, in 
which 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑦𝑦) = 𝑛𝑛𝑛𝑛 (𝑥𝑥)
𝑦𝑦(𝑥𝑥)+𝑘𝑘

, 𝑘𝑘 > 0,𝑛𝑛 > 0       (4) 
A similar problem arise in the study of the distribution of 

heat sources in the humanhead[6-8] in which 
𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑦𝑦) =  −𝑛𝑛𝑒𝑒−𝑛𝑛𝑛𝑛𝑛𝑛 (𝑥𝑥), 𝑘𝑘 > 0,𝑛𝑛 > 0    (5) 

Point wise bounds and uniqueness results are given in[6] 
for this problem with f(x,y) of the form given by (4) and (5). 
Pandy and Singh[4] have used finite difference method (FD) 
based on uniform mesh, Kanth and Bhattacharya[9] used-
cubic spline method of order O(h4) for solving (1)-(3) ap-
proximately. The objective of this paper is to use 
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nonclassical pseudospectral method for approximation sin-
gular boundary value problem (1)-(3). Theoretical studies 
and numerical experiences have confirmed that for prob-
lems with smooth solution pseudospectral methods con-
verge faster than other methods[10]. The idea of employing 
nonclassical weight functions first has been used by Shiz-
gal[11] for solving the Boltzmann equations, Planck equa-
tions, and Shizgal and Heli Chen[12] used these basis for 
the solution eigenvalues and eigenfunction of Schrodinger 
equation. 

2. Nonclassical Pseudospctral      
Discretization Method 

The nonclassical pseudospectral methods[11,12,20] ex-
pand the function f ∈ L2[a, b]by using weighted interpola-
tions of degree N of the form[11,12] 

𝑓𝑓𝑁𝑁(𝑥𝑥) ≅ 𝑃𝑃𝑁𝑁(𝑥𝑥) = ∑ 𝑊𝑊(𝑥𝑥)
𝑊𝑊�𝑥𝑥𝑗𝑗 �

𝐿𝐿𝑗𝑗 (𝑥𝑥)𝑁𝑁
𝑗𝑗=0 𝑓𝑓�𝑥𝑥𝑗𝑗 �, 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] (7) 

where xj, j = 0, 1,…,N are a set of distinct collocation points 
on the interval[a,b], W(x) is a positive weight function, and 
Lj(x) are a set of Lagrange interpolating polynomials that 
satisfy Lj(xk) = δjk, i.e 

𝐿𝐿𝑗𝑗 (𝑥𝑥) = ��
𝑥𝑥 − 𝑥𝑥𝑘𝑘
𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑘𝑘

�
𝑁𝑁

𝑘𝑘=0
𝑘𝑘≠𝑗𝑗

 

2.1. Collocation Points 

Consider the orthogonal polynomials pn(x) with respect 
to some weight function w(x) on the interval [a,b], that is 

� 𝑤𝑤(𝑥𝑥)𝑝𝑝𝑛𝑛
𝑏𝑏

𝑎𝑎
(𝑥𝑥)𝑝𝑝𝑚𝑚 (𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑚𝑚 ,𝑛𝑛 . 

The polynomials satisfy a three-term recurrence rela-
tion[13] 

𝑝𝑝𝑘𝑘+1(𝑥𝑥) = (𝑥𝑥 − 𝛼𝛼𝑘𝑘)𝑝𝑝𝑘𝑘(𝑥𝑥) − 𝛽𝛽𝑘𝑘−1𝑝𝑝𝑘𝑘−1(𝑥𝑥), 𝑘𝑘 = 0,1,2   (8) 
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𝑝𝑝−1(𝑥𝑥) = 0, 𝑝𝑝0(𝑥𝑥) = 1 
where the coefficients satisfy the inner product formulae 
[13] 

𝛼𝛼𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥 (𝑥𝑥)𝑝𝑝𝑘𝑘
2𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑑𝑑

∫ 𝑤𝑤(𝑥𝑥)𝑝𝑝𝑘𝑘
2𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑑𝑑
, 𝑘𝑘 = 0,1,2      (9) 

𝛽𝛽0 = ∫ 𝑤𝑤(𝑥𝑥)𝑝𝑝0
2𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑑𝑑,   𝛽𝛽𝑘𝑘 = ∫ 𝑤𝑤(𝑥𝑥)𝑝𝑝𝑘𝑘
2𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑑𝑑

∫ 𝑤𝑤(𝑥𝑥)𝑝𝑝𝑘𝑘−1
2𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑑𝑑
    (10) 

