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Abstract  Numerical analysis is performed to study the conjugate heat transfer and heat generation effects on the tran-
sient free convective boundary layer flow over a vertical slender hollow circular cylinder with the inner surface at a con-
stant temperature. A set of non-dimensional governing equations namely, the continuity, momentum and energy equations 
is derived and these equations are unsteady non-linear and coupled. As there is no analytical or direct numerical method 
available to solve these equations, they are solved using the CFD techniques. An unconditionally stable Crank-Nicolson 
type of implicit finite difference scheme is employed to obtain the discretized forms of the governing equations. The dis-
cretized equations are solved using the tridiagonal algorithm. Numerical results for the transient velocity and temperature 
profiles, average skin-friction coefficient and average Nusselt number are shown graphically. In all these profiles it is ob-
served that the time required to reach the steady-state increases as the conjugate-conduction parameter or heat generation 
parameter increases. 
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1. Introduction 
Transient natural convection flow of a viscous incom-

pressible fluid with heat transfer is an important problem 
relevant to many engineering applications. They have wide 
applications in Science and Technology. These types of 
problems are commonly encountered in start-up of a 
chemical reactor and emergency cooling of a nuclear fuel 
element. In the case of power or pump failure, similar con-
ditions may arise for devices cooled by forced circulation, as 
in the core of a nuclear reactor. In the glass and polymer 
industries, hot filaments, which are considered as a vertical 
cylinder, are cooled as they pass through the surrounding 
environment. The exact solution for these types of non-linear 
problems is still out of reach. Sparrow and Gregg[1] pro-
vided the first approximate solution for the laminar buoyant 
flow of air bathing a vertical cylinder heated with a pre-
scribed surface temperature, by applying the similarity 
method and power series expansion. Minkowycz and Spar-
row[2] obtained the solution for the same problem using the 
non-similarity method. While Fujii and Uehara[3] analyzed 
the local heat transfer results for arbitrary Prandtl numbers. 
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Lee et al.[4] investigated the similar problem along slender 
vertical cylinders and needles for the power-law variation in 
the wall temperature. In general, Bottemanne 5] studied the 
combined effect of heat and mass transfer in the steady 
laminar boundary layer of a vertical cylinder for air and 
water vapour. Recently, Rani and Kim 6] investigated the 
unsteady effects for the similar problem with temperature 
dependent viscosity. 

It can be observed that in the previous investigations the 
wall conduction resistance in the case of convective heat 
transfer between a solid cylinder wall and a fluid flow is 
generally neglected i.e. the wall is assumed to be very thin 
and there is no conduction from the cylinder wall. But in 
many practical problems the information on the interfacial 
temperature is essential because the heat transfer character-
istics are mainly determined by the temperature differences 
between the bulk flow and the interface. In order to take 
account of physical reality, there has been a proclivity to 
move away from considering idealized mathematical prob-
lems in which the bounding wall is considered to be infini-
tesimally thin. Thus the conduction in solid wall and the 
convection in the fluid should be determined simultaneously. 
This type of convective heat transfer is referred to as a con-
jugate heat transfer (CHT) process and it arises due to the 
finite thickness of the wall. These type of problems are usu-
ally referred to as conjugate heat transfer problems, and they 
have many practical applications, particularly those related 
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to energy conservation in buildings, cold storage installa-
tions and cryogenic applications, such as medical and space 
technology. The early theoretical and experimental work of 
CHT problem for a viscous fluid has been reviewed by 
Gdalevich and Fertman[7] and Miyamoto et al.[8]. 
Gdalevich and Fertman[7] gave review about the conjugate 
problems of free convection with the details about the 
methods, specifics and principal results. They stated con-
clusively that the use of numerical methods for solving the 
initial system of governing partial differential equations, 
such as finite difference method, is evidently the most 
promising in the studies of conjugate free convection. Char 
et al.[9] employed the cubic spline collocation numerical 
method to analyze the CHT in the laminar boundary layer on 
a continuous, moving plate. Pop et al.[10] presented a de-
tailed numerical study of the conjugate mixed convection 
flow along a vertical flat plate. Pop and Na[11] reported a 
numerical study of the steady conjugate free convection over 
a vertical slender, hollow circular cylinder with the inner 
surface at a constant temperature and embedded in a porous 
medium. Recently, Kaya[12] studied the effects of buoyancy 
and CHT on non-Darcy mixed convection about a vertical 
slender hollow cylinder embedded in a porous medium with 
high porosity. 

