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Abstract  Let (M,d) be a complete metric space and T be a self-mapping of M. W.A. Kirk proved a fixed point theorem 
for a continuous asymptotic contraction T in[4] .Y.Z. Chen extended Kirk’s theorem in[2] by assuming weaker assump-
tions on T. Also Chen introduced some other conditions to replace the assumption on the boundedness of the orbit. We 
introduce the weaker condition liminfn → ∞ (d(x,Tnx)) = 0 for some x in M, and prove that this condition implies the exis-
tence of a fixed point and the convergence of the Picard iterates to this fixed point. 
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1. Introduction and Preliminaries 
W.A. Kirk in[4] introduced asymptotic nonlinear con-

tractions in metric spaces and proved the existence and 
uniqueness of a fixed point for such mappings by using 
ultrafilter methods. Y.Z. Chen in[2] showed the existence 
and uniqueness of a fixed point for asymptotic nonlinear 
contractions with weaker assumptions than Kirk and without 
using ultrafilter methods. The following theorem was proved 
by Chen in[2]: 

THEOREM 1.1 Let (M, d) be a complete metric space, 
and let T: M → M satisfy: 

d(Tnx, Tny) ≤ hn(d(x, y)) for all x, y in M, 
where hn:[0, ∞] →[0, ∞] and limn → ∞ hn = h uniformly on 

any bounded interval[0, b]. Assume φ is upper semicon-
tinuous, h(t) < t for t > 0, and assume there is a positive 
integer m such that hm is upper semicontinuous and hm (0) = 
0. If there exists some x0 in M with a bounded orbit, then T 
has a unique fixed point x* in M and limn → ∞ Tnx = x* for all 
x in M.   

In the above theorem, the assumption on the boundedness 
of the orbit of some x0 is crucial to the proof of the existence 
of a fixed point in X.   

In this note, we remove the assumption of the bounded-
ness of the orbit and instead introduce the condition that 
liminfn → ∞ (d(x,Tnx)) = 0 for some x in M, and we are able 
to get the same conclusion as in Theorem 1.1. 

For further details about asymptotic contractions and re-
lated topics, we refer the reader to[1, 3, 5-7] and the refer-
ences therein.  
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2. Main Results 
We shall begin with a lemma introduced in[1] which will 

be used later for the proof of our theorem. We will reproduce 
the proof for the sake of completeness. 

LEMMA 2.1 Let h: R+ → R+ be upper semicontinuous and 
h(t) < t for t > 0. Suppose there exists two sequences of 
nonnegative real numbers {un}, {εn}, such that: 

u2n ≤ h(un) + εn 

with εn → 0.  
Then either supn>0 un = ∞ or liminf n → ∞ un = 0. 
Proof. Assume b := supn>0 un < ∞ and liminfn → ∞ un ≠ 0. 

Then there exists a real number m >0 and an integer N1 > 0 
such that un > m for all n > N1. 

Since h is upper semicontinuous, then h(t)/t is upper 
semicontinuous on[m, b]. Therefore h(t)/t achieves its 
maximum in the compact interval[m,b]. Let 

Lm = max{h(t)/t, t in[m,b]} < 1  
because h(t) < t for all t > 0. Let ε > 0. Then, using our 

assumption on {un} and εn, there exists N2 > N1 such that  
u2n ≤ h(un) + ε ≤ Lmun + ε for all n > N2 
Note that Lmun < un, since Lm < 1 and un > 0. 
We define ƒ:[0, ∞) →[0, ∞) by: 
ƒ(x)= Lmx + ε 
Then ƒ(x) is a contraction, since Lm < 1 and 
|ƒ(x) – ƒ(y)|  = |(Lmx + ε) - (Lmy + ε)| 
= |Lmx - Lmy| 
=Lm|x - y| 
By Banach's fixed point theorem, ƒ(x) has a unique fixed 

point ε / (1 - Lm), and lim n → ∞ ƒn(x) = ε / 1 – Lm for every x 
in[0, ∞). 

So for any n > N2 
u2

2
n ≤ h(u2n) + ε ≤ Lm u2n + ε 

≤ Lm(Lmun + ε) + ε = Lmƒ(un) + ε = ƒ2(un) 
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We claim that u2
k

n ≤ ƒk(un) for all k and all n > N2. We 
know it holds for k =2. By induction, let’s assume it is true 
for some h ≥ 2. Then we have 

u2
h+1

n 
 ≤ h(u2

h
n) + ε ≤ Lmu2

h
n + ε 

= ƒ (u2
h
n) ≤ ƒ(ƒh(un)) = ƒh+1(un)  (1) 

Since ƒ is increasing. Therefore (1) holds for all k. 
Now let r = infn > N2 un ≤ ƒk(un) which converges to  
ε / (1- Lm) as k → ∞. Since ε was arbitrary we must have r 

= 0, which is a contradiction. 
Now we proceed to the main theorem. 
THEOREM 2.1 Let (M, d) be a complete metric space. 

