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Abstract  Separate administration of either chemotherapy or immunotherapy has been studied and applied to clinical 
experiments but however, this administration has shown some side effects such as increased acidity which gives a selective 
advantage to tumor cell growth. We introduce a model for the combined action of chemotherapy and immunotherapy using 
fractional derivatives. This model with non-integer derivative was analysed analytically and numerically for stability of the 
disease free equilibrium. The analytic result shows that the disease free equilibrium exist and if the prescriptions of food and 
drugs are followed strictly (taken at the right time and right dose) and in addition if the basic tumor growth factor, 𝒶𝒶21≥1 then 
the only realistic steady state is the disease free steady state. We also show analytically that this steady state is stable for some 
parameter values. Our analytical results were confirmed with a numerical simulation of the full non linear fractional diffusion 
system. 
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1. Introduction 
In the development of cancer, it has been shown that the 

exposure to hypoxia either induces or selects for cells that are 
hyperglycolytic, a reduction in cellular metabolism, and this 
in turn produces local acidosis which is a common feature of 
solid tumors[21,35,22]. Increased glucose uptake in hyper-
glycolyzing tumor cells is the basis of lesion-visualization in 
positron emission tomography using 18F-fluorodeoxyglu- 
cose[23,21,35]. Tumor acidity has been shown to reduce the 
effectiveness of weak-base drugs, therefore, by increasing 
the anti-tumor activity of weak-acid chemotherapeutics can 
serve as a biomarker for drugs effectiveness[34]. Physical 
removal, Chemotherapy and recently, adoptive immuno-
therapy have been sight-lined as methods used for attacking 
and managing cancer at various stages in their develop-
ment[37,19]. However, some chemotherapeutic agents have 
been shown to increase the acidic content of the tissue and 
also causing mutations to non-tumor cells[36,7,20,9]. Evi-
dence linking tumor acidity with increased activity of several 
extracellular matrix-degrading enzyme systems has been 
examined[23,11]. High levels of lactate which is an 
end-product of glycolysis, in primary lesions have been 
correlated with increased likelihood of metastasis[34]. It is 
therefore a complex story trying to administer chemothera- 
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peutic drugs to treat this disease since it may accelerate the 
death of patients in particular if the therapy increases the acid 
production. In particular, it has been shown that when che-
motherapy is administered, a toxic drug is introduced that in 
principles destroys all types of cells to some extent[6]. A 
thorough understanding of this tumor as it develops into 
cancer is required for administering chemotherapy and other 
therapeutics[16,17]. As we have seen, a guide to the under-
standing of this complex multidisciplinary concept is the 
fractional reaction diffusion model for cancer already dis-
cussed in[33]. The development of a cancerous tumor is a 
complex process involving the interaction of many types of 
cells[8,14,37,20]. The tumor itself is non homogenous and 
normal tissue, lymphocytes, macrophages and other types of 
cells either grow at the tumor site or are recruited to the 
tumor through chemotaxis[24,3,34]. Through biochemical 
process, all the cells involved in the metastases of tumor will 
interact. For example, immune-genic tumor cells and cyto-
toxic immune cells interact first binding to form cell conju-
gates, and then splitting to produce lysed tumor cells, inac-
tivated immune cells, undamaged tumor cells or undamaged 
immune cells and debris[26,25]. The immune cells are re-
sponsible for the body immune system[16]. This immune 
system is a remarkable adaptive defense system that has 
evolved in vertebrates to protect them from invading 
pathogenic microorganisms and cancer. It is able to generate 
an enormous variety of cells and molecules capable of spe-
cifically recognizing and eliminating an apparently limitless 
variety of foreign invaders[16,26]. The combined action of 
these immune cells is referred to as immunity. 
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Mathematical models for immune interaction provides an 
analytic framework in addressing specific question about 
tumor-immune dynamics. Many such models have been 
studied and applied to clinical observations (also see ref. 
[6,8-11,13,15]. Since the fractional reaction diffusion model 
predicts the situation of death coming faster, a model in-
corporating immunotherapy, chemotherapy and feeding 
habit will show the way all these parameters will interact so 
as to predict the way drugs and food can reduce the death rate 
or increase the lifespan of the patient.  

2. Model Consideration 
We now modify the model of Oyesanya and Atabong[33] 

and Atabong and Oyesanya[1,2] to take cognizance of the 
effect of immunity and chemotherapy. In doing so, we note 
the following considerations; 
• Drugs intake contribute a fraction to the total intake of a 

cancer patient given by gγ . 
• A constant dose of drugs taken at particular time and 

given by gtγ . 
• Acid removal nutrients contribute a fraction to the in-

take given by fµ  and a constant amount is taken periodi-
cally given by f tµ  
• Chemotherapy also contribute a fraction of the intake 

given by c℘  and the quantity taken at any time t is given by, 
ct℘ . 
• Let H be the total intake of drugs, chemotherapy and 

food such that, ( )g f c Hγ µ− + +℘ g f ct t tγ µ+ + +℘  with the 
negative sign indicating that the intake are absorbed with 
time. 
• The intake H helps to recruit normal killer cells and 

activate CD8+T cells by a fraction given according to de 
Pillis et al. as 

2

2

gM H
h M+

where M is the tumor cell population 
and g and h are parameters included by De Pillis et al. to fit 
their model. 
• The intake H will also help to destroy tumor cells by a 

fraction given according to de Pillis et al. as 
2

2
2

g M H
s M+

where 
M is the tumor cell population and s and 2g are parameters 
included by De Pillis et al. (2003a). to fit their model. The 
parameters ),( 2 sg  and ),( hg are the killer and recruit-
ing terms respectively. Therefore the tumor and normal cells 
need not be the same since the properties of the tumor and 
normal cells are different. 
• The intake H will result in killing of normal cells by a 

fraction given by (1 )H
Nf e−  where (1 )He− is a saturation 

term indicating the rate of absorption of H and Nf  is the 
dying rate. 
• In the process of eating various kinds of food, some of 

them promote the development of tumor by a quantity given 
by (1 )H

M
Lf e
N

− . Where L is the acid production. The in-

verse proportionality to the population of the normal cells is 
because as the normal cells increase, the volume under con-
sideration increase thereby reducing the pressure in the re-
gion and consequently the effect of the food substance is 

reduced according to Boys’ law as related to solids and liq-
uids. 
• Some of the tumor cells will be directly eaten up by 

chemotherapeutic agent and is given by, (1 )H
chf e− . 