The CHT problems associated with the heat generating 
plate were studied by Karvinen[13], Sparrow et al.[14] and 
Garg et al.[15] using an approximate method. Analytical and 
numerical solutions were performed by Vynnycky et al.[16] 
for the CHT problem associated with the forced convection 
flow over a conducting slab sited in an aligned uniform 
stream. Vajravelu and Hadjinicolaou[17] analyzed the heat 
transfer behavior within the boundary layer of a viscous fluid 
over a stretching sheet with viscous dissipation and internal 
heat generation. Moreover, effects of heat genera-
tion/absorption and thermophoresis on hydromagnetic flow 
along a flat plate were studied by Chamkha and Camille[18]. 
Recently, Mamun et al.[19] investigated the effects of 
magnetic field, viscous dissipation and heat generation on 
natural convection flow along and conduction inside a ver-
tical flat plate. 

From the above studies, it can be noted that the CHT on 
the unsteady natural convective flow of a viscous incom-
pressible fluid over a vertical cylinder with heat generation 
has received very scant attention in the literature. Hence, in 
the present investigation our attention is focused on the ef-
fect of heat generation on the coupling of conduction inside 
and the laminar natural convection flow over the outside 
surface of a vertical slender hollow cylinder. The tempera-
ture of the inner surface of the cylinder is kept at a constant 
value which is higher than the ambient fluid temperature and 
the temperature of the outer surface is determined by the 
conjugate solution of the steady-state energy equation of the 
solid and the boundary layer equations of the fluid flow. The 
governing equations are solved numerically by the implicit 
finite difference method to obtain the transient velocity and 
temperature profiles, coefficient of skin-friction and heat 
transfer rate for different values of conjugate-conduction and 

heat generation parameters. 
In section 2, a detailed description about the formulation 

of the problem is given. Also, the governing equations, such 
as mass, momentum and energy equations of an incom-
pressible fluid flow past a vertical cylinder are derived and 
non-dimensionalized. In section 3, the details about the grid 
generation and numerical methods for solving the above 
governing equations are given. In section 4, transient 
two-dimensional velocity and temperature profiles, average 
skin-friction coefficient and heat transfer rate are analyzed. 
Finally, the concluding remarks are made in section 5. 

2. Mathematical Formulation 
An unsteady two-dimensional laminar natural convection 

boundary layer flow of a viscous incompressible fluid past a 
vertical slender hollow cylinder of length l and outer radius 

0 0( )r l r>> is considered as shown in Fig. 1. The x-axis is 
measured vertically upward along the axis of the cylinder. 
The origin of x is taken to be at the leading edge of the cyl-
inder, where the boundary layer thickness is zero. The radial 
coordinate, r, is measured perpendicular to the axis of the 
cylinder. The surrounding stationary fluid temperature is 
assumed to be of ambient temperature ( T∞′ ). The temperature 
of the inside surface of the cylinder is maintained at a con-
stant temperature of 0T ′ , where 0T T∞′ ′> . Initially, i.e., at 
time 0t′ =  it is assumed that the outer surface of the cylinder 
and the fluid are of the same temperature T∞′ . As time in-
creases ( 0t′ > ), the temperature of the outer surface of the 
cylinder is raised to the solid-fluid interface temperature wT ′  
and maintained at the same level for all time 0t′ > . This 
temperature wT ′  is determined by the conjugate solution of 
the steady-state energy equation of the solid and the bound-
ary layer equations of the fluid flow and is discussed else-
where. It is assumed that the effect of viscous dissipation is 
negligible in the energy equation. Under these assumptions, 
the boundary layer equations of mass, momentum and en-
ergy with Boussinesq's approximation are as follows: 

 
Figure 1.  Schematic of the investigated problem 
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In the above Eq. (3), the term ( )0

p
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′′ − , 0Q  being 

a constant, represents the amount of generated or absorbed 
heat per unit volume. Heat is generated or absorbed from the 
source term according as 0Q  is positive or negative. 

