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Abstract  The Atom Bond Connectivity index, also known as ABC index was defined by Estrada[4] with relation to the 
energy of formation of alkanes. It was quickly recognized that this index reflects important structural properties of graphs in 
general. The ABC index was extensively studied in the last three years, from the point of view of chemical graph theory[5,6], 
and in general graphs[1]. It was also compared to other structural indices of graphs[2]. Das derives multiple results with 
implications to the minimum/maximum ABC index on graphs. With relation to trees, it is known that among all the trees of 
the same number of vertices, the maximum ABC index is attained for the star graph. However, it is not known which tree(s) 
minimize(s) the ABC index. The problem seems to be hard. It is partially addressed in many sources[5,1,6], but remains open. 
In this paper we further investigate the trees that minimize the ABC index. Our investigations are limited to chemical trees, i.e. 
trees in which the maximum vertex degree is 4. The chemical trees were introduced to reflect the structure of the carbon 
chains and the molecules based on them. Our approach is algorithmic. We identify certain types of edges (chemical bonds) 
that are important and occur frequently in chemical trees. Further, we study how the removal of a certain edge, the intro-
duction of certain edge or the contraction of certain edge affects the ABC-index of the tree. We pay particular attention to the 
examples of minimal ABC index chemical trees provided by Dimitrov[3]. 

Keywords  chemical graph theory, structural indices of graphs, chemical trees 

1. Introduction 
This paper will discuss the Atom-bond connectivity index, 

its origins, its uses and its applications. The central topics of 
discussion for this paper will include: an investigation of the 
Furtula examples (provided through a personal communica-
tion), an exploration of the structure of the maximal and 
minimal chemical trees for the ABC index, and the contri-
bution of certain types of vertices and edges to the ABC 
index of the graph as a whole. It will also consider graphs 
from a specific class Γ (to be defined later) and their ABC 
indices. 

2. Formulation and History of the ABC 
Index 

The atom-bond connectivity index, (ABC index), was first 
proposed by Ernesto Estrada in 1998. Estrada is a Cuban 
mathematician born in 1966. He is currently a professor and 
chair in Complexity Sciences at the University of Strathclyde 
in Glasgow, Scotland. The ABC index is a new topological 
index that has proven to be a valuable predictive index in the 
study of the heat of formation in alkanes[1]. For those who 
may not be familiar with alkanes, these are any of the series  
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of saturated hydrocarbons having the general formula 
CnH2n+2, including methane, ethane and propane. 

The ABC index comes from the connectivity index, χ, 
which was introduced in 1975 by Milan Randić[1]; however, 
the connectivity index deals with molecular branching. 
Estrada wanted to take into account the many physico- 
chemical properties that are not dependent on branching; 
thus, the ABC index was born. 

2.1. Formulation 

The ABC index is defined as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

where the summation goes over all the edges of G, du and 
dv are the degrees of the terminal vertices u and v of edge uv 
and E(G) is the set of edges of G with cardinality m = |E(G)|. 

2.2. Example 

Let G be the following graph 
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𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

=  ��𝑑𝑑𝐴𝐴+𝑑𝑑𝐵𝐵−2
𝑑𝑑𝐴𝐴𝑑𝑑𝐵𝐵

+ �𝑑𝑑𝐴𝐴+𝑑𝑑𝐶𝐶−2
𝑑𝑑𝐴𝐴𝑑𝑑𝐶𝐶

+ �𝑑𝑑𝐵𝐵+𝑑𝑑𝐶𝐶−2
𝑑𝑑𝐵𝐵𝑑𝑑𝐶𝐶

+ �𝑑𝑑𝐴𝐴+𝑑𝑑𝐷𝐷−2
𝑑𝑑𝐴𝐴𝑑𝑑𝐷𝐷

+

𝑑𝑑𝐴𝐴+𝑑𝑑𝐸𝐸−2𝑑𝑑𝐴𝐴𝑑𝑑𝐸𝐸+𝑑𝑑𝐸𝐸+𝑑𝑑𝐷𝐷−2𝑑𝑑𝐸𝐸𝑑𝑑𝐷𝐷 

= ��
4 + 2 − 2

4 ∙ 2
+ �4 + 2 − 2

4 ∙ 2
+ �2 + 2 − 2

2 ∙ 2

+ �4 + 2 − 2
4 ∙ 2

+ �4 + 2 − 2
4 ∙ 2

+ �2 + 2 − 2
2 ∙ 2

� 

= ��
4
8

+ �4
8

+ �2
4

+�4
8

+�4
8

+ �2
4�

 

=  
6
√2

 

2.3. Chemical Trees and Some Examples 

A tree in graph theory is any connected graph without a 
cycle or, in other words, an undirected graph in which any 
two vertices are only connected by exactly one simple path. 
Chemical trees are trees that have no vertex with degree 
greater than 4. 