• The acid secretion shall be boosted by a proportion of 
the food taken and is given by, (1 )H

Lf e− . 
• Acid production will equally be inhibited by drugs at a 

rate (1 )H
LGf e−  

These assumptions combined with the original assump-
tions of Oyesanya and Atabong[33] coupled with the law of 
conservation of matter in a fixed volume of random move-
ment, gives the non-dimensional modified fractional reaction 
diffusion model equation as; 

Where the non-dimensional quantities are defined by  

0

, , ,c c c

N M

N M L
u v c

K K L
= = =  

0

1

1 2

2 1

, , ,

, , , ,

1 , ,

lM M lM l M
N

l N c

c lN N NM

N lM N l
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l l

r K r d K
L r t

d r d

d r K rr x
r r r D

DDd d
D D

β

τ δ

δ δ ρ ξ

β α

= = =

 
= = = =  

 

= + = =   

(4.6) 
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And DMN and DNM are assumed to be relative and logistic 
since when the tumor has reached a certain size, the blood 
vessels are blocked by the growth, and the tumor cannot 
extend further. The normal cells on their part cannot exceed 
their growth capacity of the region when surrounded by the 
tumor cells. We defined the terms as shown in equation (5) 
below with the terms lD  and hD  being the constant dif-
fusion coefficients of the Acid and the drug/nutrient; 

1 , 1c c c c
MN m NM n

M N N M

M N N M
D D D D

K K K K
   

= − − = − −   
   

 (4.5) 

Substituting equation (4.6) into the system of equations 
(4.1,4.2,4.3,4.4) and using the simplified notation, 

D
β

β
ς βξ

∂
=
∂ ,

 leads to the non-dimensional equations, 

( )
2

1
12 2

1

1

1

(1 )w
f

uwvD u u u a v cu
h v

J q d D u

τ

β
ξ

δ= − − − +
+

− − +

     (4.7) 

( ) ( )1
21 0

2
0

22
2

1 1

(1 )

w

w
e

cvD v v v a u a q
u

b uwv
J q d D v

s v

τ

β
ξ

ρ= − − + −

− − − +
+

    (4.8) 
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( ) ( )1
1 2 1 2 (1 )w

c cD c v v c cu J J q c D cβτ ξδ δ= − − + − − +  (4.9) 

1

3

g f c

N

g f c

N

D w w
r

t t t
g d D w

r

τ

β
ξ

γ µ

γ µ

+ +℘ 
= − 

 
+ +℘ 

+ + 
 

.     (4.10) 

From these non-dimensional equations, we obtain the 
steady state constant solution by setting the spatial and 
temporal derivatives to zero. The equilibrium intake is given 
by, 

( )g f c

g f

t t t Z tw g
zα

γ µ
γ µ

 + +℘
= ≡  + +℘        

 (4.11) 

which if substituted into equations (4.7,4.8 and 4.9) gives, 

( )
2

1
12 2

1
( )

1

( )1
( )

(1 )
Z t

z
f

Z t uvD u u u a v cu
z h v

J q d D uα

τ
α

β
ξ

δ= − − − +
+

− − +

  (4.12) 
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( )

1
21 0

2 ( )
0
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2

1 1

( )
(1 )

( )

Z t
z

Z t
z

e

cvD v v v a u a q
u

b Z t uv
J q d D v

z s v

α

α

τ

β
ξ

α

ρ  
= − − + − 
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 (4.13) 

( ) ( )
( )

1
1 2 1 2 (1 )

Z t
z

c cD c v v c cu J J q c D cα β
τ ξδ δ= − − + − − + (4.14) 

These equations therefore give us the interaction between 
the normal, tumor and acid secretion in the tumor region. 
These equations could be written as, 

( )1
1 12

2 ( )

2
1

1

( ) (1 )
( )

Z t
z
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D u d D u u u a v cu

Z t uv J q
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α
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+ − −
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(4.15) 

( )

( )

1
1 2

( )

1 2 (1 )
Z t

z
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J J q cα

β
τ ξ δ δ− = − −

+ − −

. 

The equation (15) could further be written in matrix form 
as, 

1

1
1
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D dD u
D d D v

D D c
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2 ( )
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1
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2

( )

1 2 1 2
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( )
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α
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α
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 
 − − + − − 
 

(4.16). 

Suppose we set 
1

1
1

1

0 0
0 0
0 0

D dD
D d D

D D

β
τ ξ

β
τ ξ

β
τ ξ

 −
 

Φ = − 
 − 

, 

then we may write the system (4.16) as, 
( )YΦ = Ξ                (4.17) 

where the column vector ),,( cvuY ≡  and  

( )

( )

( ) ( )

2 ( )

12 2
1

2( ) ( )
0

21 0 2
2

( )

1 2 1 2

( )1 (1 )
( )

( )
1 1 (1 )

( )

(1 )

Z t
z

f

Z t Z t
z z

e

Z t
z

c c

Z t uvu u a v cu J q
z h v

b Z t uvcvv v a u a q J q
u z s v

v v c cu J J q c

α

α α

α

α

α

δ

ρ

δ δ

  
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We define the following functions; 

( )

( )

( ) ( )

2 ( )
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1
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2
2
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A proper study of (4.17), will give us an understanding of 
the effect of the different parameters considered for the 
system. To start with, we obtain the steady state from ( )ker Ξ , 
the kernel of Ξ . 

i.e  
( ) { }ker ( , . ) : ( , , ) 0 ( , , ) 0u v c u v c u v cΞ = Ξ = ⇔ Φ =   (4.18) 

Theorem 2: The disease free steady state exists and also if 
the patient does not die, then the patient will live without 
tumor (i.e. the steady state where u is not zero and v is zero 
exist and such a state is realistic and u will have a maximum 

value if 
( )

1
Z t

zq α
 
− 

 
 = 0.  

Proof 
It is clear that, if there are no normal cells then there will 

be no tumor cells and in this case, the disease-free state will 
exist but the patient is not living. Hence it suffices to show 

that if 
( )

1
Z t

zq α
 
− 

 
 = 0, then u is maximum which in non 

dimensional scale parameters is unity. 
If v=0 in (4.19) and 0≠u  we have, 

( )

1 1 0
Z t

z
fu J q α
 

− − − = 
 

 and whenever, 
( )

1
Z t

zq α
 
− 

 
 = 0, 

we get that 1u = . 
Claim1: Suppose we define a function 

[ ]3( , , ) : 0,1u v qΠ →ℜ such that, 

( ) ( )
( )

( ) ( )( )

( ) ( )

3
0 1

21
2 1 1 2

2

2
1

1
, , 1

1

( ) 1

w

w
c c

w
f
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u v q v a u

u v J J q

z t uv J q u
z h vα

δ

δ δ

−
Π = − − +

+ − − −

+ − −
+

 

If in addition we supposed that  

( )( )2 1 21
2

1e c cJ J J aρ
δ

= − −  when ever 0v = and Π =0, 

then either, the quantity
( )

1
Z t

zq α
 
− 

 
=0 or  
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Proof (Claim) 
From equation (4.20), 

( )
( )( )( )
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This is a quadratic in ( )1 wq−  and from this equation, we 
get that, 

( ) ( )
( )( )( )

( )
( ) ( )( ) ( ) ( )