The collocation points xj and weights wj may be deter-
mined by the method outlined by Golub and Welsch[14]. 
The approach is based on determining the eigenvalues and 
normalized eigenvectors of a modified tri-diagonal Jacobi 
matrix, 

0 1

1 1 2

2 2 3

*
1 1

* *

N N N

N N

J

 

  

  

  

 

 

 
 
 
 
 
 
   
 
 
 
 
 
  

  

(11) 

where 𝛽𝛽𝑁𝑁∗ , 𝛼𝛼𝑁𝑁∗  are obtained from the solution of the linear 
system of equations 

�
𝑝𝑝𝑁𝑁(𝑎𝑎) 𝑝𝑝𝑁𝑁−1(𝑎𝑎)
𝑝𝑝𝑁𝑁(𝑏𝑏) 𝑝𝑝𝑁𝑁−1(𝑏𝑏)� �

𝛼𝛼𝑁𝑁∗
𝛽𝛽𝑁𝑁∗
� = �𝑎𝑎𝑝𝑝𝑁𝑁(𝑎𝑎)

𝑏𝑏𝑏𝑏𝑁𝑁(𝑏𝑏)�      (12) 

The collocation points xj, including the end points, are 
determined as the eigenvalues of J, and weights wj obtained 
in terms of the first components v1j of then ormalized ei-
genvector v as follows: 

wj= β0(v1j)2                   (13) 
The integration of a function, f(x) may be approximated 

by the Gauss-Lobattoquadrature rule as 
∫ 𝑤𝑤(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎 ≅ ∑ 𝑤𝑤𝑗𝑗𝑁𝑁

𝑗𝑗=0 𝑓𝑓�𝑥𝑥𝑗𝑗 �        (14) 
Where wj are the weights associated with the collocation 

points xj, j = 0, 1,…,N. 

2.2. Computation of Differential Matrices 
A number of algorithms have been proposed for generat-

ing pseudo spectral differential matrices numerically. In this 
section, the algorithm developed by Welfert[13] is em-
ployed and summarized as follows: 

(1) Calculate the diagonal elements: 
(a) Initialize Dkk

(m)using the equation 

𝐷𝐷𝑘𝑘𝑘𝑘
(𝑝𝑝) =

𝑊𝑊(𝑝𝑝)(𝑥𝑥𝑘𝑘)
𝑊𝑊(𝑥𝑥𝑘𝑘) , 0 ≤ 𝑘𝑘 ≤ 𝑁𝑁, 0 ≤ 𝑝𝑝 ≤ 𝑚𝑚 

(b) Update Dkk
(m)recursively using the equation 

𝐷𝐷𝑘𝑘𝑘𝑘
(𝑝𝑝) ← 𝐷𝐷𝑘𝑘𝑘𝑘

(𝑝𝑝) +
𝑝𝑝

𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑗𝑗
𝐷𝐷𝑘𝑘𝑘𝑘

(𝑝𝑝), 0 ≤ 𝑘𝑘 ≤ 𝑁𝑁, 0 ≤ 𝑝𝑝 ≤ 𝑚𝑚, 

  0 ≤ 𝑗𝑗 ≠ 𝑘𝑘 ≤ 𝑁𝑁 
(2) Calculate the off-diagonal elements: 
(a) Initialize the off-diagonal elements using the equation 

𝐷𝐷𝑘𝑘𝑘𝑘
(0) = 0, 0 ≤ 𝑘𝑘 ≤ 𝑁𝑁, 0 ≤ 𝑗𝑗 ≠ 𝑘𝑘 ≤ 𝑁𝑁 

(b) Update Dkj
(m)using the following equation 

𝐷𝐷𝑘𝑘𝑘𝑘
(𝑝𝑝) =

𝑝𝑝
𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑗𝑗

�𝐷𝐷𝑘𝑘𝑘𝑘
(𝑝𝑝−1) − 𝐷𝐷𝑘𝑘𝑘𝑘

(𝑝𝑝−1)�, 

  0 ≤ 𝑘𝑘 ≤ 𝑁𝑁, 1 ≤ 𝑝𝑝 ≤ 𝑚𝑚, 0 ≤ 𝑗𝑗 ≠ 𝑘𝑘 ≤ 𝑁𝑁. 

For practical numbers of collocation points, the above 
algorithm is generally sufficient. 