Examples of chemical trees: 
Chains: 

 
Trees: 

 

 
The following are not chemical trees: 
Graphs of vertex degree greater than 4 and graphs with 

cycles: 

  

3. The ABC Index of Chemical Trees 
This section of the paper will focus on the properties and 

applications of the ABC index on chemical trees. First, there 
will be an exploration of the contribution of specific types of 

edges to the ABC Index of a chemical tree and then a table 
will be developed to describe the contribution of specific 
edges more efficiently. 

3.1. Contribution of Specific Edges 

Contribution of a pendant edge (an edge of a graph is said 
to be a pendant edge if one of its vertices is of degree 1): 

Let d equal the degree of the terminal vertex of a pendant 
edge uv that is not one. 

Let e be the pendant vertex (𝑒𝑒 = 1). 
Then the contribution of the edge uv to the graph is given 

by: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢) =  �
𝑑𝑑 + 𝑒𝑒 − 2
𝑑𝑑 ∙ 𝑒𝑒

= �𝑑𝑑 + 1 − 2
𝑑𝑑 ∙ 1

= �𝑑𝑑 − 1
𝑑𝑑

 

Contribution of an edge uv whose terminal vertices are of 
degree d and 2: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢) = �𝑑𝑑 + 2 − 2
𝑑𝑑 ∙ 2

= � 𝑑𝑑
2𝑑𝑑

= �1
2

=
1
√2

≈ 0.70710 

Contribution of an edge uv whose terminal vertices are of 
degree 1 and 3: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢) = �1 + 3 − 2
1 ∙ 3

= �2
3
≈ 0.81650 

Contribution of an edge uv whose terminal vertices are of 
degree 1 and 4: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢) = �1 + 4 − 2
1 ∙ 4

= �3
4

=
√3
2
≈ 0.86603 

Contribution of an edge uv whose terminal vertices are of 
degree d and 3: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢) = �𝑑𝑑 + 3 − 2
𝑑𝑑 ∙ 3

= �𝑑𝑑 + 1
3𝑑𝑑

 

Contribution of an edge uvwhose terminal vertices are of 
degree d and 4: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢) = �𝑑𝑑 + 4 − 2
𝑑𝑑 ∙ 4

= �𝑑𝑑 + 2
4𝑑𝑑

 

3.2. Table of Edge Contributions 

Thus one can develop the following table in order to in-
crease the ease with which one can calculate the ABC index 
of a graph G. 

Degree of u 
1 2 3 4 d 

Degree of v 

1 0 
1
√2

 �2
3

 
√3
2

 �𝑑𝑑 − 1
𝑑𝑑

 

2 
1
√2

 
1
√2

 
1
√2

 
1
√2

 
1
√2

 

3 �2
3

 
1
√2

 2
3

 � 5
12

 �𝑑𝑑 + 1
3𝑑𝑑

 

4 √3
2

 
1
√2

 � 5
12

 �3
8

 �𝑑𝑑 + 2
4𝑑𝑑

 

d �𝑑𝑑 − 1
𝑑𝑑

 
1
√2

 �𝑑𝑑 + 1
3𝑑𝑑

 �𝑑𝑑 + 2
4𝑑𝑑

 
√2𝑑𝑑 − 2

𝑑𝑑
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4. Chemical Trees of Minimal ABC  
Index 

In this section, we will establish some notation to be used 
throughout the rest of the paper. There will also be an ex-
ploration of the notion of chemical trees of minimal ABC 
indices including a discussion and examination of the ex-
amples provided by Boris Furtula in a personal communica-
tion. (Furtula will be discussed in greater detail in the section 
4.3). 

