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Abstract  In this paper, we obtained a traveling wave solution by using cosine-function algorithm for nonlinear partial 
differential equations. Here, the method is used to obtain the exact solutions for two different types of nonlinear partial dif-
ferential equations such as, Benjamin-Bona-Mahony (BBM) equation and Modified Regularized Long Wave (MRLW) 
equation which are the important soliton equations. 
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1. Introduction 
As we all know, nonlinear evolution equations (NEEs) are 

widely used to describe complex phenomena in various 
fields of science, such as fluid mechanics, plasma physics, 
solid state physics and optical fibres, etc. In order to better 
understand these nonlinear phenomena as well as further 
apply them in the practical life, it is important to seek their 
more exact solutions. 

In recent year many power methods have been developed 
for finding the exact solution of nonlinear problems, such as 
tanh function method, modified extended tanh function 
method, sine-cosine method, inverse scattering transforma-
tion, Hirota bilinear method, Backlund transformation, 
Darboux transformation, homogeneous balance method, 
Jacobian elliptic function expansion method and its gener-
alization, F-expansion method and so on[1-23]. Among them 
the Riccati equations method which was first presented by 
Conte et al in 1992 to seek more new solitary wave solutions 
to NEEs that can be expressed as polynomial in two ele-
mentary functions which satisfy a projective Riccati equa-
tion[14]. In[19], Huang and Zhang developed a vari-
able-coefficient projective Riccati equation method for cer-
tain nonlinear evolution equations.  

The first published observation of a solitary wave (a single 
and localized wave) was made by John Scott Russel on the 
Edinburgh-Glasgow canal in 1834. An account of his ob-
servation is given in his 1844 report to the British Associa-
tion[12]. In this report, Russel describes how he followed a 
solitary water wave for more than one mile on horse back,
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observing that the wave preserves its original shape. He also 
noted that higher waves travel faster, that an initial profile 
evolves into several waves which then move apart and ap-
proach solitary waves as time ‘𝑡𝑡’ tends to infinity, and that 
solitary waves that move with different speeds, undergo a 
nonlinear interaction from which they emerge in their 
original shape. 

The Benjamin–Bona–Mahony (BBM) equation has been 
investigated as a regularized version of the Korteweg–de 
Vries equation for shallow water waves[11]. It incorporates 
nonlinear dispersive and dissipative effects[3,4]. In certain 
theoretical investigations the equation is superior as a model 
for long waves, and the word “regularized” refers to the fact 
that, from the standpoint of existence and stability, the 
equation offers considerable technical advantages over the 
Korteweg–de Vries equation. In addition to shallow water 
waves, the equation is applicable to the study of drift waves 
in plasma or the Rossby waves in rotating fluids. Under 
certain conditions, it also provides a model of 
one-dimensional transmitted waves. These find applications 
in semiconductor devices, optical devices, etc[11]. Apart 
from these applications, solutions to the BBM equation are 
interesting in and of themselves. 

The aim of this paper is to apply the cosine func-
tion-method to obtain the exact solutions for the two dif-
ferent types of nonlinear partial differential equations such as, 
Benjamin-Bona-Mahony (BBM) equation and Modified 
Regularized Long Wave (MRLW) equation which are the 
important soliton equations. 

2. The Cosine-Function Method 
Consider the nonlinear partial differential equation in the 

form 
𝜙𝜙( 𝑢𝑢𝑡𝑡 ,  𝑢𝑢𝑥𝑥 ,   𝑢𝑢𝑛𝑛𝑢𝑢𝑥𝑥  ,  𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 ,𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥  , … ) = 0,     (1) 
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where 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is the solution of (1); 𝑢𝑢𝑡𝑡  and 𝑢𝑢𝑥𝑥  etc. are 
the partial derivatives of 𝑢𝑢 with respect to t and x, respec-
tively.  

We assume that equation (1) admits travelling wave solu-
tion. We use the transformation 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝜒𝜒),  where 
𝜒𝜒 =  𝑥𝑥 – 𝑐𝑐𝑐𝑐 − 𝑑𝑑, c is the speed of the travelling wave and 𝑑𝑑 
is a constant. This enables us to use the following changes: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑐𝑐 
𝑑𝑑𝑑𝑑
𝑑𝑑χ

 ,       
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑑𝑑𝑑𝑑
𝑑𝑑χ

,         
𝜕𝜕2 𝑢𝑢
𝜕𝜕𝑥𝑥2 =  

𝑑𝑑2𝑓𝑓
𝑑𝑑χ2 ,        

𝜕𝜕3 𝑢𝑢
𝜕𝜕𝑥𝑥3  

=  𝑑𝑑
3𝑓𝑓
𝑑𝑑χ3 , … .                (2) 

Using the above transformation the nonlinear partial dif-
ferential equation (1) is transformed to nonlinear ordinary 
differential equation: 

𝜓𝜓( 𝑓𝑓 ′,  𝑓𝑓𝑛𝑛  𝑓𝑓 ′,  𝑓𝑓 ′′′) =  0.                   (3) 
By integrating (3) with respect to 𝜒𝜒, we obtain 

𝜑𝜑(𝑓𝑓,  𝑓𝑓𝑛𝑛+1,  𝑓𝑓 ′′, … ) =  0.          (4) 
We write the function 𝑓𝑓(𝜒𝜒) in the following form 

𝑓𝑓(𝜒𝜒)  =  𝜆𝜆 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ),             (5) 
where λ, β and μ are the unknown parameters. 
The first derivative of (5) yields 

𝑓𝑓 ′(𝜒𝜒)  = −𝜆𝜆𝜆𝜆𝜆𝜆 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽−1(𝜇𝜇χ). sin(𝜇𝜇χ), 
and the second derivative of (5) yields 
𝑓𝑓′′  (χ) =     −𝜆𝜆𝜇𝜇2𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 + 𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽−2(𝜇𝜇χ) 

−      𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ).           (6) 
We substitute (5) and (6) in (4) to obtain an equation in 

different powers of cosine functions. Now equating the co-
efficients of the same powers of cosine functions we obtain a 
system of algebraic equations in the parameters λ, β and μ. 
This system can be solved to obtain the values of λ, β and μ. 

