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Abstract  This paper concerns the slow viscous flow through a swarm of concentric clusters of porous spherical parti-
cles. An aggregate of clusters of porous spherical particles is considered as a hydro-dynamically equivalent to a porous 
spherical shell enclosing a solid spherical core. The Brinkman equation inside and the Stokes equation outside the porous 
spherical shell in their stream function formulations are used. As boundary conditions, continuity of velocity, continuity of 
normal stress and stress-jump condition at the porous and fluid interface, the continuity of velocity components on the solid 
spherical core are employed. On the hypothetical surface, uniform velocity and Happel boundary conditions are used. The 
drag force experienced by each porous spherical shell in a cell is evaluated. As a particular case, the drag force experienced 
by a porous sphere in a cell with jump is also investigated. The earlier results reported for the drag force by Davis and 
Stone[5] for the drag force experienced by a porous sphere in a cell without jump, Happel[2] for a solid sphere in a cell and 
Qin and Kaloni[4] for a porous sphere in an unbounded medium have been then deduced. Representative results are pre-
sented in graphical form and discussed.  
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1. Introduction 
The study of viscous flow through a porous medium has 

gained importance in recent years because of its natural 
occurrence and of its importance in bio-mechanics, physical 
sciences and chemical engineering etc. The flow of fluids 
through a swarm of porous particles has many industrial and 
engineering applications, such as, in flow through porous 
beds, in petroleum reservoir rocks, in flow sedimentation, etc. 
Several researchers have considered the flow of viscous fluid 
past and through solids or porous bodies with different 
models. For effective use of a porous medium in the above 
areas, the structure of porous layer should be viewed from all 
angles. There are many physical situations arises in which 
the porous particles moving in the viscous fluid. The flow in 
most of the above process is creeping because the Reynolds 
number is smaller than unity. The two terms that play an 
important role for analytical treatment of the problems re-
lated to flow through porous media, are porosity and per-
meability. The porosity The porosity represents the ratio of 
volume of openings (voids or pores) to the volume of the 
material. It seems that more the number of pores, easier will 
be the flow through the medium, which is not correct and this 
can be explained by permeability. Permeability is a measure 
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of interconnectivity of voids (pores) in the medium. Hence, 
its number of voids along with their interconnectivity both 
that determine the ease with which fluid will flow through 
the medium. For the medium of high porosity, the sum 
suggested by Brinkman[1] is more suitable for describing the 
flow through the porous medium. Brinkman[1] evaluated the 
viscous force exerted by a flowing fluid on a dense swarm of 
particles by introducing modified Darcy’s equation for po-
rous medium, which is commonly known as Brinkman 
equation. 

In the analysis of flow through swarm of particles, we get 
cumbersome calculations, if we consider the solution of the 
flow field over the entire swarm by taking exact positions of 
the particles. In order to avoid the above complication, it is 
sufficient to obtain the analytical expression by considering 
the effects of the neighboring particles on the flow field 
around a single particle of the swarm, which can be used to 
develop relatively simple and reliable models for heat and 
mass transfer. This has lead to the development of parti-
cle-in-cell models.   

Uchida[2] proposed a cell model for a sedimenting swarm 
of particles, considering spherical particle surrounded by a 
fluid envelope with cubic outer boundary. This was accu-
rately solved by Brenner[3]. Happel[4, 5] proposed cell 
models in which both particle and outer envelope are 
spherical. Happel solved the problem when the inner sphere 
is solid with respective boundary conditions on the cell sur-
face. The Happel model assumes uniform velocity condition 
and no tangential stress at the cell surface. The merit of this 
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formulation is that, it leads to an axially symmetric flow that 
has a simple analytical solution in closed form, and thus can 
be used for heat and mass transfer calculations. Analytical 
solutions of particle-in-cell models discussed above are 
always practically useful to many industrial problems, but 
the solutions of creeping flow for the above models have not 
been found in case of complex geometry. However, for 
geometrically simpler cases like sphere, the analytical solu-
tions were investigated by various authors along with Happel. 
The problem of the slow viscous flow through an aggregate 
of concentric clusters of porous cylindrical particles with 
Happel boundary condition was discussed Deo et al[6]. The 
drag force experienced by each porous circular cylindrical 
particle in a cell was evaluated them by using cell model 
technique  