( ) ( )

2
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2
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2
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Solving we get, 
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( )
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4
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2
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T T J vu J J T
q

J uv J J
− ± − −
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−

, where 

cp TT ,  are the coefficients of the quadratic middle and 
constant terms respectively and are defined as follows; 
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2
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2
0

2 1 21 2 12
2

1

1

p e c c
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c
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α

α
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Clearly, the claim follows by substitution. 
Remark 1 

Since 1
Z

zq α − 
 

can either be increasing or decreasing, 

we consider the case where, 1
Z

zq α − 
 

=0. In this case, we 

must have that, 
( )( )( ) ( )

( ) ( )( )
2

0 21 2 2 1

2 2 2
2 0 1 2 1

( ) 1

e

b Z t uv v a u s v z u u v

z s v a v J u vu
α

α

ρ δ δ

δ δ δ

− − − + +

+ − +
=0 

if 0u ≠  and ( )2 1 0u vδ δ+ ≠  then, 

( )( )2
21 2

0

1
( )

v a u s v z
Z t

b vu
αρ − − +

=  by simplification. 

Therefore this is the value of the intake to sustain the pa-

tient. We consider 1 0
Z

zq α − = 
 

 in this work as a situation 

where the drugs are prescribed, taken by the patient regularly 
as and the body system is reactive to the drug by absorbing it 
at a proportional rate. 

 Theorem 4: If the prescriptions of food and drugs are 
followed strictly (taken at the right time and right dose), and 
if in addition 21 1a ≥ then the only realistic steady state is the 
disease free steady state. 
Proof 

We consider a regular timely therapeutics intake to be a 
case where the constant intake Z(t) at any time is 1. 

That is, 
( )( )2

21 2

0

1
1

v a u s v z
b vu

αρ − − +
=  

Multiplying this expression out when u=1 gives, 
2 3 2 0

2 2 21 2 21
b v

s s v a s v v a v
zα ρ

− − + − − = from where we get, 

( ) ( )3 2 0
21 2 2 211 1 0

b
v a v s v s a

zα ρ
 

− + − − + + − = 
 

 

which could simplify to, 

( ) ( )3 2 0
21 2 2 211 1 0

b
v a v s v s a

zα ρ
 

− − + + − − = 
 

 (4.21) 

From considerations of the cubic equation, suppose 
21 1a ≥  then equation (4.21) by the Descartes rule, has no 

positive root and the only realistic value for v in this case 
0=v which could be obtained when 2 0s = or 2 0δ = . 

Hence we conclude that the disease-free state is the only 
possible state.  

3. Stability of the Disease-free Steady 
State 

We now study the stability properties of the disease-free 
steady state using the following theorem. 

Theorem 5: If the therapeutics are absorbed on time 
regularly on time i.e. ( )1 0wq− >  the disease free state is 
stable for 2 1f e c cJ J J J+ + < , and if the therapeutics are not 
regularly absorbed and on time i.e. ( )1 0wq− < , then the 
disease free steady state is stable for 2 1f e c cJ J J J+ + > . 
Proof 

Linearizing equations (4.7,4.8 and 4.9) about the dis-
ease-free steady state gives, 
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   

= = =   
   
   

1
τD D

  

' ' '

' ' '

' ' '

u v c

u v c

u v c

f f f
g g g
h h h

 
 

=  
 
 

1K . 
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A solution in exponential form gives a Jacobian of the 
form, 

1

2

( )
0 ( ) 0
0 0 ( )

u v c

v

c

d i f f f
A d i g

i h

β

β

β

θ σ
θ σ

θ σ

 − − − −
 

= − − 
 − − 

 

where,  
' '

12 211 (1 ), , , (1 )w w
u f v c v ef J q f a f g a J qδ ρ ρ= − − − = − = − = − − − . 

We obtain a dispersion relation from the equation 
0A Iλ− =            (4.23) 

from where we get, 

( )( )
( )( )

1 23 2

1 2

2

( ) ( )

( )

( ) ( )
0

( ) ( )

u

v c

u v

v c

d i f d i
g i h

d i f d i g

d i g i h

β β

β

β β

β β

θ σ θ σ
λ λ

θ σ

θ σ θ σ
λ

θ σ θ σ

 − + + − +
+ +  + − + + 
 − − − −
 + =
 + − − − − 

 (4.24) 

Hence, 0=λ and  
( ) ( )( )

( )( )
( )( )

2
1 2

1 2

2

3 1 ( )

( ) ( )
0

( ) ( )

u v c

u v

v c

d d i f g h

d i f d i g

d i g i h

β

β β

β β

λ λ θ σ

θ σ θ σ

θ σ θ σ

+ − + + + + + + +

 − − − −
 + =
 + − − − − 

(4.25) 

The roots of equation (4.25) are complex therefore we 
need to determine the real and the imaginary parts of these 
roots to determine stability of the system (Beck et al., 2009). 

The roots 2 3,λ λ  of (4.25) are given by, 

( )( )1 2
2/3

3 ( 1 ( )

2
u v cd d i f g hβθ σ

λ
− + + + + + +

= − ±  (4.25a) 

( )( )
( )

( )

2

1 2

1

2

3 ( 1 ( )
1 * 4 ( ) ( ) *
2

* ( )

u v c

u c

v

d d i f g h

d i f i h

d i g

β

β β

β

θ σ

θ σ θ σ

θ σ

 − + + + + + +
 
 − − − + − − 
 

− −  

 

Remark 2 
If Z ∈  ₵ such that z=a+ib with 𝑎𝑎 ≠ 0, 𝑏𝑏 ≠ 0  then 

𝑧𝑧𝑞𝑞 = 𝑠𝑠 + 𝑖𝑖𝑖𝑖, 𝑠𝑠 ∈ 𝑅𝑅, 𝑝𝑝 ∈ 𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 ∈ 𝑅𝑅∗,  𝑅𝑅∗ = 𝑅𝑅/{0}. 
We make the substitution, 
𝑖𝑖𝛽𝛽 = 𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽

2
� + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝛽𝛽𝛽𝛽

2
� in to (4.25a) to get, 

(−3𝜃𝜃 + 𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) + 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽2 �

+𝑖𝑖𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑠𝑠𝑠𝑠𝑠𝑠 �𝛽𝛽𝛽𝛽2 �

2
 

( ) ( )

( )

2

2 1 2

2 1 2

3 1 cos
21

2
1 sin

2

  − + + + + + +     ±  
  + + +     

β
u v c

β

βπθ f g h d σ d d

βπid σ d d

 

1

2 2

4 cos cos sin
2 2 2

cos sin
2 2

      − − − + +      
      

    − − +    
    



β β β
u c

β β
v

βπ βπ βπθ d σ θ f h σ iσ

βπ βπθ d σ g id σ

We make the following representations, 
𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎 = (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐 − 3𝜃𝜃)2 − (𝑑𝑑1 + 𝑑𝑑2 + 1)2