Let T: M → M satisfy: 
d(Tnx, Tny) ≤ hn(d(x, y)) for all x, y in M 
where hn:[0, ∞) →[0, ∞) and limn → ∞ hn = h uniformly 

on any bounded interval[0, b]. Assume h is upper semi-
continuous, h(t) < t for t > 0, and assume there is a positive 
integer n* such that hn* is upper semicontinuous and hn*(0) 
= 0. If liminfn → ∞ (d(x,Tnx)) = 0 then T has a unique fixed 
point x in M, and limn → ∞ Tny = x for all y in M. 

Proof. Let us first establish the uniqueness of the fixed 
point. Suppose there exist two fixed points z1 and z2 for T 
with z1 ≠ z2.  

Then d(z1, z2) = d(Tnz1, Tnz2) ≤ hn(d(z1, z2)).  
Letting n → ∞ yields d(z1, z2) ≤ h(d(z1, z2)) < d(z1, z2), 

which is a contradiction. Thus the fixed point is unique. 
Without loss of generality we set hn(0) = 0 and  
h(0) = 0. 
We will first show that the sequence an = d(Tn+1x, Tnx) 

is bounded for every fixed x. 
an = d(Tn+1x, Tnx) ≤ hn(d(Tx, x)) 
hence: 
limsupn → ∞ an ≤ limn → ∞ hn(d(Tx, x))  
= h(d(Tx, x)) ≤ d(Tx, x) = b 
Thus the sequence an = d(Tn+1x, Tnx) is bounded. 
Now we will show that liminfn → ∞ an = 0.  
We have: a2n = d(T2n+1x, T2nx)  
≤ hn(d(Tn+1x, Tnx))  
= h(an) +[hn(an) - h (an)]. 
We choose: εn = hn(an) - h(an)  
Since hn → h uniformly on[0, 2b], then εn→0. By 

Lemma 2.1, liminfn → ∞ an = 0. 
Now we will show that limn → ∞ an = 0. Assume by 

contradiction that limn → ∞ an ≠ 0. Then limsup n → ∞ an >0. 
Since liminfn → ∞ an = 0, there exists n0 > 0 such that  
0 < an0 < limsupn → ∞ an. 
Let {ani} be a subsequence of {an} such that ani > an0 for 

all i and limi → ∞ ani = limsupn → ∞ an. Then: 
an0 < ani = d(Tni+1x, Tnix) 
≤ hni - n0(d(Tn0+1x; Tn0x)) 

= h(an0) + hni - n0(an0) - h(an0) 
Letting i→ ∞ we get: an0 ≤ h(an0) < an0, which is a con-

tradiction. Thus limn → ∞ an = 0. 
Now we show that x is a fixed point for T. 
Since liminfn → ∞ (d(Tnx, x)) = 0, there exists a subse-

quence, {mk}, such that lim k → ∞ d(Tmkx, x) = 0 
We will first show that Tn*x = x. We have:  
limsupk → ∞ (d(Tmk+n*x, Tn*x)  

≤ limsupk → ∞ hn*(d(Tmkx, x)) ≤ hn*(0) = 0  
and 
d(Tmk+n*x, Tmkx)  
≤ d(Tmk+n*x, Tmk+n*-1x) + d(Tmk+1x, Tmkx)  
by the triangle inequality. 
= amk+ n*-1 + amk.  
Letting k → ∞, we get: 
d(Tmk+n*x, Tmkx)→0, since lim n → ∞ an = 0 
Thus Tmkx→Tn*x. Hence by the uniqueness of the limit 

of Tmkx , Tn*x = x. 
We claim that Tn* has a unique fixed point. Using the 

same argument as above, let z1, z2 be two fixed points of 
Tn* with z1 ≠ z2.  

Note that z1 = Tn*z1, and Tn*z1 = T2n*z1. 
therefore z1 = Tkn*z1 for any positive integer k. 
Then d(Tn*z1, Tn*z2) = d(Tkn*z1, Tkn*z2) ≤ hkn*d(z1, z2). 

Letting k →∞, we get: 
d(z1, z2)≤ lim k → ∞ hkn*(d(z1, z2))  
= h(d(z1, z2)) < d(z1, z2)  
which is a contradiction. So Tn* has a unique fixed 

point. 
Note that Tn*+1x = T(Tn*x) = Tx. Hence Tx is also a 

fixed point of Tn* . By the uniqueness of the fixed point of 
Tn*, we have:  

Tx = x. 
To show that limn → ∞d(Tny, x) = 0, for any y in M, by 

Theorem 1.1 we need only show that d(Tny, x) is bounded. 
We have: 

d(Tny, x) = d(Tny, Tnx) ≤ hn(d(y, x)).  
Letting n → ∞, we get: 
limsup n → ∞ d(Tny, x) ≤limsup n → ∞ hn(d(y, x))  
= h(d(y, x)) ≤ d(y, x) 
Thus the orbit of y is bounded, and hence Tny →x for 

every y in M. 

3. Conclusions and Future Directions for 
Research 

We proved the existence and uniqueness of the fixed point 
as well as the convergence of the Picard iterates for asymp-
totic nonlinear contractions without assuming the bounded-
ness of the orbits but with a weaker assumption, namely that 
liminfn → ∞ d(Tnx, x) = 0 for some x in M. It still remains an 
open problem whether the same conclusions hold by as-
suming only that liminfn → ∞ d(Tnx, x) <+∞. 
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