Jones[7] had investigated the solution of the problem of 
Stokes flow past a porous spherical shell. He used Darcy’s 
law for the porous region and evaluated the drag force ex-
perienced by a shell. A Cartesian-tensor solution of the 
Brinkman equation is investigated by Qin and Kaloni[8] and 
they also evaluated the drag force on a porous sphere in an 
unbounded medium. Flow through beds of porous particles 
was studied by Davis and Stone[9]. They present two ap-
proximate models for describing the flow field within a 
porous particle contained in a fixed or fluidized bed. 

The first is a swarm model where a spherical porous par-
ticle of a specified permeability is contained in a matrix of a 
different permeability that is equated to the overall bed 
permeability. The second is a cell model in which the 
spherical porous particle is placed in a spherical envelope of 
fluid whose diameter is chosen so that the overall bed po-
rosity is conserved The focus of their work is to derive an 
expressions for the velocity and pressure profiles inside and 
outside of the porous particle, to determine the drag force 
exerted by the flow on a particle, and incorporate the drag 
information into a macroscopic description of the packed bed 
of porous particles. Slow extensional flow past a sphere was 
studied by Bhatt[10]. Stokes flow past a permeable sphere 
for a non-axi-symmetric case was investigated by Padmavati 
et al.[11].  

Giveler and Altobelli[12] performed experimental meas-
urement of the effective viscosity for the steady flow through 
a wall bounded by a porous medium and concluded that

2 1( / )µ µ varies from 5.1 to 10.9. Dassios et al.[13] did a 
celebrated work by finding the solution of Stokes equation in 
spheroidal co-ordinates. Later Dassios et al.[14] used the 
above solution to study the problem of Stokes flow past 
spheroidal particle-in-cell models with Happel and Kuwa-
bara boundary conditions, which has wide range of applica-
tions in problems concerning the flow through swarms of 
spheroidal particles. 

Ochoa-Tapia and Whitaker[15, 16] studied the momentum 
transfer at the boundary between a porous medium and a 
homogeneous fluid theoretically and experimentally. They 
develop the appropriate jump condition for momentum 
transport within the framework of the method of volume 
averaging and they compare the theory with the experimental 

studies of Beavers and Joseph[6] and they explore the use of 
a variable porosity model as a substitute for the jump condi-
tion.  

Many authors have used the stress jump boundary condi-
tion in various flow problems and reported significant 
changes in results. Kuznetsov[17, 18] used the stress jump 
boundary condition at the fluid-porous interface to discuss 
flow in channels partially filled with porous medium. The 
problem of Stokes flow inside a porous spherical shell was 
solved by Raja-Sekhar and Amarnath[20] by using Darcy’s 
law for porous outside region and Stokes flow for inside 
region. The problem of slow extensional bounded flows past 
a porous sphere whose surface is stretching radially with slip 
at the surface has been studied by Bhatt and Shirley[21]. 
Datta and Deo[22] have studied the problem of Stokes flow 
with slip and Kuwabara boundary conditions and evaluated 
the drag force experienced by a rigid spheroid in a cell. 
Viscous flow past a porous sphere with an impermeable core 
was studied by Bhattacharya and Raja Shekhar[23]. They 
consider an arbitrary Stokes flow past a porous sphere within 
an impermeable core and Brinkman’s model is used for the 
porous medium. The stress jump boundary condition for 
tangential stresses together with continuity of velocity 
components and continuity of normal stresses at the per-
meable boundary are used. They found that the drag and 
torque not only change with the change of the permeability, 
but also a significant effect of the stress jump co-efficient is 
observed. Also, they have used this boundary condition to 
discuss the arbitrary Stokes flow inside a porous spherical 
shell[24].  