+ 4𝑑𝑑2(𝑑𝑑1 + 1)𝜎𝜎2𝛽𝛽  
− 4(𝜃𝜃 − 𝑔𝑔𝑣𝑣)�2𝜃𝜃 − (𝑓𝑓𝑢𝑢 + ℎ𝑐𝑐)�
+ �2(𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐 − 3𝜃𝜃) ∗    (𝑑𝑑1 + 𝑑𝑑2 + 1) 
− 4𝑑𝑑2�2𝜃𝜃 − (𝑓𝑓𝑢𝑢 + ℎ𝑐𝑐)�

+ 4(𝑑𝑑1 + 1)(𝜃𝜃 − 𝑔𝑔𝑣𝑣)�𝑐𝑐𝑐𝑐𝑐𝑐 �
𝛽𝛽𝛽𝛽
2 � 

𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎 = 2(𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐 − 3𝜃𝜃)(𝑑𝑑1 + 𝑑𝑑2 + 1) +
4�2𝜃𝜃 − (𝑓𝑓𝑢𝑢 + ℎ𝑐𝑐)� + [4(𝑑𝑑2 + 1)(𝜃𝜃 − 𝑔𝑔𝑣𝑣)]𝑠𝑠𝑠𝑠𝑠𝑠 �𝛽𝛽𝛽𝛽

2
�  

where 
𝑇𝑇𝜎𝜎

= �
(−3𝜃𝜃 + 𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) + 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �

𝛽𝛽𝛽𝛽
2 � +

𝑖𝑖𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑21)𝑠𝑠𝑠𝑠𝑠𝑠 �
𝛽𝛽𝛽𝛽
2 �

�

2

− 4 �𝜃𝜃 − 𝑑𝑑1𝜎𝜎𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐 �
𝛽𝛽𝛽𝛽
2 � ∓ 𝜃𝜃 − 𝑓𝑓𝑢𝑢 − ℎ𝑐𝑐 + 𝜎𝜎𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐 �

𝛽𝛽𝛽𝛽
2 �

+ 𝑖𝑖𝜎𝜎𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠 �
𝛽𝛽𝛽𝛽
2 �� �𝜃𝜃 − 𝑑𝑑2𝜎𝜎𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐 �

𝛽𝛽𝛽𝛽
2 � − 𝑔𝑔𝑣𝑣 + 𝑖𝑖𝑑𝑑2𝜎𝜎𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠 �

𝛽𝛽𝛽𝛽
2 �� 

so that the roots 2/3λ  will be equivalent to, 
−−3𝜃𝜃+𝑓𝑓𝑢𝑢+𝑔𝑔𝑣𝑣+ℎ𝑐𝑐+𝑑𝑑2𝜎𝜎𝛽𝛽𝑑𝑑1+𝑑𝑑2+1𝑐𝑐𝑜𝑜𝑠𝑠𝛽𝛽𝜋𝜋2+𝑖𝑖𝑑𝑑2𝜎𝜎𝛽𝛽𝑑𝑑1+

𝑑𝑑2+1𝑠𝑠𝑖𝑖𝑛𝑛𝛽𝛽𝜋𝜋22 ±12𝑅𝑅𝑒𝑒𝑇𝑇𝜎𝜎+𝑖𝑖𝐼𝐼𝑚𝑚𝑇𝑇𝜎𝜎     (4.26) 
From remark 4.2 we see that �𝑅𝑅𝑅𝑅𝑅𝑅𝜎𝜎 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝜎𝜎  will be of 

the form a+ib.  
We now determine the sign of 2/3Re( )λ  by considering 

the expression (4.26) and write, 

−
(−3𝜃𝜃+𝑓𝑓𝑢𝑢+𝑔𝑔𝑣𝑣+ℎ𝑐𝑐)+𝑑𝑑2𝜎𝜎𝛽𝛽 (𝑑𝑑1+𝑑𝑑2+1)𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽2 �

2
 ±

1
2
𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅𝑅𝑅𝜎𝜎 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝜎𝜎       (4.26a) 

which we can write as 
�3𝜃𝜃−(𝑓𝑓𝑢𝑢+𝑔𝑔𝑣𝑣+ℎ𝑐𝑐)�−𝑑𝑑2𝜎𝜎𝛽𝛽 (𝑑𝑑1+𝑑𝑑2+1)𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽2 �

2
 ±

1
2
𝑅𝑅𝑅𝑅�𝑅𝑅𝑅𝑅𝑅𝑅𝜎𝜎 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝜎𝜎         (4.26b) 

We look at different cases of the expression in (4.26b) for 
1 2β< <  namely, 
Case 1: 𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎=0 and 1 2β< <  

In this case, equation (4.26b) becomes, 

𝑅𝑅𝑅𝑅𝑅𝑅2/3 =
�3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐)� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽2 �

2

± 𝑅𝑅𝑅𝑅 �
�𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎

2 �. 

Since 𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽
2
� < 0 𝑓𝑓𝑓𝑓𝑓𝑓 1 < 𝛽𝛽 < 2 , −𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 +

1𝑐𝑐𝑜𝑜𝑠𝑠𝛽𝛽𝜋𝜋2>0. Therefore, the sign of (𝑅𝑅𝑒𝑒𝜆𝜆23) depends on the 

sign of 3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) and the sign of 𝑅𝑅𝑅𝑅 ��𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎
2

�. 

�𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎
2

= 𝑒𝑒𝑖𝑖
𝜋𝜋
4

2 �𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎 ⟹ 𝑅𝑅𝑅𝑅 ��𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎
2

� = 

𝑅𝑅𝑅𝑅 �𝑒𝑒
𝑖𝑖𝜋𝜋4

2 �𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎� = �2𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎
4

. In addition, if  𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎 = 0  then, 

sign of (𝑅𝑅𝑅𝑅𝑅𝑅2/3)  depends only on the sign of 3𝜃𝜃 −
(𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) and on substitution of the values of the first 
partials the expression will simplifies to  

( )( ) ( )1 2 21 21 3 1 1 .w
f e c cq J J J J aθ ρ δ+ + − + − + + − +
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If 121 >a for stability, 1 2 0f e c cJ J J J+ − + <  provided 
the therapeutics are timely absorbed. This is equivalent to, 

2 1f e c cJ J J J+ + < .  
On the other hand if the therapeutics are not timely ab-

sorbed, i.e. some accumulate for some time before absorp-
tion, then ( )1 0wq− <  and in this situation, for the 
disease-free state to be stable we must have,

1 2 0f e c cJ J J J+ − + >  which is equivalent to, 

2 1.f e c cJ J J J+ + >  
If , then for us to have stability, . 
Suppose 𝐼𝐼𝐼𝐼𝐼𝐼𝜎𝜎 ≠ 0 then the situation changes and we get, 

𝑅𝑅𝑅𝑅𝜆𝜆2,3 =
3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2
±
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4
 