The exact analytical solution of NLPDE (1) is then ob-
tained by substituting the values of the unknown parameters 
in (5). 

3. Applications 
3.1. The Benjamin-Bona-Mahony (BBM) Equation 

The Benjamin-Bona-Mahony (BBM) equation is the 
nonlinear partial differential equation in the following form: 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 = 0,           (7) 
where 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is the solution of (7), 𝑥𝑥 is the space vari-

able and 𝑡𝑡 is the time. 
Using the above procedure we obtain  

−𝑐𝑐 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑓𝑓 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑐𝑐 𝑑𝑑
3𝑓𝑓

𝑑𝑑𝜒𝜒3 = 0.           (8) 
By integrating (8) with respect to 𝜒𝜒, we obtain 

−𝑐𝑐𝑐𝑐 + 𝑓𝑓 + 𝑓𝑓2

2
+  𝑐𝑐 𝑑𝑑

2𝑓𝑓
𝑑𝑑𝜒𝜒2 = 0.                (9) 

Now putting the values of 𝑓𝑓 and 𝑑𝑑2𝑓𝑓/𝑑𝑑𝜒𝜒2 from (5) and 
(6) in (9) we obtain 

−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ) + 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ) +
1
2
𝜆𝜆2𝑐𝑐𝑐𝑐𝑐𝑐2𝛽𝛽 (𝜇𝜇χ) 

−𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ) + 𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽−2(𝜇𝜇χ) 
−𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1)𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛽𝛽 (𝜇𝜇χ)  = 0.        (10) 

The equation (10) is satisfied if and only if the following 
system of algebraic equations holds: 

−𝑐𝑐𝑐𝑐 + 𝜆𝜆 − 𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽 − 𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1) = 0, 

1
2
𝜆𝜆2 + 𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1) = 0,             (11) 

2𝛽𝛽 = 𝛽𝛽 − 2. 
Now solving the system (11), we obtain 

𝛽𝛽 = −2 ,          𝜆𝜆 = −3(1− 𝑐𝑐),  

  𝜇𝜇 = ±
1
2

 �
(1 − 𝑐𝑐)

𝑐𝑐
.   

Thus, the exact soliton solution of the BBM equation is 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = −3(1 − 𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐−2 �±
1
2

 �
(1 − 𝑐𝑐)

𝑐𝑐
(𝑥𝑥 − 𝑐𝑐𝑐𝑐 − 𝑑𝑑)�. 

3.2. The Modified Regularized Long Wave (MRLW) 
Equation 

The modified regularized long wave equation is 
𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑥𝑥 + 𝑢𝑢2𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 = 0,         (12) 

where 𝑢𝑢(𝑥𝑥, 𝑡𝑡)  is the solution of (12), 𝑥𝑥  is the space 
variable and 𝑡𝑡 is the time. 

Using the above procedure we obtain: 
−𝑐𝑐 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑓𝑓2  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑐𝑐 𝑑𝑑

3𝑓𝑓
𝑑𝑑𝜒𝜒3 = 0.        (13) 

By integrating (13) with respect to 𝜒𝜒, we obtain 
−𝑐𝑐𝑐𝑐 + 𝑓𝑓 + 𝑓𝑓3

3
+  𝑐𝑐 𝑑𝑑

2𝑓𝑓
𝑑𝑑𝜒𝜒2 = 0.          (14) 

Now putting the values of 𝑓𝑓 and 𝑑𝑑2𝑓𝑓/𝑑𝑑𝜒𝜒2 from (5) and 
(6) in (14) we obtain 

−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ) + 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ) +
1
3
𝜆𝜆3𝑐𝑐𝑐𝑐𝑐𝑐3𝛽𝛽 (𝜇𝜇χ) 

−𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ) + 𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽−2(𝜇𝜇χ) 
−𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1)𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 (𝜇𝜇χ)  = 0.        (15) 

The equation (15) is satisfied if and only if the following 
system of algebraic equations holds: 

−𝑐𝑐𝑐𝑐 + 𝜆𝜆 − 𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽 − 𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1) = 0, 
1
3
𝜆𝜆3 + 𝑐𝑐𝜆𝜆𝜇𝜇2𝛽𝛽(𝛽𝛽 − 1) = 0,         (16) 

3𝛽𝛽 = 𝛽𝛽 − 2. 
Now solving the system (16), we obtain 

𝛽𝛽 = −1,      𝜆𝜆 =  ±�6(1− 𝑐𝑐) ,    

   𝜇𝜇 = ±�
(1− 𝑐𝑐)

𝑐𝑐
.   

Thus, the exact soliton solution of the MRLW equation is 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = ±�6(1 − 𝑐𝑐) 𝑐𝑐𝑐𝑐𝑐𝑐−1 �±�
(1 − 𝑐𝑐)

𝑐𝑐
 (𝑥𝑥 − 𝑐𝑐𝑐𝑐 − 𝑑𝑑)�. 

4. Conclusions 
In this paper, the cosine-function method has been suc-

cessfully applied to obtain the solution of two nonlinear 
partial differential equations such as BBM and MRLW 
equations. The cosine-function method is used to obtain new 
exact solutions. Thus we can say that the cosine-function 
method can be extended to solve the system of nonlinear 
partial differential equations arising in the theory of solitons 
and other areas.  
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