4.1. Notation 

In this section, it is necessary to establish notation for 
certain types of edges. Let an 𝑎𝑎-𝑏𝑏 edge be an edge with a 
terminal vertex of degree 𝑎𝑎 and the other terminal vertex of 
degree 𝑏𝑏. For example, a 3-4 edge is an edge between ver-
tices of degree 3 and 4 respectively. Also let 𝑎𝑎-𝑏𝑏𝑐𝑐-𝑑𝑑 
denote a transformation of an 𝑎𝑎-𝑏𝑏 edge to a 𝑐𝑐-𝑑𝑑 edge. For 
example, 2-2 2-1 means that a 2-2 edge was transformed 
into a 2-1 edge by adding or removing certain vertices and 
edges as specified in each unique case presented. 

4.2. Finding Chemical Trees of Minimal ABC Index 

First, let n be the number of vertices in the chemical tree G. 
At first glance, the obvious choice for the shape of a 
chemical tree of minimal ABC index would seem to be the 
chain. In fact, this is true for chemical trees with 𝑛𝑛 ≤ 6. 

𝑛𝑛 = 2 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
=

1
√2

𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

This is the only possible arrangement for a chemical tree 
with 2 vertices. 

𝑛𝑛 = 3 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
= 2 ∙

1
√2

𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

=
2
√2

 

The chain is once again the only option. 
𝑛𝑛 = 4 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
= 3 ∙

1
√2

≈ 2.1213
𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
= 3 ∙ �

2
3
≈ 2.4495

𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

𝑛𝑛 = 5 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

= 4 ∙
1
√2

≈ 2.8284 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
= 3 ∙ �

2
3

+
1
√2

𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

≈ 3.1566 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

= 4 ∙
√3
2

= 2√3 ≈ 3.4641 

𝑛𝑛 = 6 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
= 5 ∙

1
√2

≈ 3.5355
𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = ∑ �𝑑𝑑𝑢𝑢+𝑑𝑑𝑣𝑣−2
𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣

= 3 ∙ √3
2

+ 2 ∙ 1
√2𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺) ≈ 4.0123 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

= 4 ∙ �
2
3

+
1
√2

≈ 3.9731 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
=

𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

�2
3

+ 4 ∙
1
√2

≈ 3.6449 

Thus for 𝑛𝑛 ≤ 6, the chain has the minimal ABC index. 
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4.3. Boris Furtula and Chemical Tress with More than 6 
Vertices 

Boris Furtula was born in 1978 in Kragujevac, Serbia. He 
is a professor in the Faculty of Science at Kragujevac Uni-
versity where he studied for all of his post-secondary edu-
cation. Furtula is a leader in the study of chemical graph 
theory, known for his extensive research on the ABC Index. 

According to a personal communication with Furtula[3], 
there are two possible chemical trees with 7 vertices and 
minimal ABC indices. 

The first is the chain: 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

= 6 ∙
1
√2

≈ 4.2426 

And the second is the following tree: 

 
Note that all edges in this tree have at least one terminal 

vertex of order 2; this means that all the edges contribute the 
same amount to the ABC index (namely 1/√2). Thus, the 
ABC index of this formation is equal to the ABC index of the 
chain with 7 vertices. 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

= 6 ∙
1
√2

≈ 4.2426 

Therefore, there are two different chemical trees with 7 
vertices of minimal ABC index. 

Similarly for chemical trees with 𝑛𝑛 = 8, there are two 
different trees with 8 vertices of minimal ABC index. 

The chain: 

 
And another tree: 

 
Note that similar to the tree of minimal ABC index for 7 

vertices, all of this tree’s edges have at least one vertex of 
degree 2. 

For 𝑛𝑛 = 9, there are 4 trees of minimal ABC index in-
cluding the chain. 

 

 

 

 
All four of these trees have edges which each have at 

least one terminal vertex of degree 2. Thus, all the edges in 
these trees contribute the same amount to the ABC index and 
since each of these graphs has 8 edges, all four of these trees 
have the same minimal ABC index as the chain of 9 vertices 
(namely 9/√2). 

4.4. Chemical Trees whose Chain is not among the Trees 
of Minimal ABC Index 

Thus far, the chain has been among the trees of minimal 
ABC index for 2 ≤ 𝑛𝑛 ≤ 9; however, this is not the case for 
𝑛𝑛 ≥ 10. 