Replacing 3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) by their values gives, 

𝑅𝑅𝑅𝑅𝜆𝜆2,3 =

1 + 3𝜃𝜃 + (1 − 𝑞𝑞𝑤𝑤)�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� + (𝑎𝑎21 − 1)𝜌𝜌

+𝛿𝛿2 − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2

±
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4  

Stability is therefore a function of the sign of 𝑅𝑅𝑅𝑅𝜆𝜆2,3 
whose sign depends also on both the signs of (1 −
𝑞𝑞𝑤𝑤𝐽𝐽𝑓𝑓+𝐽𝐽𝑒𝑒+𝐽𝐽𝑐𝑐2−𝐽𝐽𝑐𝑐1 𝑎𝑎𝑛𝑛𝑑𝑑 ±2𝐼𝐼𝑚𝑚𝑇𝑇𝜎𝜎4. For the case where, 

𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎 > 0, �2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎
4

> 0 for the first root, 𝜆𝜆2 and we make 
the following deductions; 

If (1 − 𝑞𝑞𝑤𝑤) ≠ 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒, the sign of each of the two roots 
can be determined as follows. For the first root, 𝜆𝜆2  the 
sign 𝑅𝑅𝑅𝑅𝜆𝜆2, will depend on the sign of �𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� 
which is required to be negative as a condition for us to get 
stability. 

Hence, 
�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� < 0 ⟺ 𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 < 𝐽𝐽𝑐𝑐1. (C1:) 

For the second root, 𝜆𝜆3 the sign of 𝑅𝑅𝑅𝑅𝜆𝜆3 will depend 

on the sign of �𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� −
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4
 which is re-

quired to be negative as a condition to for us to obtain sta-
bility. 

Hence, 

 �𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� −
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4
< 0 ⟺ 𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 <

𝐽𝐽𝑐𝑐1 + �2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎
4(1−𝑞𝑞𝑤𝑤 )

               (C2:) 
Since both roots must have their real parts negative for 

stability, the two conditions (C1:) and (C2 ) implies, 
𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 < 𝐽𝐽𝑐𝑐1. 

For the case where, 𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎 < 0, �𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝜎𝜎
2

 will become, 
�𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

2
�−sin 𝜋𝜋

2
+ 𝑖𝑖 cos 𝜋𝜋

2
�. The real part of the roots shall 

therefore be, 

𝑅𝑅𝑅𝑅𝜆𝜆2,3 =
3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2

∓
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4
. 

The conditions for stability will not change since the only 

difference in this case is the replacement of the sign, ± with 
the sign, ∓. The condition for stability on the first root will 
become that of the second root in this case while that of the 
second root will become the condition of the first root, both 
of which will lead to the unique condition, 

𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 < 𝐽𝐽𝑐𝑐1. 
Case 2: 𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎=0 and 1 2β< <  and 𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎 > 0. 

In this case,  

𝑅𝑅𝑅𝑅𝑅𝑅2/3 =
�3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐)� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽2 �

2

±
�𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎  

2
 

and 𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽
2
� < 0 𝑓𝑓𝑓𝑓𝑓𝑓 1 < 𝛽𝛽 < 2 

𝑅𝑅𝑅𝑅𝑅𝑅2 =
�3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐)� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽2 �

2
+
�𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎  

2
 

and 

𝑅𝑅𝑅𝑅𝑅𝑅3 =
�3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐)� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽2 �

2
−
�𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎  

2
 

Substituting the partials gives, 
( )( )

( )
1 2

21 2

1 3 1

1 (ReT  )
  

2

w
f e c cq J J J J

a σ

θ

ρ δ

+ + − + − +

+ − + +  

and the sign of this root will lead to these conditions as 
Case (1) above. 

For the third root we must have, 
�3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐)� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽2 �

2
−
�𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎  

2
< 0 

�3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐)� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �
𝛽𝛽𝛽𝛽
2
� − �𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎  < 0 

(3𝜃𝜃) − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �
𝛽𝛽𝛽𝛽
2
�  < (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) + �𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎  

(3𝜃𝜃) − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝑐𝑐𝑐𝑐𝑐𝑐 �
𝛽𝛽𝛽𝛽
2
�  

< �(1− 𝑞𝑞𝑤𝑤) � 1 2c f e cJ J J J− − − ��

+ 𝜌𝜌(1− 𝑎𝑎21 )−𝛿𝛿2 + �𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎  

Case3: 
�3𝜃𝜃−(𝑓𝑓𝑢𝑢+𝑔𝑔𝑣𝑣+ℎ𝑐𝑐)�−𝑑𝑑2𝜎𝜎𝛽𝛽 (𝑑𝑑1+𝑑𝑑2+1)𝑐𝑐𝑐𝑐𝑐𝑐�𝛽𝛽𝛽𝛽2 �

2
= 0  and 

𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝛽𝛽
2
� < 0 𝑓𝑓𝑓𝑓𝑓𝑓 1 < 𝛽𝛽 < 2. 

In this case, a situation of hopf bifurcation is possible if 
one of the following conditions is true;𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎=0 or ( 𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎=0 
and 𝑅𝑅𝑅𝑅𝑇𝑇𝜎𝜎 < 0). 

A necessary but not sufficient condition for this to occur is,
 

2 1f e c cJ J J J+ + >  
and  

(𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐 − 3𝜃𝜃)2 − (𝑑𝑑1 + 𝑑𝑑2 + 1)2 + 4𝑑𝑑2(𝑑𝑑1 + 1)𝜎𝜎2𝛽𝛽  
− 4(𝜃𝜃 − 𝑔𝑔𝑣𝑣)�2𝜃𝜃 − (𝑓𝑓𝑢𝑢 + ℎ𝑐𝑐)�
+ �2(𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐 − 3𝜃𝜃) ∗   (𝑑𝑑1 + 𝑑𝑑2 + 1)  
− 4𝑑𝑑2�2𝜃𝜃 − (𝑓𝑓𝑢𝑢 + ℎ𝑐𝑐)�

+ 4(𝑑𝑑1 + 1)(𝜃𝜃 − 𝑔𝑔𝑣𝑣)�𝑐𝑐𝑐𝑐𝑐𝑐 �
𝛽𝛽𝛽𝛽
2
� = 0 

This way we have established that the disease-free equi-
librium is stable for 2 1f e c cJ J J J+ + > and can also bifur-
cate if in addition to this condition, we have other conditions 
like those stated in case3. This therefore ends the proof of 
theorem 4.5.  

In proving the stability of the disease free state we have 

( ) 01 =− wq 121 <a
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looked at the main case where 1 2β< < . We now throw 
light in the case where 0 1β< < in order to know if the 
conditions will change. 

We now consider the case of our fractional variable, 𝛽𝛽 
is such that, 0 < 𝛽𝛽 < 1. 