Srivastava and Srivastava[25] studied the Stokes flow 
through a porous sphere using stress jump condition at the 
fluid-porous interface and matching Stokes and Oseen’s 
solutions far away from the sphere. They concluded that drag 
on a porous sphere decreases with increase of permeability 
of the medium. Deo and Yadav[26] examined flow past a swarm 
of porous deformed oblate spheroidal particles with kuwabara 
boundary condition and evaluated the drag force and studied 
the effects of deformation parameter on the drag force. 
Chandesris and Jamet[27] discuss the Boundary conditions 
at a planar fluid-porous. They have shown that, given a sin-
gle volume-averaged transport equation in the entire domain 
(mesoscopic scale), it is possible to solve the problem ana-
lytically inside the heterogeneous transition zone using the 
method of matched asymptotic expansions and thus to ana-
lytically derive the boundary conditions that must be applied 
at the discontinuous interface. This analytical study shows 
that the stress jump condition is related to the slip velocity 
but also to the pressure gradient, through two jump pa-
rameters. This analysis also provides explicit relations be-
tween these two jump parameters and the variations of po-
rosity and permeability in the transition zone through excess 
quantities. They, also discuss the Boundary conditions at 
fluid-porous interface[29]. They show that it is possible to 
provide an explicit relation between the values of jump pa-
rameters of the stress jump condition that one should impose 
at a fluid/porous interface and the structure of the transition 
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region. An explicit relation between the jump parameters, the 
location of the discontinuous interface (macroscopic de-
scription) and the structure of the transition region 
(mesoscopic description) is obtained. This relation allows to 
explain the large sensitivity of the jump parameters to the 
location of the discontinuous interface observed in[27]. 
Diffusive mass transfer between a microporous medium and 
an homogeneous fluid was studies by Valdes-Parada et 
al[28]. They obtain the jump boundary condition between a 
fluid and a porous medium, for Diffusive and chemical re-
action. They, also discuss the Jump momentum boundary 
condition at a fluid-porous dividing surface[30]. They de-
rived an expression for a jump stress boundary condition free 
of adjustable coefficient using a method of volume averaging 
method. The motivations of these papers lead us to discuss 
the present problem which includes the earlier results for the 
drag force on a porous sphere. 

This paper concerns the problem of slow viscous flow 
through a swarm of clusters of porous spherical particles. As 
boundary conditions, continuity of velocity, continuity of 
normal stress and stress-jump condition at the porous and 
fluid interface, the continuity of velocity components on the 
solid spherical core are employed. On the hypothetical sur-
face, uniform velocity and Happel boundary conditions are 
used. The drag force experienced by each porous spherical 
shell in a cell is evaluated. As a particular case, the drag force 
experienced by a porous sphere in a cell and in an unbounded 
medium with jump is also investigated. The earlier results 
reported for the drag force by Davis and Stone[9] for the drag 
force experienced by a porous sphere in a cell without jump, 
Happel[4] for a solid sphere in a cell and Qin and Kaloni[8] 
for a porous sphere in an unbounded medium have been then 
deduced.  

2. Statements and Mathematical 
Formulation of the Problem 

Here we have considered an axi-symmetric Stokes flow of 
a viscous incompressible fluid through a swarm of porous 
spherical particles of radius b  enclosing an impermeable 
spherical core of radius a . The above model is equivalent to 
a co-axial porous spherical shell enclosing the impermeable 
core. Further, we assume that, this porous shell is enveloped 
by a concentric sphere of radius ( )c c b> , named as cell 
surface (Figure-2). The Stokes flow of a Newtonian fluid 
with absolute fluid viscosity is assumed to be steady and 
axi-symmetric. Let us consider that porous spherical shells 
are stationary and steady axi-symmetric viscous flow has 
been established around and through it by a uniform velocity 
U  directed in the positive z-axis. The radius c  of hypo-
thetical cell is so chosen that the particle volume fractionγ of 
the swarm is equal to the particle volume fraction of the cell, 
i.e. relative to this composite sphere (i.e. a core with porous 
shell) in the hypothetical cell  