Consider the chemical trees with 𝑛𝑛 = 10. 
It seems that from the previous examples that the minimal 

ABC index of trees with 𝑛𝑛 = 10 would be 10/√2. This 
would be the case if all the edges of the tree had at least one 
terminal vertex of degree 2. But what if the tree could have 
an edge that would contribute less than one which has a 
vertex of degree 2 (namely less than 1/√2 ). 

Consider the following tree with 𝑛𝑛 = 10: 
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All of this tree’s edges have at least one vertex of degree 2 
except for the one that is circled. This edge is between two 
vertices of degree 3.  

The contribution of the circled edge is as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

= �3 + 3 − 2
3 ∙ 3

=
2
3
≈ 0.6667 

Compare the contribution of this edge to an edge that has 
at least one of its terminal vertices of degree 2. 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢𝑢𝑢) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
=

1
√2

𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

≈ 0.7071 

Thus, the indicated edge with vertices of degree 3 con-
tributes less than one of the edges of a chain would and so the 
ABC index of this tree is less than the ABC index of a chain 
of 10 vertices. In fact, it is the only tree with 10 vertices of 
minimal ABC index according to Furtula. 

5. Developing a Method for Determining 
the Chemical Tree of Minimal ABC 
Index 

Clearly then, a method for determining the chemical trees 
of minimal ABC index is to try to establish a combination of 
edges which contribute less than 1/√2 . 

From the table above, these edges that contribute less than 
1/√2 are the following: a 3-3 edge, 3-4 edge and a 4-4 edge. 
(Note that here we do not consider edges of degree greater 
than 4 because we are currently focusing on chemical trees). 

5.1. Examining the Tree of Minimal ABC Index with 11 
Vertices 

According to Furtula, the following tree is of minimal 
ABC index for 11 vertices: 

 

 
Note that this tree is very similar to the tree of minimal 

ABC index for 10 vertices; it simply has one more vertex and 
edge added to the horizontal chain. 

Let us explore the different ways one could form a tree 
with 11 vertices to try to determine why the new edge and 
vertex were placed where they were. 

 
The original given by Furtula: 
Number of 2-1 edges: 4 
Number of 2-2edges: 1 
Number of 3-2edges: 4 
Number of 3-3 edges: 1 
The example above (Example A): 
Number of 2-1 edges:  4 
Number of 2-2 edges:  0 
Number of 3-2 edges:  2 
Number of 3-3 edges:  0 
Number of 3-4 edges:  1 
Number of 4-1edges:  1 
Number of 4-2 edges:  2 
It seems that to go from the original given by Furtula to 

Example A the following transformations take place: 
2-2 2-1 so in terms of contributions there in no change 

to the ABC Index 
3-2 4-2 no change 
3-2 4-2 no change 
2-1 4-1 CHANGE: 

 1
√2
→ √3

2
 𝑎𝑎𝑎𝑎𝑎𝑎 1

√2
< √3

2
 

3-3 3-4 CHANGE: 

 2
3
→ � 5

12
 𝑎𝑎𝑎𝑎𝑎𝑎 2

3
< � 5

12
 

Since any edge with at least one terminal vertex of degree 
2 will contribute 1/√2 to the ABC index regardless of the 
degree of the other terminal vertex, no change occurs to the 
ABC index from the first three transformations. However, 
the last two transformations result in a greater contribution to 
the ABC index and thus Furtula’s tree with 11 vertices is still 
the minimal tree. 

Let us try another transformation (Example B): 

 
We have now lost two 2-1 edges and gained two 3-1 edges 
We have also lost a 3-2 edge for a 3-3 edge. 
Since the contribution of a 2-1 edge is less than the con-

tribution of a 3-1 edge, this transformation increases the 
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ABC index. 
However, as mentioned above, the 3-3 edge contributes 

less than the 3-2 edge so we must calculate the decrease in 
the ABC index and ensure that it is less than the increase 
caused by the first transformation. 