3. Discretization of Singular Boundary 
Value Problem 

In this section, we solve the singular boundary value 
problem (1)-(3) by using nonclassicalpseudospectral me-
thod. From Eq. (1) we have that boundary valueproblem is 
singular at point x = 0. Now we collocate Eq. (1) in the 
points xr, r = 1, 2,…,N -1 which at this points Eq. (1) is not 
singular. For this purpose we first substitute Eq. (7) for y(x) 
in Eqs. (1)-(3), i.e 

�𝑦𝑦𝑗𝑗

𝑁𝑁

𝑗𝑗=0

�
𝑊𝑊(𝑥𝑥)
𝑊𝑊�𝑥𝑥𝑗𝑗 �

𝐿𝐿𝑗𝑗 (𝑥𝑥)�
(2)

+
𝑚𝑚
𝑥𝑥 �𝑦𝑦𝑗𝑗

𝑁𝑁

𝑗𝑗=0

�
𝑊𝑊(𝑥𝑥)
𝑊𝑊�𝑥𝑥𝑗𝑗 �

𝐿𝐿𝑗𝑗 (𝑥𝑥)�
(1)

 

= 𝑓𝑓 �𝑥𝑥,∑ 𝑦𝑦𝑗𝑗𝑁𝑁
𝑗𝑗=0

𝑊𝑊(𝑥𝑥)
𝑊𝑊�𝑥𝑥𝑗𝑗 �

𝐿𝐿𝑗𝑗 (𝑥𝑥)�               (15) 

y′(0) = 0                  (16) 

αy(1) + βy′(1) = γ               (17) 

Now collocate the equation (15) at x = xr, r = 1, 2,…, N-1 
and by using the differential matrices obtained in section 2, 
the above equations can be written as follows: 

∑ 𝐷𝐷𝑟𝑟𝑟𝑟
(2)𝑦𝑦𝑗𝑗𝑁𝑁

𝑗𝑗=0 + 𝑚𝑚
𝑥𝑥𝑟𝑟
∑ 𝐷𝐷𝑟𝑟𝑟𝑟

(1)𝑦𝑦𝑗𝑗𝑁𝑁
𝑗𝑗=0 = 𝑓𝑓(𝑥𝑥𝑟𝑟 , 𝑥𝑥𝑟𝑟) , 𝑟𝑟 = 1,2,⋯ ,𝑁𝑁 − 1(18) 

∑ D0j
(1)yj

N
j=0 = 0                  (19) 

αyN + β∑ DNj
(1)yj

N
j=0 = γ              (20) 

Now equations (18)-(20) are a system of nonlinear equa-
tions that can be solved by Newton iterative method for the 
resulting nonlinear systems. 

4. Numerical Examples 
In this section, we have used the method presented for 

different weighted functions w(x) and W(x) given in Table 1, 
and on two physical model examples: (i) oxygen diffusion; 
(ii) nonlinear heat conduction model of human head. These 
problems already been studied by Asaithambi and Good-
man[19], Pandy and singh[4], Kanthand Bhattacharya[9]. 
The numerical results show that present method approx-
imates the solution very well and computational time is less 
than other methods. 

Table 1.  Differentw(x) and W(x) on[0,1] 

Cases w(x) W(x) 

1 
2 
3 
4 

1 
1+0.5cos(x) 

1
1+𝑥𝑥

 
𝑒𝑒−𝑥𝑥2  

1 
e-2x 

1+0.5cos(x) 
e-x 
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Table 2.  Numerical results for N = 10 and different cases for Example 1 

xi Case 1 Case 2 Case 3 Case 4 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.8284832903 
0.8297060924 
0.8333747335 
0.8394899139 
0.8480527849 
0.8590649271 
0.8725283199 
0.8884453056 
0.9068185480 
0.9276509883 
0.9509457984 

0.8284832915 
0.8297060935 
0.8333747346 
0.8394899154 
0.8480527859 
0.8590649282 
0.8725283212 
0.8884453066 
0.9068185492 
0.9276509895 

00.9509457996 

0.8284832901 
0.8297060921 
0.8333747333 
0.8394899137 
0.8480527847 
0.8590649269 
0.8725283197 
0.8884453053 
0.9068185478 
0.9276509881 
0.9509457982 

0.8284832903 
0.8297060924 
0.8333747335 
0.8394899139 
0.8480527850 
0.8590649271 
0.8725283199 
0.8884453056 
0.9068185480 
0.9276509883 
0.9509457985 

Table 3.  Numerical results by other methods 

xi Cubic spline [9] method for ℎ = 1
60

 Panndy and singh [4] 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.8284832730 
0.8297060752 
0.8333747169 
0.8394898186 
0.8480527704 
0.8590649140 
0.8725283084 
0.8884452959 
0.9068185402 
0.9276509825 
0.9509457946 