3

3

b
c

πγ
π

= .                       (1) 

The flow inside the porous shell region *( )a r b< < , is 
governed by the Brinkman[1] equation  

2
e p

k
µµ ∇ − = ∇

vv , . 0∇ =v ,              (2) 

where, k  being the permeability of the porous medium, 
v  and p are the velocity vector and pressure at any point 
in the porous region, respectively. The coefficient eµ is the 
effective viscosity for the Brinkman flow which taken to be 
different fromµ , the viscosity coefficient of clear fluid. The 
flow in the outside region of the porous spherical shell be 
governed by the Stokes equation (Happel and Brenner[31]) 
as  

2 pµ∇ = ∇v ,  . 0∇ =v .                 (3) 

 
Figure 2.  Physical situation and co-ordinate system of the problem 

Let ∗r
v  and θv  be the velocity components in the di-

rection of ∗r and θ , respectively. Then the Stokes stream 
function ψ  which satisfies equation of continuity in 
spherical polar coordinates ( , , )r θ ϕ can be expressed as 

2
1

( ) sinr r
v ψ

θθ∗ ∗

∂
∂= − ,

1
sinr r

v ψ
θ θ∗ ∗

∂

∂
= .       (4) 

Also, let the index in the superscript under bracket of an 
entity ( )iχ , 1, 2i =  indicates porous and clear fluid regions, 
respectively. Using the following variables  

2 ( )iU bψ ψ= , ( )iUp p
b
µ

= , *r b r= , cosζ θ=    (5) 

and eliminating the pressures from both equations (2) and 
(3), we get the following fourth order partial differential 
equations, respectively as 

2 2 2 (1)( ) 0E E α ψ− = ,             (6) 
2 2 (2)( ) 0E E ψ = .                     (7) 

where, 2 2 2/α σ λ=  with 2 /eλ µ µ= , 2 2 /b kσ =  and 
2E  being the dimensionless operator defined by 

2 2 2
2

2 2 2

(1 )E
r r

ζ
ζ

∂ − ∂
= +
∂ ∂

.           (8) 

In the case of axi-symmetric incompressible creeping flow, 
the regular solution on the symmetry axis of Stokes equation 
(7) can be expressed (Happel & Brenner[31]) as 
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The complete regular solution on symmetry axis of 
Brinkman’s equation (6) may be expressed (Zlatanovski[19]) 
as 

(1) (1) 1 (1) (1)

2
(1)

( , ) [ ( )

( )] ( )

n n
n n n n

n

n n n

r A r B r C y r

D y r G

ψ ζ α

α ζ

∞
− +

−
=

= + +

+

∑      (10) 

In order to finalize the proposed boundary value problem, 
we should impose appropriate boundary conditions which 
are physically realistic and mathematically consistent for this 
proposed problem. No slip boundary conditions are imposed 
on the surface of solid spherical core: 

*
(1) ( , ) 0
r

v r θ =  and (1) ( , ) 0v rθ θ =  at *r a= .         (11) 

On the boundary between the porous shell and the liquid
*r b= , we assume the velocity components and normal 

stresses * * ( , )
r r

T r θ   are continuous: 
* *

(1) (2)( , ) ( , )
r r

v r v rθ θ= , (1) (2)( , ) ( , )v r v rθ θθ θ=       (12) 

* * * *
(1) (2)( , ) ( , )

r r r r
T r T rθ θ= .            (13) 

Using the continuity of velocity components (12), the 
boundary condition suggested by Ochao-Tapia and 
Whitaker[15, 16] at the interface of porous shell and clear 
fluid *r b=  , will become as (Srivastava and 
Srivastava[25]):  

* *
(1) (2) (1)( , ) ( , ) ( , )

r r
T r T r v r

k θθ θ

β µθ θ θ− = .           (14) 

The above condition is named as stress jump boundary 
condition for the tangential stress.  