The corresponding initial and boundary conditions are 
given by 

0
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where wT ′ is the unknown solid-fluid interface tempera-
ture and is determined as follows: 

To predict the outer surface temperature of the cylinder 
wT ′ , an additional governing equation is required for the 

slender hollow cylinder based on the simplification that the 
wall of cylinder steady transfers its heat to the surrounding 
fluid. Since the outer radius of the hollow cylinder, 0r , is 
small compared to its length, l, the axial conduction term in 
the heat conduction equation of the cylinder can be omitted. 
The governing equation for the temperature distribution 
within the slender hollow circular cylinder is given by Chang 
20] as follows: 

2
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The general solution of Eq. (5) along with (6) is given by 
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On the other hand, Eq. (5) is coupled with the energy 
equation in the fluid region based on the condition that the 
temperature and the heat flux are continuous at the 
solid-fluid interface, namely 

0
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Using Eqs. (7) and (8), the temperature distribution wT ′  at 
the interface is given by 
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(the symbols are explained in the nomenclature) in the Eqs. 

(1)-(3), they reduced to the following form: 
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The corresponding initial and boundary conditions in 
non-dimensional quantities are given by 

0 : 0, 0, 0 for all and

0 : 0, 0, 1 at 1

0, 0, 0 at 0
0, 0, 0 as
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3. Numerical Solution 
In order to solve the unsteady coupled non-linear gov-

erning Eqs. (11)-(13) an implicit finite difference scheme of 
Crank-Nicolson type has been employed. The finite differ-
ence equations corresponding to Eqs. (11) - (13) are as fol-
lows: 
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To solve the finite difference Eqs. (15)-(17), the region of 
integration is considered as a rectangle composed of the lines 
indicating  Xmin = 0, Xmax = 1, Rmin = 1 and  Rmax = 16,  
where Rmax corresponds to R = ∞  which lies very far from 
the momentum and energy boundary layers. In the above Eqs. 
(15)-(17) the subscripts i and j designate the grid points along 
the X and R coordinates, respectively, where X = i ∆X and R = 
1 + (j -1) ∆R and the superscript k designates a value of the 
time t (= k ∆t), with ∆X, ∆R and ∆t the mesh size in the X, R 
and t axes, respectively.  In order to obtain an economical 
and reliable grid system for the computations, a grid inde-
pendent test has been performed which is shown in Fig. 2. 
The steady-state velocity and temperature values obtained 
with the grid system of 100 × 500 differ in the second 
decimal place from those with the grid system of 50 × 250, 
and in the fifth decimal place from those with the grid system 
of 200 × 1000. Hence, the grid system of 100 × 500 has been 
selected for all subsequent analyses, with mesh size in X and 
R direction are taken as 0.01 and 0.03, respectively. Also, the 
time step size dependency has been carried out, from which 
0.01 yielded a reliable result. 