Contribution of a 2-1 edge:  
1
√2

≈ 0.7071 

Contribution of a 3-1 edge: 

�2
3
≈ 0.81650 

Thus the total increase to the ABC index is:  

�2
3
−

1
√2

≈ 0.10939 

Contribution of a 3-2 edge:  
1
√2

≈ 0.70711 

Contribution of a 3-3 edge:  
2
3
≈ 0.66667 

Thus the total decrease to the ABC index is:  
1
√2

−
2
3
≈ 0.04044 

Therefore, this transformation ultimately results in an in-
crease in the ABC index and Furtula’s tree is still the mini-
mal example. 

What about the following tree, call it example C? 

 
Here we see that there is no change to the ABC index from 

the transformation; however, this is not a new formation. In 
fact, this tree has the same ABC index as Furtula’s for the 
simple reason that it is isomorphic to Furtula’s tree. 

5.2. Determining the Tree of Minimal ABC Index with 12 
Vertices 

Let us try to construct a tree of minimal ABC index for 
𝑛𝑛 = 12. Given what we now know about the contribution of 
certain edges, we would like to have as many 3-3, 3-4 and/or 
4-4 edges as possible 

Try starting with a vertex of degree 4 

 

Now let us connect this tree with another tree to form a 4-4 
edge.  

 
Here we have used 7 of the 12 vertices. 
We know that 4-1 edges contribute more than 4-2 edges so 

let us add a pendant edge to each of the pendant vertices to 
develop the following tree: 

This tree has 12 vertices but is this tree of minimal ABC 
index? 

 
Note that this tree still has two 4-1 edges. The question is: 

does it make sense to take one of these 4-1 edges and add it to 
one of the pendant edges?  

This would change one of the vertices of degree 4 to de-
gree 3 so instead of having a 4-4 edge and two 4-2 edges we 
would now have a 3-4 edge and two 3-2 edges. The 3-2 edges 
will contribute the same as the 4-2 edges so they are not 
interesting. The question becomes: does a 3-4 edge contrib-
ute less than a 4-4 edge? 

The answer is no. A 3-4 edge contributes slightly more 
than a 4-4 edge. So the following tree is not the minimal tree: 

 
What if we take this edge and move it as follows so that we 

form another 4-2 edge instead of a 4-1 edge?: 
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Now we have a slight increase in the ABC index because a 
4-4 edge becomes a 3-4 edge but we also change a 4-1 edge 
to a 4-2 edge, which decreases the ABC index.  

Comparing the increase and decrease we see that the de-
crease is larger than the increase and thus this tree has a 
smaller ABC index than the previous trees. 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = � 5
12

−�3
8
≈ 0.03312 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
√3
2
−

1
√2

≈ 0.15892 

Thus, we establish the tree of minimal ABC index with 
𝑛𝑛 = 12. (Confirmed by Furtula)  

 

6. Class Γ and Graphs of Maximal ABC 
Index 

Another leader in chemical graph theory is Indian 
mathematician Kinkar Das who is currently employed in the 
Department of Mathematics in Sungkyunkwan University, 
Korea. His research interests include Spectral Graph Theory, 
Molecular Graph Theory, Algorithm and Complexity, Gen-
eral Graph Theory, Discrete Mathematics, Combinatorics, 
and Graph Labeling. He has also worked with Furtula to 
publish findings on the ABC Index. The following section is 
a brief description of the findings outlined by Das in his 
article: Atom-bond connectivity index of graphs published in 
2010. Here, the discussion will center on a specific class Γ of 
graphs described by Das and some results regarding graphs 
that are not chemical trees (such as those in class Γ) will be 
introduced. 

6.1. The Class Γ 

Let us explore another class of graphs, Γ postulated by 
Kinkar Das. Let H be a graph in Γ and let 𝑚𝑚 be the number 
of edges in H. Then: 

1. H is a connected graph 
2. H has minimum vertex degree 𝛿𝛿 = 2. 
3. H has 𝑞𝑞 edges between vertices of maximum degree Δ, 

where 𝑞𝑞 ≤ 𝑚𝑚 and ∆≥ 3. 
4. H has 𝑚𝑚 − 𝑞𝑞 edges for which at least one of the ter-

minal vertices has degree 𝛿𝛿 = 2. 
And 𝑞𝑞 is given by: 

𝑞𝑞 =
𝑚𝑚∆

∆ + 2√∆ − 1
 

Thus, an edge, say ℎ ∈ 𝐻𝐻, is of one of two possible types: 
either ℎ has at least one terminal vertex of degree 𝛿𝛿 = 2 or 
both the terminal vertices of ℎ are of maximum degree Δ 
[1]. 