Here, it may be mentioned that the values of jump coeffi-
cient β  varies in the range -1 to 1 as experimentally found 
by Ochoa-Tapia and Whitaker[15, 16]. If 0β = , then we get 
the continuity of shearing stress.  

The continuity of the redial components of fluid velocity 
on the outer cell *( )r c=  implies:  

*
(2) ( , ) cos
r

v r Uθ θ= .                    (15) 

According to Happel[4] the tangential stress vanishes on 
the outer cell surface *r c= : 

*
(2) ( , ) 0

r
T r

θ
θ = .                 (16) 

It may be noted here that, for the case of flow past a sphere, 
when we apply the boundary conditions (11) - (16), all the 
coefficients appearing in the stream functions (9) and (10) 
vanishes except for 2n = ,  (Datta and Deo[22]). 

Therefore, a particular regular solution of the Brinkman 
equation (6) can be expressed as  

(1) 2 1
1 1 2 1 2 2( , ) [ ( ) ( )] ( ),

Br A r C y r D y r G
r

ψ ζ α α ζ−= + + +    (17) 

and a particular regular solution of the Stokes equation 
may be taken as  

(2) 2 42
2 2 2 2( , ) [ ] ( )

Br A r C r D r G
r

ψ ζ ζ= + + + .      (18) 

Here, 2 ( ) sinh( ) (1/ ) cosh( )y r r r rα α α α− = −
2 ( ) cosh( ) (1/ )sinh( )y r r r rα α α α= − , 

2
2 ( ) (1/ 2)(1 )G ζ ζ= − and , , , ( 1, 2)i i i iA B C D i = are arbi-

trary constant which we have to be determined. 

2.1. Determination of Arbitrary Constants 
As a result of application of the boundary conditions (11) 

– (16) and solving the resulting equations, we get the values 
of arbitrary constants 

1 1 1 1 2 2 2, , , , , ,A B C D A B C and 2D , which are 
given in the Appendix A. Thus, all the coefficients have been 
determined and hence, we get the explicit expressions for 
stream functions from equations (17) and (18), in both re-
gions. 

3. Evaluation of Drag force 
The drag force experienced by each porous spherical shell 

in a cell can be evaluated by using the simple elegant formula 
(Happel and Brenner[31], p.-115) as 

2 (1)
3

2
0

( ) .EF U b r d
r

π ψπ µ ϖ θ
ϖ

∂
=

∂∫                 (19) 

Here, since sinrϖ θ=  and 
2 (1) 2

2 2 2
2[ 10 ] ( )E C r D G
r

ψ ζ= − + ,             (20) 

inserting these above values in (19) and integrating, we 
find that 

24F b UCπ µ= ,                          (21) 

where, 2C  is given in appendix A. Here, it may be noted 
that Stokeslet coefficient 2C of the stream function only 
contribute to the drag force. 

Also, the drag coefficient DC  can be defined as 

2 2

2

(1/ 2)
16

,
Re

D
FC
U b

C
ρ π

=

=

                             (22) 

where, 2Re bU and v µ
ν ρ

= =  being the Reynolds number 

and kinematic viscosity of fluid, respectively. 
When hypothetical cell radius c →∞  i.e., m →∞ , then 

the porous spherical shell lies in an unbounded medium. In 
this case, the value of the drag force comes out as 

*
212F U bCπ µ=                            (23) 

where, *
2C  is given in Appendix B.  

This is a new result reported for the drag force experienced 
by a porous spherical shell in an unbounded medium with 
jump condition. 

In the limit of 0,a → i.e., 0→ , the porous spherical 
shell reduces to the porous sphere in a cell. Therefore, the 
value of drag force F  experienced by the porous sphere of 
radius b comes out as  

*
34F bU Cπ µ=                       (24) 

where, *
3C  is given in Appendix B 

This is also a new result reported   for the drag force 
experienced by a porous sphere in a cell with jump condition. 