   From the initial conditions given in Eq. (14), the values 
of velocity U, V and temperature T are known at time t = 0, 
then the values of T, U and V at the next time step can be 
calculated. Generally, when the above variables are known at 
t = k ∆t, the variables at t = (k + 1) ∆t are calculated as fol-
lows. The finite difference Eqs. (16) and (17) at every in-
ternal nodal point on a particular i-level constitute a tridi-
agonal system of equations. Such a system of equations is 
solved by the Thomas algorithm (Carnahan et al. 21]). At 
first, the temperature T is calculated from Eq. (17) at every j 
nodal point on a particular i-level at the (k + 1)th time step. 
By making use of these known values of T, the velocity U at 
the (k+1)th time step is calculated from Eq. (16) in a similar 
manner. Thus, the values of T and U are known at a particular 
i-level. Then the velocity V is calculated from Eq. (15) ex-
plicitly. This process is repeated for the consecutive i-levels; 
thus the values of T, U and V are known at all grid points in 
the rectangular region at the (k + 1)th time step. This iterative 
procedure is repeated for many time steps until the 
steady-state solution is reached. The steady-state solution is 
assumed to have been reached when the absolute difference 
between the values of velocity as well as temperature at two 
consecutive time steps is less than 510−  at all grid points. 
The truncation error in the employed finite difference ap-
proximation is 2 2( )O t R X∆ + ∆ + ∆  and tends to zero as ∆X, 
∆R and ∆t → 0. Hence the system is compatible. Also, this 
finite difference scheme is unconditionally stable and 

therefore, stability and compatibility ensure convergence. 

 
Figure 2.  Grid independent test for velocity and temperature profiles 

4. Results and Discussion 
To validate the current numerical procedure, the present 

simulated velocity and temperature profiles are compared 
with those of the available steady-state, isothermal results 
of Lee et al. 4] for air (Pr = 0.7) without conduction and 
heat generating effects i.e., P = 0.0 and Q = 0.0, as there are 
no experimental or analytical studies available to compare 
with the present problem. The current results are found to 
be in good agreement with the previous results available in 
literature as shown in Fig. 3. 

The simulated results are presented to outline the general 
physics involved in the effects of different Q ( = 0.01, 0.05, 
0.08 and 0.10) 19] and P ( = 0.1, 0.5, 1.0 and 2.0) 11] with 
fixed Pr [ = 0.71 (air)] on the transient velocity and tem-
perature profiles. The simulated transient behaviour of the 
dimensionless velocity, temperature, average skin-friction 
coefficient and heat transfer rate are discussed in detail in 
the succeeding subsections. 

 
Figure 3.  Comparison of the velocity and temperature profiles 
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(a) 

 
(b) 

Figure 4.  The simulated transient velocity at (1, 1.78) for (a) variation of 
Q with fixed P = 0.5; (b) variation of P with fixed Q = 0.05 

4.1. Velocity 

The simulated transient velocity (U) at (1, 1.78) for dif-
ferent values of heat generation parameter Q and conju-
gate-conduction parameter P against t is shown graphically 
in Fig. 4. Fig. 4a shows the variation of Q with fixed P = 0.5 
and Fig. 4b for the variation of P with fixed Q = 0.05. From 
Figs. 4a and 4b it is observed that the velocity increases with 
time, reaches a temporal maximum, then decreases and at 
last reaches the asymptotic steady-state. For example, in Fig. 
4a when  Q = 0.01, the velocity increases with time mono-
tonically from zero and reaches the temporal maximum, then 
slightly decreases with time and becomes asymptotically 
steady. It is observed that at the very early time (i.e., t < < 1), 
the heat transfer is dominated by conduction. Shortly later, 
there exists a period when the heat transfer rate is influenced 
by the effect of convection with the increasing upward ve-
locities along the time. When this transient period is almost 
ending and just before the steady-state is about to be reached, 
there exist overshoots of the velocities. From Figs. 5a and 5b 
it can be observed that velocity profiles reach their maximum 
value approximately at (1, 1.78). Similarly, the velocity at 
other locations also exhibits somewhat similar transient 
behaviour. As noted in Fig. 4a, the magnitude of this over-
shoot of the velocities increases as Q is increased, since with 
the increasing Q the velocity diffusion is decreased (refer Eq. 
(12)). Hence, there is a high resistance to the fluid flow in the 
region of the temporal maximum of velocity. The time 

needed to reach the temporal maximum of the velocity in-
creases as Q increases. It is also noticed that for small values 
of Q the temporal maximum is reached at early times. For all 
values of P, Figure 4b reveals that it has the same trend as the 
transient behaviour with respect to Q shown in Fig. 4a, but 
the temporal maximum of velocity decreases as P increases. 
In association with the transient characteristics of the veloc-
ity, similar trends of the temperature fluctuation can be ob-
served and will be described in Fig. 6. 