6.2. ABC Index of Graphs from Class Γ  

The characteristics of a graph H in Class Γ imply that the 
contribution of an edge ℎ to the ABC(H) is either 1/√2 

or �∆+∆−2
∆2 = �2∆−2

∆2  where ∆≥ 3. 

Therefore, we deduce the following equation for the 
ABC(H): 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐻𝐻) = (𝑚𝑚 − 𝑞𝑞)
1
√2

+ 𝑞𝑞�
2∆ − 2
∆2  

= (𝑚𝑚 −
𝑚𝑚∆

∆ + 2√∆ − 1
)

1
√2

+ 𝑞𝑞
√2√∆ − 1

∆
 

= �
𝑚𝑚∆ −𝑚𝑚∆ + 2𝑚𝑚√∆ − 1

∆ + 2√∆ − 1
�

1
√2

+ 𝑞𝑞
√2√∆ − 1

∆
 

=
𝑚𝑚√2√∆ − 1
∆ + 2√∆ − 1

+ (
𝑚𝑚∆

∆ + 2√∆ − 1
)(
√2√∆ − 1

∆
) 

=
𝑚𝑚√2√∆ − 1
∆ + 2√∆ − 1

+
𝑚𝑚√2√∆ − 1
∆ + 2√∆ − 1

 

=
2𝑚𝑚�2(∆ − 1)
∆ + 2√∆ − 1

 

Therefore, 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐻𝐻) =
2𝑚𝑚�2(∆ − 1)
∆ + 2√∆ − 1

 

Note that any graph T which is tree cannot be in Γ for the 
simple reason that a tree has pendant vertices of degree 1 and 
thus the minimum vertex degree for any tree is 𝛿𝛿 = 1 ≠ 2. 

6.3. Examples 

Now let us examine some examples of graphs from class Γ. 
As mentioned above, these graphs will not have any pendant 
edges. Let us start with the most basic cycle, 𝐾𝐾3. 

This graph, 𝐾𝐾3 is connected and it has minimum vertex 
degree 𝛿𝛿 = 2  but 𝐾𝐾3 ∉ Γ  since it has maximum vertex 
degree ∆= 2. 

 
Is 𝐾𝐾4 ∈ Γ? 

 
𝐾𝐾4 is connected, has maximum vertex degree Δ = 3 but 
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now 𝐾𝐾4 has minimum vertex degree 𝛿𝛿 = 3. 
What happens if we remove one of the diagonal edges? 

 
Call this graph A. A ∈ Γ since A is connected, has 𝛿𝛿 = 2, 

has Δ = 3, and all of its edges are either between vertices of 
maximum degree or between vertices with at least on vertex 
of degree 2. 

Let us try adding triangular shaped graphs onto some of 
the vertices to see if we can generate another example of a 
graph from the class Γ. 

 
This graph, call it B, is not in Γ. It has Δ = 4 and it has a 

4-3 edge. This edge is not between two vertices of maximum 
vertex degree, nor does it have at least one vertex of degree  

 
𝛿𝛿 = 2. 
Let us try to remedy this by adding a second triangular 

graph to the right side of the graph B as follows: 
We still have Δ = 4 and 4-3 edges. 
Let us try making the core a complete graph 𝐾𝐾4 by adding 

an edge as follows: 

 
Now check that this graph, call it C, meets all the criteria 

in order for it to belong to Γ: 
1. It is connected. 
2. It has minimum vertex degree 𝛿𝛿 = 2 
3. It has 𝑞𝑞 = 6 edge between vertices of maximum de-

gree Δ = 4. 
4. It has 𝑚𝑚 − 𝑞𝑞 = 10 − 6 = 4 edges for which at least 

one of the terminal vertices is of degree 𝛿𝛿 = 2. 
Thus, C ∈ Γ and we can now easily calculate its ABC 

index because we know that for all graphs C ∈ Γ, 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶) = 2𝑚𝑚�2(∆−1)
∆+2√∆−1

=2(10)�2(4−1)
4+2√4−1

= (20)√6
4+2√3

≈ 3.5355 
Consider the following graph D: 

 
D ∈ Γ since D is connected, D has Δ = 3, D has 𝛿𝛿 = 2, 

and all of the edges of D are either between two vertices of 
degree Δ = 3 or have at least one vertex of degree 𝛿𝛿 = 2. 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐷𝐷) = 2𝑚𝑚�2(∆−1)
∆+2√∆−1

2(12)�2(3−1)
3+2√3−1

= (24)√4
4+2√2

= 24
2+√2

≈
7.0294. 