In this case, the real parts of the roots, 𝑅𝑅𝑅𝑅𝜆𝜆2,3 =
3𝜃𝜃−(𝑓𝑓𝑢𝑢+𝑔𝑔𝑣𝑣+ℎ𝑐𝑐)−𝑑𝑑2𝜎𝜎𝛽𝛽 (𝑑𝑑1+𝑑𝑑2+1)𝐶𝐶𝐶𝐶𝐶𝐶�𝛽𝛽𝛽𝛽2 �

2
± �2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4
. will not only 

depend of the sign of 3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) but on the sign 
of, 

3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2

±
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4  𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎 > 0, 

3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2

∓
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4  𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎 < 0 

as a whole. 
If we make our usual substitution in the first case, 

3𝜃𝜃 − (𝑓𝑓𝑢𝑢 + 𝑔𝑔𝑣𝑣 + ℎ𝑐𝑐) − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2

±
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4  𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎 > 0, 

We get, 

𝑅𝑅𝑅𝑅𝜆𝜆2,3 =

1 + 3𝜃𝜃 + (1 − 𝑞𝑞𝑤𝑤 )�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1�

+(𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2 − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2

±
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4 . 

If the therapeutic intake is absent, then (1 − 𝑞𝑞𝑤𝑤) = 0. 
Since, 𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽

2
� > 0 𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝛽𝛽 < 1 , if (𝑎𝑎21 − 1) > 0 then 

stability will depend of the sign of  
1 + 3𝜃𝜃 − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2

2

±
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4 . 

With respect to the first root, 

𝜆𝜆2 =
1 + 3𝜃𝜃 + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2 − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2

+
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4 , 

We must have that, 

1 + 3𝜃𝜃 + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2 − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2 � < 0  

⟺ 1 + 3𝜃𝜃 + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2 < 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2
� 

 ⟺ (𝑎𝑎21 − 1)𝜌𝜌 < 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2 � − (1 + 3𝜃𝜃 + 𝛿𝛿2) 

⟺ 𝜌𝜌 <
𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � − (1 + 3𝜃𝜃 + 𝛿𝛿2)

(𝑎𝑎21 − 1) , (𝑎𝑎21

− 1) ≠ 0. (𝐶𝐶3: ) 
With respect to the second root, 

𝜆𝜆3 =
1 + 3𝜃𝜃 + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2 − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �

2

−
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4 , 

We must have that, 

2�1 + 3𝜃𝜃 + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2 − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2
��

− �2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎 < 0  
⟺ 2(1 + 3𝜃𝜃 + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2)

< 2𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2 � + �2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎  

 ⟺ 2(𝑎𝑎21 − 1)𝜌𝜌 < 2𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2 � + �2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

− 2(1 + 3𝜃𝜃 + 𝛿𝛿2) 
⟺ 𝜌𝜌

<
𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � + �2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎 − 2(1 + 3𝜃𝜃 + 𝛿𝛿2)

2(𝑎𝑎21 − 1) , (𝑎𝑎21

− 1) ≠ 0. (𝐶𝐶4: ) 
The conditions (𝐶𝐶3: ) and (𝐶𝐶4: ) implies, 

𝜌𝜌 <
𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � − (1 + 3𝜃𝜃 + 𝛿𝛿2)

(𝑎𝑎21 − 1)    , (𝑎𝑎21 − 1)

≠ 0. 
On the other hand, in the presence of therapeutics i.e. 

keeping away the condition, (1− 𝑞𝑞𝑤𝑤) = 0  by setting 
(1− 𝑞𝑞𝑤𝑤) ≠ 0, we get as the real part of the roots 𝜆𝜆2 and 𝜆𝜆3 
the expression, 

1 + 3𝜃𝜃 + (1 − 𝑞𝑞𝑤𝑤)�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1�

−𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2

2 ±
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4 . 

The stability of the first root 𝜆𝜆2 

=

1 + 3𝜃𝜃 + (1 − 𝑞𝑞𝑤𝑤 )�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1�

−𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � + (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2

2 +
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4 , 

mostly depends of the sign of, (1 − 𝑞𝑞𝑤𝑤)�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� −
𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽

2
�𝛿𝛿2, since all the other terms are posi-

tive. 
Hence, 

(1 − 𝑞𝑞𝑤𝑤 )�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2 � 𝛿𝛿2

< 0 
⟺ (1 − 𝑞𝑞𝑤𝑤)�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1�

< 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2 � 𝛿𝛿2 

⟺ 𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 < 𝐽𝐽𝑐𝑐1 +
𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � 𝛿𝛿2

(1 − 𝑞𝑞𝑤𝑤 ) .  (𝐶𝐶5: ) 

The stability of the first root 𝜆𝜆3 

=

1 + 3𝜃𝜃 + (1− 𝑞𝑞𝑤𝑤)�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1�

−𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �+ (𝑎𝑎21 − 1)𝜌𝜌 + 𝛿𝛿2

2
−
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4
, 

mostly depends of the sign of, 
(1 − 𝑞𝑞𝑤𝑤)�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �

𝛽𝛽𝛽𝛽
2
�𝛿𝛿2

−
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4
 

since all the other terms are positive. 
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Hence, 
(1 − 𝑞𝑞𝑤𝑤)�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1� − 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �

𝛽𝛽𝛽𝛽
2
�𝛿𝛿2

−
�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4
< 0 

⟺ (1− 𝑞𝑞𝑤𝑤)�𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 − 𝐽𝐽𝑐𝑐1�

< 𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �
𝛽𝛽𝛽𝛽
2
� 𝛿𝛿2 +

�2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎
4

 
⟺ 𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2

< 𝐽𝐽𝑐𝑐1 +
4𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 �𝛿𝛿2 + �2𝐼𝐼𝐼𝐼𝑇𝑇𝜎𝜎

4(1− 𝑞𝑞𝑤𝑤) .  (𝐶𝐶6: ) 

The conditions 𝐶𝐶5 and 𝐶𝐶6 implies, 

𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 < 𝐽𝐽𝑐𝑐1 +
𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � 𝛿𝛿2

(1 − 𝑞𝑞𝑤𝑤) . 

𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 < 𝐽𝐽𝑐𝑐1 is inferior to all other conditions for sta-
bility if the therapeutics are regularly absorbed. In this light, 
we concluded that; 

If the therapeutics are not absorbed at all (i.e. (1 − 𝑞𝑞𝑤𝑤) =
0 ), then for the disease to be eradicated, 

 𝜌𝜌 <
𝑑𝑑2𝜎𝜎𝛽𝛽(𝑑𝑑1 + 𝑑𝑑2 + 1)𝐶𝐶𝐶𝐶𝐶𝐶 �𝛽𝛽𝛽𝛽2 � − (1 + 3𝜃𝜃 + 𝛿𝛿2)

(𝑎𝑎21 − 1) , (𝑎𝑎21 − 1) ≠ 0. 