Figure 5 shows the simulated steady-state velocity profiles 
against the R at X = 1.0 for different values of Q and P. Fig. 
5a shows the variation of Q with fixed P = 0.5 and Fig. 5b for 
the variation of P with fixed Q = 0.05. From these figures it is 
observed that the velocity profile start with the value zero at 
the wall, reach their maximum and then monotonically de-
crease to zero along the radial coordinate for all t. Also it is 
observed that in the vicinity of the wall the magnitude of the 
axial velocity is rapidly increasing as R increases from Rmin 
(=1). From Fig. 5a it is observed that the velocity increases 
with the increasing values of Q because the effect of velocity 
diffusion gets decreased for high values of Q. When Q is 
increased, the thermal convection is confined to a region near 
the hot wall, while the momentum diffusion is propagated far 
from the hot wall and hence the high velocity profiles are 
observed close to the hot wall. It is also observed that the 
time required to reach the steady-state increases as Q in-
creases. Fig. 5b reveals that it has the same trend as the 
variation of steady-state time with respect to Q as shown in 
Fig. 5a, but the velocity profile is influenced significantly 
and decreases when the value of P increases. 

 
(a) 

 
(b) 

Figure 5.  The simulated steady-state velocity profile at X = 1.0 for (a) 
variation of Q with fixed P = 0.5; (b) variation of P with fixed Q = 0.05 
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4.2. Temperature 

The simulated transient temperature (T) for different val-
ues of Q and P with respect to t is shown at the point (1, 1.09) 

 
(a) 

 
(b) 

Figure 6.  The simulated transient temperature at (1, 1.09) for (a) variation 
of Q with fixed P = 0.5; (b) variation of P with fixed Q = 0.05 

in Fig. 6. Figure 6a shows the variation of Q with fixed P = 
0.5 and Fig. 6b for the variation of P with fixed Q = 0.05. 
From Figs. 6a and 6b it is observed that these profiles in-
crease with time, reach a temporal maximum, decrease and 
again after a slight increase attain the steady-state asymp-
totically. The temperature at other locations also exhibits 
somewhat similar transient behaviour. During the initial 
period, the nature of the transient temperature profiles is 
particularly noticeable. From Fig. 6a it is observed that for all 
values of Q, the transient temperature profiles initially co-
incide and then deviate after some time. Also, the time re-
quired to reach the temporal maximum of the temperature 
increases with the increasing values of Q. It can be noticed 
that for small values of Q the temporal maximum is attained 
at an early times. Here, it is observed that the maximum 
value of temperature increases with the increasing Q. Figure 
6b shows that it has the same trend as the transient behaviour 
with respect to Q shown in Fig. 6a, but the temporal maxi-
mum of temperature decreases as P increases. From Figs. 6a 
and 6b it is noticed that during the initial time, the variation 
of temperature with P is observed to be larger than that with 
Q. This result implies that the temperature field is more 
strongly affected by the conjugate-conduction parameter, 
since an increased value of P corresponds to a lower wall 

conductance sk and promotes greater surface temperature 
variations as shown in Fig. 6b. 