0.8284831497 
0.8297060742 
0.8333747157 
0.8394898966 
0.8480527648 
0.8590649116 
0.8725283056 
0.8884452928 
0.9068185369 
0.9276509791 
0.9509457914 

Table 4.  Numerical results for 𝛼𝛼 = 𝛽𝛽 = 1, 𝛾𝛾 = 0 and for N = 10. 

xi Case 1 Case 2 Case 3 Case 4 Method in [9] 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.3675168151 
0.3663623292 
0.3628940661 
0.3570975457 
0.3489484206 
0.3384121487 
0.3254435224 
0.3099860402 
0.2919711030 
0.2713170101 
0.2479277233 

0.3675168056 
0.3663623199 
0.3628940569 
0.3570975355 
0.3489484114 
0.3384121390 
0.3254435122 
0.3099860304 
0.2919710928 
0.2713169998 
0.2479277127 

0.3675168157 
0.3663623299 
0.3628940667 
0.3570975463 
0.3489484212 
0.3384121494 
0.3254435231 
0.3099860409 
0.2919711037 
0.2713170108 
0.2479277240 

0.3675168146 
0.3663623287 
0.3628940655 
0.3570975451 
0.3489484201 
0.3384121482 
0.3254435218 
0.3099860396 
0.2919711024 
0.2713170095 
0.2479277227 

0.367517980 
0.366363492 
0.362895222 
0.357098689 
0.348949546 
0.338413250 
0.325444592 
0.309987070 
0.291972083 
0.271317928 
0.247928565 

Table 5.  Numerical results for 𝛼𝛼 = 0.1, 𝛽𝛽 = 1,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0,  and for N = 10 

xi Case 1 Case 2 Case 3 Case 4 Method in [9] 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.1470390193 
1.1465096424 
1.1449205020 
1.1422685635 
1.1385487483 
1.1337539033 
1.1278747567 
1.1208998607 
1.1128155198 
1.1036057040 
1.0932519451 

1.1470390105 
1.1465096336 
1.1449204933 
1.1422685546 
1.1385487395 
1.1337538944 
1.1278747476 
1.1208998517 
1.1128155107 
1.1036056948 
1.0932519454 

1.1470390196 
1.1465096426 
1.1449205023 
1.1422685638 
1.1385487486 
1.1337539036 
1.1278747569 
1.1208998610 
1.1128155201 
1.1036057042 
1.0932519454 

1.1470420530 
1.1465126739 
1.1449235440 
1.1422716181 
1.1385517959 
1.1337569825 
1.1278778561 
1.1209029636 
1.1128186642 
1.1036088683 
1.0932551446 

1.1470410835 
1.1465117057 
1.1449225634 
1.1422706215 
1.1385508014 
1.1337559499 
1.1278767950 
1.1209018887 
1.1128175352 
1.1036077042 
1.0932539271 

 

4.1. Example 1 

Consider the oxygen diffusion corresponding Eqs. (1)-(4) 
with n = 0.76129, k = 0.03119, α = γ = 5 and β =  1. 
Numerical results for cases given in Table 1, be given in 
Table 2, and numerical results with other methods be given 
in Table 3. 

4.2. Example 2 

The second example is of nonlinear heat conduction 
model of the human head, which correspond to Eqs. (1)-(3) 
and (5) with n = 1; k = 1. Numerical results by our method 
are given in Tables 4 and 6. We have performed calculations 
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for the following two cases: 
(i) 𝛼𝛼 = 𝛽𝛽 = 1and 𝛾𝛾 = 0, 
(ii𝛼𝛼 = 0.1,𝛽𝛽 = 1, and 𝛾𝛾 = 0. 
Table 4, shows numerical results for case (i) and all 

weighted functions given in Table 1. Also in Table 5, nu-
merical results for case (ii) 𝛼𝛼 = 0.1, 𝛽𝛽 = 1, and 𝛾𝛾 = 0 
together with results of cubic spline[9] of Kanth and Bhat-
tacharya are given. 

5. Conclusions  
The nonclassical pseudo spectral method has been used 

to solve a class of singular boundary value problems arising 
in physiology. The main advantage of the presented ap-
proach is that it is possible to select arbitrary weight func-
tions for the generation of the orthogonal polynomials. The 
cubic spline[9] and the method given in[4] have the disad-
vantage that the number of system is large and also the ap-
proximation is not good. The numerical results show that 
the proposed method is very accurate and needs less com-
putational efforts respect to cubic spline[9] and the finite 
difference[4] methods. 
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