If the therapeutics are absorbed irregularly and inconsis-
tently, (1 − 𝑞𝑞𝑤𝑤) < 0 then for the disease to be eradicated, 

𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 > 𝐽𝐽𝑐𝑐1. 
If the therapeutics are absorbed irregularly and consis-

tently, (1 − 𝑞𝑞𝑤𝑤) > 0 then for the disease to be eradicated, 
𝐽𝐽𝑓𝑓 + 𝐽𝐽𝑒𝑒 + 𝐽𝐽𝑐𝑐2 < 𝐽𝐽𝑐𝑐1. 

We have therefore shown the different conditions for the 
disease to be eradicated or for it to persist and possibly 
leading to death of the patient. In the next section we look at 
the numerical simulation of the full nonlinear fractional 
reaction diffusion equation by discretization. 

4. Numerical Simulations 

In this section, we apply numerical method to solve the 
system of fractional reaction diffusion equation. In the lit-
erature, most numerical methods of fractional reaction dif-
fusion equation were done for single equations and not for a 
system of equations. However, we shall apply some of the 
established results for single equation in order to obtain a 
corresponding numerical method for systems. The idea is to 
know how the drugs and other therapeutics will affect the 
growth rate of the tumor cells as well as normal cells. 

To study the behavior of the tumor cells, we simulate the 
entire system for different boundary conditions.  

We will apply the same process to get an equivalent cen-
tral difference formula for the fractional diffusion equation. 

Since the fractional order is relative to space, we obtain a 
discretized β -order fractional derivative using the Grun-
wald finite difference formula[32]. Also see the literature 
such as[18,27,28,31] for more insight into finite difference 
fractional reaction diffusion equation. We used the second 
order accurate finite difference formula for the fractional 
diffusion equation which has been established Tadjeran and 
colleague in 2006, namely, 

( )
1

1 1/2

2

n n
n n ni i i
i i i

U U d
U U q

t
ξ ξ
β β

+
+ +−

= + +
∆
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+

− +
=

=
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kg

kβ
β

β
Γ −

=
Γ − Γ +

 

are the Grunwald weights. 
Applying these estimates into our system of fractional 

reaction diffusion equations through a program which solves 
the system by applying Gauss elimination process using the 
algorithm presented in appendix C we have the results de-
picted in the figures in appendix B-3. 

 
Figure 1.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set one 
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Figure 2.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set one 

 
Figure 3.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set one 

 
Figure 4.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set one 
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Figure 5.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set one 

 
Figure 6.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set one 

 
Figure 7.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set one 

-5.00E-01

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

0.00E+0
0

1.00E-01 2.00E-01 3.00E-01 4.00E-01 5.00E-01 6.00E-01 7.00E-01 8.00E-01

Series1
Series2
Series3
Series4
Series5

-1.50E+00 

-1.00E+00 

-5.00E-01 

0.00E+00 

5.00E-01 

1.00E+00 

1.50E+00 

2.00E+00 

2.50E+00 

0 00E+0

 
1 00E-0

 
2 00E-0

 
3 00E-0

 
4 00E-0

 
5 00E-0

 
6 00E-0

 
7 00E-0

 
8 00E-0

 

u 
v 
c 
w 

-60% 

-40% 

-20% 

0% 

20% 

40% 

60% 

80% 

100% 

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 

Sample points number 

w 
c 
v 
u 

%
 c

om
po

si
ti

on
 o

f o
rg

an
 



  Applied Mathematics. 2011; 1(2): 69-83 79 
  

 

Table 4.3.  Table of different parameter sets for numerical simulation of therapeutic reactions 

Parameter set one Parameter set two Parameter set three Parameter set four 
b=0.50 
a=0.70 
c=0.0 
u=0.0 
v=0.0 
w=1 

U(0,0)=0.008 
V(0,0)=0.005 
C(0,0)=0.05 
W(0,0)=0.05 
U(1,0)=0.05 
V(1,0)=0.05 
C(1,0)=0.05 
W(1,0)=0.05 

U_s=1 
V_s=1 
C_s=1 
W_s=1 

U(Nx,Nx)=1 
V(Nx,Nx)=1 
C(Nx,Nx)=1 
W(Nx,Nx)=1 

belta=1.8 
a12=0.7 
a21=1.2 

rol_v=0.012 
delta=0.67 

rN=100!0.00129 
b0=0.00021686 

delta1=0.8 
delta2=1.2 

a0=0.000043078 
qe=1.3422 
Je=0.0046 

jf=0.00000078 
Jc1=0.0000023 

Jc2=0.0000012098 
utf=0.12034 

vtf=0.0098784 
Qtc=0.07845309 

diff_u=0.106 
diff_v=0.0013 
diff_w=1.095 

h1=0.1923 
g=0.0498 

s2=054630 
gam_g=0.084 
null_f=0.002 
sih_c=0.024 

b=0.50 
a=0.70 
c=0.0 
u=0.0 
v=0.0 
w=1 

U(0,0)=0.008 
V(0,0)=0.005 
C(0,0)=0.05 
W(0,0)=0.05 
U(1,0)=0.05 
V(1,0)=0.05 
C(1,0)=0.05 
W(1,0)=0.05 

U_s=1 
V_s=1 
C_s=1 
W_s=1 

U(Nx,Nx)=1 
V(Nx,Nx)=1 
C(Nx,Nx)=1 
W(Nx,Nx)=1 

belta=1.8 
a12=0.7 
a21=1.2 

rol_v=0.012 
delta=0.67 

rN=10!0.00129 
b0=0.0021686 

delta1=0.8 
delta2=1.2 

a0=0.043078 
qe=1.3422 
Je=0.0046 

jf=0.00000078 
Jc1=0.0000023 

Jc2=0.0000012098 
utf=0.12034 

vtf=0.0098784 
Qtc=0.07845309 

diff_u=0.106 
diff_v=0.0013 
diff_w=1.095 

h1=0.1923 
g=0.0498 

s2=0.00054630 
gam_g=0.084 
null_f=0.002 
sih_c=0.024 

b=0.50 
a=0.70 
c=0.0 
u=0.0 
v=0.0 
w=1 

U(0,0)=0.008 
V(0,0)=0.005 
C(0,0)=0.05 
W(0,0)=0.05 
U(1,0)=0.05 
V(1,0)=0.05 
C(1,0)=0.05 
W(1,0)=0.05 

U_s=1 
V_s=1 
C_s=1 
W_s=1 

U(Nx,Nx)=1 
V(Nx,Nx)=1 
C(Nx,Nx)=1 
W(Nx,Nx)=1 

belta=1.8 
a12=0.07 
a21=1.2 

rol_v=0.012 
delta=0.67 

rN=100!0.00129 
b0=0.0000021686 

 

b=0.50 
a=0.70 
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v=0.0 
w=0.0 

U(0,0)=0.8 
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Figure 8.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set one 
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Figure 9.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set two 