 
(a) 

 
(b) 

Figure 7.  The simulated steady-state temperature profile at X = 1.0 for (a) 
variation of Q with fixed P = 0.5; (b) variation of P with fixed Q = 0.05 

The simulated steady-state temperature profiles for dif-
ferent values of Q and P at X = 1.0 against the R are shown in 
Fig. 7. Figure 7a depicts the variation of Q with fixed P = 0.5 
and Fig. 7b for the variation of P with fixed Q = 0.05. From 
these figures it is observed that the temperature profiles start 
with the hot wall temperature and then monotonically de-
crease to zero along the radial coordinate for all time. It is 
related to the fact that the effect of velocity diffusion gets 
increased for higher values of P, which allows higher ve-
locity near the hot wall. From Fig. 7a it is observed that the 
steady temperature value increases with increasing values of 
Q for fixed P. Larger Q values give rise to thicker tempera-
ture profiles, since a larger Q value means that the thermal 
diffusion from the wall is prevailing while the velocity dif-
fusion tries to move close to the wall. The increased value of 
the heat generation parameter means that more heat is pro-
duced and eventually, that heat increases the fluid motion as 
obtained in Figs. 5a and 7a, respectively. Also, time taken to 
reach the steady-state increases as Q increases. Figure 7b 
reveals that the steady temperature value decreases as the 
conduction parameter P increases. A lower wall conductance 

sk  or higher convective cooling effect due to greater k f  
increases the value of P as well as causes greater temperature 
difference between the two surfaces of the cylinder. This is 
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due to the reason that the temperature at the solid-fluid in-
terface is reduced since the temperature at the inner surface 
of the cylinder is kept constant. As a result the temperature 
profile as well as the velocity profile shifts downwards in the 
fluid. It is also observed that the time required to reach the 
steady-state increases as P increases. 

4.3. Average Skin-friction Coefficient and Heat Transfer 
Rate 

For engineering purposes, one is usually interested in the 
values of the skin-friction coefficient and heat transfer rate. 
The friction coefficient is an important parameter in the heat 
transfer studies since it is directly related to the heat transfer 
coefficient. The increased skin-friction is generally a dis-
advantage in technical applications, while the increased heat 
transfer can be exploited in some applications such as heat 
exchangers, but should be avoided in others such as gas 
turbine applications, for instance. For the present problem 
these skin-friction coefficient and heat transfer rate  are 
derived and given in the following equations: 

The wall shear stress at the wall can be expressed as 

0

w
r r

u
r

τ µ
=

 ∂
= ∂ 

               (18) 

By introducing the non-dimensional quantities given in Eq. 
(10), the above Eq. (18) can be written as 
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Considering 
2

0

2

r
Gr

ρ
µ  to be the characteristic shear 

stress, then the local skin-friction coefficient can be written 
as 
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The integration of the Eq. (20) from X = 0 to X = 1 gives 
the following average skin-friction coefficient. 
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The local Nusselt number is given by 
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where the heat transfer, wq  is given by 
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Thus, with the non-dimensional quantities introduced in 
Eq. (10), Eq. (22) can be written as 

1
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R

TNu
R =
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           (23) 

The integration of the above Eq. (23) with respect to X from 
0 to 1 yields the following average Nusselt number.                  

−=Nu
1

10 R

T dX
R =

∂ 
 ∂ ∫           (24) 

The derivatives involved in Eqs. (21) and (24) are evalu-

ated by using a five-point approximation formula and then 
the integrals are evaluated by using the Newton-Cotes closed 
integration formula. The simulated average non-dimensional 
skin-friction and heat transfer coefficients have been plotted 
against the time in Figs. 8 and 9 for different values of Q and 
P. 

The effects of different values of Q and P on the simulated 
average skin-friction coefficient are shown in Figs. 8a and 8b, 
respectively. From Figs. 8a and 8b it is observed that for all 
values of Q and P the average skin-friction coefficient in-
creases with time, attains the peak value and, after slight 
decrease, reaches asymptotically steady-state. Because the 
buoyancy-induced flow velocity is relatively low at the ini-
tial transient period, as seen in Fig. 4, the wall shear stress 
remain small, as shown in Fig. 8. However, the wall shear 
stress increases as the time proceeds, yielding an increase in 
the skin-friction coefficient. It is also observed from Fig. 8a 
that for increasing values of Q the average skin-friction 
coefficient increases. This result lies in the same line with the 
velocity profiles plotted in Fig 5a. From Fig. 8b it is observed 
that the average skin-friction coefficient decreases as P in-
creases. It is related to the fact that the increased value of P 
decreases the velocity of the fluid within the boundary layer, 
as mentioned in Fig. 5b, and decreases the viscosity of the 
fluid. It is also noticed that from Figs. 8a and 8b during the 
initial period, the variation of skin-friction with P is observed 
to be larger than that with Q. This result means that the av-
erage skin-friction coefficient is more strongly affected by P 
compared to Q. 