 
In fact, we can add 3 more edges to form a graph E with 

maximum degree Δ = 4 where E ∈ Γ: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸) = 2𝑚𝑚�2(∆−1)
∆+2√∆−1

=2(15)�2(4−1)
4+2√4−1

= (30)√6
4+2√3

≈ 9.8451 
And, we can add 6 edges to turn the core of the graph E 

into 𝐾𝐾6 and generate a new graph F as follows: 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹) = 2𝑚𝑚�2(∆−1)
∆+2√∆−1

=2(21)�2(6−1)
6+2√6−1

= (42)√10
6+2√5

≈ 12.6828 
Now we can add 3 triangles to graph F to form the fol-

lowing graph G that is also in Γ: 
In G, 𝑚𝑚 = 27,Δ = 7, 𝛿𝛿 = 2. 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = 2𝑚𝑚�2(∆−1)
∆+2√∆−1

=2(27)�2(7−1)
7+2√7−1

= (54)√12
7+2√6

≈ 15.7208 

 

6.4. Alternative Formulation of the ABC Index 

Das states the ABC index equivalently as follows: 
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𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
1
𝑑𝑑𝑢𝑢

+
1
𝑑𝑑𝑣𝑣

−
2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

This formulation allows for the taking into account of the 
modified second Zagreb index 𝑀𝑀2

∗(𝐺𝐺) which is equal to the 
sum of the products of the reciprocal of the degrees of pairs 
of adjacent vertices, that is, 

𝑀𝑀2
∗(𝐺𝐺) = ∑ 1

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺) . 
This modified second Zagreb index is used by Das is the 

formulation of many theorems and their subsequent corol-
laries establishing upper and lower bounds on the ABC index 
of specific simple connected graphs with particular charac-
teristics[1]. 

6.5. Graphs of Maximal ABC Index 

It is generally accepted that the graph of maximal ABC 
Index with n vertices is 𝐾𝐾1,𝑛𝑛−1, commonly known as the star 
graph[5].  

Brief reasoning behind this notion: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
1
𝑑𝑑𝑢𝑢

+
1
𝑑𝑑𝑣𝑣

−
2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

For a pendant edge uv, with 𝑑𝑑𝑢𝑢 = 1 and 𝑑𝑑𝑣𝑣 = 𝑣𝑣, 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑒𝑒) = �1
1 +

1
𝑣𝑣 −

2
𝑣𝑣 = �1 −

1
𝑣𝑣 

And obviously, to maximize this you would take the 
highest value for v possible, thus you need all the edges to be 
of the from 1-Δ where Δ is the maximum vertex degree in 
the graph G. 

But why choose to have all pendant edges? 
Well, if we look at the original formulation of the ABC 

Index: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = � �
𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2

𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣𝑢𝑢𝑢𝑢∈𝐸𝐸(𝐺𝐺)

 

Note that in order to maximize this equation we need to 
make 𝑑𝑑𝑢𝑢 + 𝑑𝑑𝑣𝑣 − 2  as large as possible while keeping 
𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣 as small as possible. And, as it turns out, this is 
achieved by making one of the degrees 1 and the other Δ. 

7. Conclusions 
The problem of determining the tree(s) that minimize(s) 

the ABC index for fixed number of vertices n is still open. It 
is difficult even when the maximum vertex degree is limited 
to 4, i.e. on chemical trees. Here we suggested an approach 
based on the contribution of certain edges. Conceivably, one 
can devise a procedure that identifies an edge to be replaced 
and place in the tree where it has to be reinserted in order to 
minimize the ABC index. Our work serves as a good source 
of heuristics on which edges should be considered candidates 
for replacement, as well as what structural components 
should be sought. 
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