 
Figure 10.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set two 

 
Figure 11.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set two 
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Figure 12.  A free line plot of Normal, Tumor, H+ Concentration and Therapeutic intervention as against time and space with parameter set three 

 
Figure 13.  A chart showing the diffusion pattern of all four spaceis in the absence of reaction and production terms 

5. Results and Discussion 
We present a discussion of the figures in the following 

paragraphs in a chronological order. 
Figure 1 shows a situation where the therapeutics has 

clearly controlled the growth of tumor cells leading to a 
comfortable increasing growth of normal cells. This was 
obtained by increasing the value of per-capita normal cell 
growth r N this goes to reduce the rate of therapeutic ab-
sorption and therapeutic intake. In this case, the tumor cells 
emerge in the organ and at once some of the therapeutic 
actions accelerate the production of more immune cells 
which led to the broad increase of normal cells in the region 
at the second time step. This increase is advanced to a 
maximum at the third time step and the tumor cells are 
eradicated at this stage but resurface again at some point in 
the region at the same time step. An increase in concentration 
of H+ is immediately seen at this region which leads to a 
slight reduction in the concentration of normal cells. From 
this point upward, the normal cells attain a constant ampli-
tude and as the number of time step is increased the number 
of tumor cells is fluctuating in the neighborhood of zero. 
This shows that the application of therapeutic can eradicate 
the tumor; however, in the case where the tumor reappears, 

maintaining the constant value of therapeutic intake will not 
eradicate the tumor since reappearance of the tumor can be 
seen as a situation where the tumor has become resistant to 
the therapeutic intake.  

Figure 2 shows a situation where all therapeutics are 
suppressed in order to get a caricature of the model in Oye-
sanya and Atabong[33]. The model shows that the popula-
tion of tumor cells is always above the population of the 
normal cells in the region (organ) of attack and the death 
situation appears in a finite time step. In this case, the tumor 
emerged and grows periodically, eating up the normal cells. 
The concentration of H+ also increases proportionally at the 
detriment of the normal cells resulting to the destruction of 
more normal cells. This was also seen for different parameter 
values in[33]. However, there the functions were evaluated 
in real and imaginary part separately in a numerical integra-
tion while in the functions are evaluated in couple in these 
simulations in general and the simulation presented in figure 
4.6 in particular. 

Figure 3 is a complicated situation where all three species 
are competing and leaving in the patient. In achieving this 
figure, we consider the value of Jc1 to be greater than the sum 
of the values of the fractional therapeutic intakes, Je, Jf and 
Jc2. As the tumor cells increase, the therapeutics increase and 
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boost the production of more normal immune cells. As a 
result, the tumor cells are reduced by the inhibiting actions of 
the normal immune cells. This is however not stable since 
the effect of this reduction felt by the immune system which 
immediately reduces the value of the therapeutics absorbed 
since more immune cells are activated to fight against de-
fense. The tendency here is that the tumor will pick-up again 
and the process will continue. 

Figure 4 shows the situation where the value of Jc1 was 
made to be less than the sum of Je, Jf and Jc2. The disease-free 
state appears after some finite time step and is stable. The 
tumor is under control but however, it still resurface at every 
time step if the level of therapeutics is zero. This shows that 
once therapeutic strategies comprising chemotherapy and 
immunotherapy is applied for the treatment of cancer, the 
food intake for which the patient is prescribed to take must 
be continued even after the cancer is eradicated. Neglecting 
the treatment will lead to a re-invasion of the cancer which 
may become more dangerous. 

Figure 5 shows proportional plot for contributing species 
in the region of attack. Each of the population is compared to 
the total proportion of the species in the region already ex-
isting. In other words, the population of tumor, normal cells, 
acid and therapeutics in the proliferation region within the 
parameter domain of parameter set one is compared to each 
of these species in turn. The proportions of tumor cells are 
continuously above that of the normal cells. The death 
situation will therefore arise after some time step as the 
figure shows. 

Figure 6 shows a pattern plot of the four interacting spe-
cies in which we see that the normal cells and the therapeu-
tics display more complex pattern than the tumor and H+. It 
rightly indicates a situation where the tumor will be eradi-
cated. The parameters considered here are shown in table 4.3 
appendix A under parameter set 1. 

Figure 7 shows a plot which is connecting all the inter-
acting species with respect to time. As can be seen from the 
figure, the normal cells are dominant over the tumor cells 
which are consequently eradicated at the six time step. The 
parameter set two as shown in table 4.3, appendix A was 
considered for this simulation. 

Figure 8 is a simulation with a full set of different pa-
rameters as shown in parameter set one, table 4.3 in the 
appendix A. Worth noting, is the significant reduction of b0 a 
consequence of an increase in g or reduction in g2 which are 
parameters for model fitting as shown in[13,15] and a sig-
nificant increase in the value of s2 (also for fitting the model 
by De Pillis and Radunskaya in[9-11]) to a value of 054630. 
The value of the normal cell per capital birth rate is also 
increase to 100 cells per unit time. The plots show a periodic 
variation in which the normal cells population is always 
below the tumor cells population. The figure does not show 
if one of the species eventually dies but based on our analysis, 
such a state is not stable and can always turn in favour of any 
one of the species at any time. 

In figure 9., the values of b0, s2 and a0 and rN were taken to 
be, rN=10, b0=0.0021686, a0=0.43078 and s2=0.00054630. 

Increasing a0 is as a result of the reduction of rN. The plots 
shows that the normal cells are comfortable in the region at 
the detriment of the tumor cells. The concentration of acid in 
this region is reduced and maintained constantly by the 
therapeutic intake. This is however, proportional to the in-
visible proportion of the tumor cells as shown in the simu-
lation. 

A slight increase in rN, while maintaining the value of b0 
and a0, leads to an increase in the absorption of acid and a 
clear situation of the eradication of the tumor is seen as 
shown in figure 10. A two dimensional plot of the simulation 
result is shown in figure 10 for a clearer view. 

In figure 11, the parameter set three of table 4.3 in ap-
pendix A is considered with some minor changes key vari-
ables. In this parameter set, the values of b0 and a12 are re-
duced to 0.0000021686 and 0.07 respectively. The plots 
shows that the normal cells quickly drops below the tumor 
cells and consequently the death of the patient is seen as all 
values of the normal cells are negative. 

Figures 12 is a simulation of the system with parameter set 
4 as shown in table 4.3 of appendix A. In these plots there is 
no normal cell showing that the tumor is diagnosed only after 
it had affected all basic organs of the patient. The tumor 
grows in the region uncontrollably in the acid secretion. This 
shows that the therapeutics accelerates the death of the pa-
tient in this case. This confirms the fact that some therapeu-
tics helps in killing normal cells. 

Figure 13 is a simulation without the interaction of the 
species in this case, the function values were considered to 
be zero. The results show nothing different from the solution 
of the fractional heat equation and can therefore be used as a 
numerical result of the fractional heat equation. 
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