 
(a) 

 
(b) 

Figure 8.  The simulated average skin-friction for (a) variation of Q with 
fixed P = 0.5; (b) variation of P with fixed Q = 0.05 
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In Figs. 9a and 9b the effects of different values of Q and P 
on the simulated average heat transfer rate are shown, re-
spectively. From Figs. 9a and 9b it is observed that at short 
times, after t = 0, the average Nusselt numbers are almost the 
same for all values of P and Q. This shows that initially there 
is only heat conduction. Fig. 9a reveals that an increase in the 
value of Q leads to a decrease in the values of the average 
heat transfer rate. Increasing Q retards the spatial decay of 
the temperature field near the heated surface because of 
increased flow velocity near the wall, yielding a decrease in 
the rate of heat transfer. From Fig. 9b it is observed that with 
the increasing values of P i.e with lower wall conductance 
( sk ), the average heat transfer rate decreases as P increases. 

 
(a) 

 
(b) 

Figure 9.  The simulated average Nusselt number for (a) variation of Q 
with fixed P = 0.5; (b) variation of P with fixed Q = 0.05 

5. Conclusions  
A numerical study has been carried out for the conjugate 

heat transfer on unsteady natural convection boundary layer 
flow of a viscous incompressible fluid over a vertical slender 
hollow cylinder with heat generation effect. A 
Crank-Nicolson type of implicit method is used to solve the 
governing unsteady, non-linear and coupled equations. The 
resulting system of equations is solved by using the Thomas 
algorithm. The computations are carried out for different 
values of heat generation parameter Q ( = 0.01, 0.05, 0.08 
and 0.10) and conjugate-conduction parameter P ( = 0.1, 0.5, 

1.0 and 2.0). For the velocity and temperature profiles it is 
observed that the time elapsed to reach the temporal maxi-
mum increases with the increasing values of Q and P. Time 
required to reach the steady-state increases as Q or P in-
creases. It is observed that the velocity, temperature and 
average skin-friction coefficient of the fluid increases with 
the increasing values of Q. The values of velocity and tem-
perature of the fluid decreases as P increases. It is also no-
ticed that as P or Q increases the steady-state values of av-
erage heat transfer rate decreases. 

Nomenclature 

C f  dimensionless average skin-friction coefficient 

C f  dimensionless local skin-friction coefficient 

cp  specific heat at constant pressure 

g acceleration due to gravity 

Gr Grash of number 

,f sk k  
thermal conductivity of the fluid and the solid cylinder, 
respectively 

l length of the cylinder 

Nu  dimensionless average Nusselt number 

XNu  dimensionless local Nusselt number 

P conjugate-conduction parameter 

Pr Prandtl number 

Q heat generation parameter 

0Q  constant 

r radial coordinate 

0,ir r  inner and outer radii of the hollow cylin-
der,respectively 

R dimensionless radial coordinate 

t′  time 

t dimensionless time 

0T ′  temperature at the inside surface of the cylinder 

sT ′  solid temperature 

T ′  temperature of the fluid 

T dimensionless temperature of the fluid 

u, v velocity components in x, r directions respectively 

U, V dimensionless velocity components in X, R directions 
respectively 

x axial coordinate 

X dimensionless axial coordinate 
Greek Letters 
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α thermal diffusivity 

β volumetric coefficient of thermal expansion 

ρ density 

μ viscosity of the fluid 

υ kinematic viscosity 
Subscripts 
w conditions on the wall 

∞ free stream conditions 
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