Also, in the limit 0a →  i.e., 0→  and m →∞ , the 
physical problems corresponds to the porous sphere of radius 
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b  in unbounded medium. In this case, the value of drag 
force F  experienced by a porous sphere comes out as 

2 2 2 2

2 2 2 4

2 2 3
3

3 [ { (12 ( 12 ) ) ( 6 (6 ) )}
cosh {4(3 ) 2 (3 ) ( 12 3 )

3 (2 ) }sinh ] /

F α λ α β α λ αλ α λ

α α β α α λ α α

βλ α α λ α

= + − + + − + +

− + − + + − − +

+ + ∆

 (25) 

where, 
2 2

3
2 2 2

2 2 4 2 2

4 3 2 2 4

[ ( 54 (54 ( (27 2( 12 ) )

( 9 2(6 ) )))) cosh ( 18{3 9 (3
) 3( 18 3 2 ) 2 ( 12 3
) 6 (2 ) )sinh ].

α λ λ α β α λ αλ

α λ α α α

α βλ α α λ α α

α βλ α α λ α

∆ = − + + + − + +

− + + − − + +

+ − − − + + − −

+ + +

     (26) 

The following special cases can be deduced from the 
present analysis: 
I. Drag on a porous sphere in a cell without jump ( 0) :β =  

If 0a → , i.e., 0→ , then the porous spherical shell re-
duces to the porous sphere of radius b . In this case, the value 
of drag force F  experienced by a porous sphere for the 
case of 1λ =  comes out as  

2 2 5 5
1 1

2 2 5 5 1
1 1

4

4 [(3 2 30 )

3( 4 10 ) ]

bU cosh
sinhF

π µ α α λ λ α

α α λ λ α α−

+ +

− + +
=

∆
,        (27) 

where, 
2 2 2 5 2 6 5 6

4 1 1 1 1 1
2 5 2 2 5 2 6

1 1 1 1
5 6 2 5 1

1 1 1

[2 3 3 2 3 42 30

90 ] [ 3 15 12

3 72 30 90 ]

cosh
sinh

α α λ α λ α λ λ λ

α λ α α λ α λ α λ

λ λ α λ α α

−

− −

∆ = − + − + + −

+ − − + −

+ + − +

 

and 1
1
m

λ = .                                     (28) 

This agrees with the result of Davis and Stone[9] for the 
drag force experienced by a porous sphere in a cell. 
II. Drag on a porous sphere in an unbounded medium 
without jump ( 0)β = : 

If 0a →  i.e., 0→  and m →∞ , then the porous 
spherical shell reduces to the porous sphere in an unbounded 
medium. In this case, the value of drag force F  experi-
enced by a porous sphere of radius b  for the case of 

1λ =  turns out as 
1

2 2

36 [1 ]
2

F bUπ µ λ
α

−= + + , 2 / ( )sinh cosh sinhλ α α α α= − . 

(29) 
This agrees with the result of Qin and Kaloni[8] for the 

drag force experienced by a porous sphere in an unbounded 
medium. 
III. Drag on a solid sphere in a cell:  

In this case, the value of the drag force from equation (27) 
by taking limit as ∞→α , reduces to 

5 51
3 3 3 2 13 32

3 2 26 [1 ][1 ]F U bπ µ γ γ γ γ −= + − + − .      (30) 

This agrees with the result for the drag force as reported 
earlier by Happel[4]. 
IV. Drag on a solid sphere in an unbounded medium: 

If c →∞ i.e. 0γ → , then from equation (30), the drag 
force experienced by solid sphere of radius b  in an un-
bounded medium is comes out as 

6F U bπ µ= .                         (31) 

A well known result celebrated by Stokes for the drag 

experienced by a solid sphere in an unbounded medium. 

4. Results and Discussions 
In this study, the drag force experienced by a porous 

spherical shell in a cell, porous spherical shell in an un-
bounded medium, porous sphere in a cell and porous sphere 
in an unbounded medium with jump are evaluated. The 
dependence of the drag coefficient DC  on various parame-

ters like permeability parameterσ , viscosity ratioλ , parti-
cle volume fractionγ , porosity parameterλ  and jump co-
efficient β  are discussed. The variation of Re DC  versus 
particle volume fractionγ and permeability parameterσ  for 
the porous spherical shell is shown in Fig.-3. It is observed 
that Re DC  slightly increases with increase in permeability 
parameter σ  for low values of particle volume fractionγ  
( 0.3)γ <  as for small values ofγ  the flow around a shell is 
not influenced very much by neighbouring particles. How-
ever, for large values of particle volume fraction γ  
( 0.3)γ >  a significant increase in Re DC  is observed with
σ  except for very low values of permeability parameterσ
( 3)σ < . 

 
Figure 3.  Variation of ReCD versus particle volume fraction γ  and per-
meability parameterσ  for the porous spherical shell when porosity pa-
rameter 2λ = , jump coefficient 3.0=β  and 5.0=  

The dependence of Re DC  on permeability parameterσ  
and jump coefficient β  is shown in Fig.-4. For all values of 
jump coefficient β , Re DC  asymptotically increases with 
increase of permeability parameter σ . However, Re DC  
gradually decreases with increase in jump coefficient β  for 
small values of permeability parameterσ and for large val-
ues ofσ , Re DC  asymptotically decreases. For all values of 
jump coefficient β , Re DC  increases with particle volume 
fractionγ  (Fig.-5). It is also fined out that Re DC  gradually 
decreases with increase in jump coefficient β  for all values 
ofγ . It clearly indicates that the variation of Re DC  with 
particle volume fraction γ  is independent of the shearing 
stress in the clear fluid relative to the shearing stress in the 
porous region at the fluid-porous interface. Here, as β  
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increases the value of Re DC decreases. Hence, it is felt that 
there is a significant effect of the stress jump coefficient β  
on the flow like volume flow, drag force etc. Therefore while 
studying viscous flow problems involving Stokes equation in 
clear fluid region and Brinkman equation in porous media; 
one has to take the stress jump in the tangential stress com-
ponents into consideration, which has a significant impact on 
the physical problem. Also, this helps us to estimate the flow 
quantities more accurately and to realize the dependency of 
the physical problem on the boundary conditions. 

 

 
Figure 4.  Variation of ReCD versus jump coefficient β  and permeability 
parameter σ  for the porous spherical shell when porosity parameter 2λ =  , 
particle volume fraction 0.5γ =  and 0.5=  

 

 
Figure 5.  Variation of ReCD versus jump coefficient β  and particle 
volume fraction γ  for the porous spherical shell when porosity parameter

2λ = , permeability parameter 0.5σ =  and 0.5=  

The variation of Re DC  with particle volume fraction γ  

and porosity parameterλ  is shown in Fig.-6. We observe 

that Re DC  decreases with increase in particle volume 

fraction γ  for small porosity parameter λ ( 5)λ < .As the 
porosity parameter increases ( 5)λ > , Re DC  significantly 
increases to an asymptotic value with particle volume frac-
tion. Evidently, we conclude that higher the effective vis-
cosity in the porous medium comparative to the viscosity of 
the clear fluid, higher will be the rate of increase of drag 
force with particle volume fraction γ  at the fluid-porous 
interface.  

 
Figure 6.  Variation of ReCD versus porosity parameterλ and particle 
volume fraction γ  for the porous spherical shell when jump coefficient

0.8β = , permeability parameter 0.1σ =  and 0.5=  

In Fig.-7, the dependence of Re DC  on porosity parame-

ter λ  and permeability parameterσ  is shown. The term 
Re DC  increases to an asymptotic value with permeability 
parameter σ . For all values of permeability parameter 
Re DC  first increases rapidly with porosity parameterλ and 
then become steady. Here the numerical results and figures 
for given input values have been evaluated through Mathe-
matica software.  

 
Figure 7.  Variation of ReCD versus porosity parameterλ and permeabil-
ity parameter σ  for the porous spherical shell when jump coefficient

0.8β = , particle volume fraction 0.5γ =  and 5.0=  
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