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Abstract  A general stochastic approach to the description of coagulating aerosol system is developed. As the object of 
description one can consider arbitrary mesoscopic values (number of aerosol clusters, their size etc). The birth-and-death 
formalism for a number of clusters can be regarded as a partial case of the generalized storage model. An application of the 
storage model to the number of monomers in a cluster is discussed. 
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1. Introduction  
The stochastic description of the coagulation process was 

performed in papers like (Scott,1977; Bayewitz et all, 1971; 
Lushnikov, 1978; Merculovich, Stepanov, 1985, 1986, 
1991). So, the birth-and-death model leads to the kinetic 
equation of coagulation in the form 

∂ P(t, [X])/∂ t = (1/2) i ≠j Σ W(i,j) 
[(Xi+1)(Xj+1)P(Xi+1,Xj+1,Xi+j-1) - Xi Xj P] + 

(1/2) i Σ W(i,i) [(Xi+2)(Xi+1)P(Xi+2, X2i-1) - Xi (Xi-1)P], 
(1) 

where P(t,X1,X2,...,Xn,...) is the probability to find Xi par-
ticles (clusters) having the size i (i=1,2,...) in the time t; 
W(i,j) is the coagulation probability per time unit of the 
particles i and j (containing, in general, the factor L-3, where 
L is the size of a system). The equation for the generating 
functional 

F(t, [s]) = [X] Σ i Π (si )Xi P (t, [X]),      (2) 
can be drawn from (1): 

∂F/∂t = (1/2)i,j Σ W(i,j) (si+j-sisj) ∂2F/∂si∂sj    (3) 
The equation for the average number of clusters (from 

either (1) or (3)):  
∂<Xk>/∂t = (1/2)ij Σ W(i,j) D(i,j|k) Q2(i,j);       (4) 

D(i,j|k) = δ(i+j;k) - δ(i;k) - δ(j;k); Q2(i,j) = ∂2F/∂si∂sj |[s]=1  
= <Xi(Xj-δ(i;j))>                       (5) 

(δ(i;j) is the Cronecker symbol) is unclosed since higher 
momenta Qk are involved for which successive set of equa-
tions can be derived from (1), (3). If one makes an assertion 
that the random number of clusters of each size has the in-
dependent Poisson statistics then 

Q2(i,j) = <Xi(Xj-δ(i;j))> = <Xi><Xj>,         (6) 
and one arrives at the  Smolukhovsky equation from (4): 

∂<Xk>/∂t = (1/2) ij Σ W(i,j) D(i,j|k) <Xi><Xj>.     (7) 
In (van Dongen, 1987) the transition from (4) to (7) was  
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performed basing on the method of van Kampen (van 
Kampen, 1984). In papers (Merkulovich, Stepanov, 1991, 
1992) the spatially inhomogeneous coagulating systems 
were treated using the discretization operations both in 
space and time. The stochastic storage model for the ran-
dom number of monomers in a cluster was introduced in 
(Ryazanov, 1991; Ryazanov, Shpyrko, 1994). In the present 
paper the general stochastic approach for describing arbi-
trary (random) macroscopic values characterizing an aero-
sol system is presented. The traditional stochastic storage 
model is generalized and the results are applied to the in-
vestigation of coagulating systems. 

2. General Stochastic Approach to the 
Description of Coagulating Aerosol 
Systems  

The mesoscopic stochastic description is generally meant 
as an intermediate description level between treating mi-
croscopic (molecular) quantities (such as the position and 
pulse of each molecule) and macroscopic (thermodynamic) 
ones. The mesoscopic level deals with the distribution func-
tion (or stochastic process) for the order parameters whose 
averages are to be treated macroscopically as thermody-
namic quantities. For an aerosol system one could point out 
such values as number of clusters in a unit volume, size of a 
given cluster treating them as the order parameters. Denote 
such an order parameter as q(t) without its concretization 
for a moment (of cource, q(t) can be readily understood as 
multycomponent vector as well). In the assumption of the 
Markovian character of a process the distribution function 
ω(q,t) satisfies the master equation of the general type (see, 
for example, Stratonovich, 1992): 

∂ω(q,t)/∂t = N∂,q Φ(-∂/∂q, q) ω(q,t),         (8) 
where the "kinetic operator" Φ is the contracted notation of 
the expansion of the Chapman equation; symbol N∂,q orders 
the operations of differentiation and those of multiplication 
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by functions of q. Thus the fundamental quantity of the 
mesoscopic approach is the matrix of transition probabili-
ties (or kinetic operator which is nothing more or less than 
the generating function on these probabilities). The Laplace 
transform of the function ω(q,t)  

F(exp{-θ},t) = o∞∫ exp{-θy} ωt(y)dy           (9) 
resembles (2) up to the substitution s=exp{-θ}. The kinetic 
equation in this representation (that is for F(exp{-θ }) is 
(from (8))  

∂F(exp{-θ},t)/∂t = Nθ,∂/∂θ Φ(-θ,-∂/∂θ) F(exp{-θ},t).  (10) 
We offer some common examples illustrating the speci-

fication of the transition matrix (kinetic operator). The dif-
fusion process is by definition  

Φ(θ,q) = K1(q)θ + K2(q)θ2 /2,          (11) 
where K1, K2 are drift and diffusion coefficients respectively. 
Substituting (11) into (8) yields the Fokker-Planck equation. 
This approximation is quite common in many areas of 
physics and, faute de mieux, it was applied to various ef-
fects in the aerosol systems (Fuchs, 1964) - such as the spa-
tial diffusion, filtration, coagulation, sedimentation 
processes. The value K1 from (11) was thus Vx - the projec-
tion of the velocity of the aerosol cluster onto axis x; 
K2/2=D=const, D is the diffusion coefficient. As the random 
value q one took the cluster coordinate x (which may be 
called some external coordinate). The description of a single 
(separate) cluster was thus performed. A single cluster de-
scription was also introduced in (Ryazanov, 1991; Ryazanov, 
Shpyrko, 1994). As the random number q we took the 
number m of monomers in a cluster, that is the internal 
coordinate. The stochastic storage model was used in the 
kinetic equation for this value 

dm/dt = dA/dt - r[m(t)],              (12) 
where A(t) is a random input function, r[m] is the release 
rate. The input A(t) is given by specifying the cumulant 
function (Prabhu,1980) 

E(exp{-θA(t)}) = exp{-t ϕ(θ)},          (13) 
where E(...) means averaging. In the absence of infinitely 
large jumps of the input flux the cumulant ϕ(θ) is given by 

ϕ(θ)=o
∞∫ (1-exp{-θy} ) λb(y) dy,          (14) 

here λ<∝ means the intensity of the input jumps, b(x) is the 
distribution function of the jumps. Thus a number of mo-
nomers in a single arbitrary choosen cluster is treated as a 
random storage in a storage system. For the process 
(11)-(14) 

Φ(-θ,m)=-ϕ(θ)+θrχ(m); rχ(m)=r(m)-r(0+)χm; χm=1, 
if m=0, χm=0, if m>0.          (15) 

From (8), (15) obtain 
∂ω(m,t)/∂t = o∞∫ (exp{-y∂/∂m}-1) λmbm(y) ω(m)dy  

+ ∂(rχ(m)ω(m))/∂m.               (16) 
Lets take a pure coagulation process. One traces the fate 

of an arbitrary choosen cluster supposing that it remains the 
same in all coagulations, even if it coagulates with larger 
clusters. Thus the cluster can only grow and only input term 
in (12) is present (that is r(m) =0). Now make a conjecture 
as to the shape of ω(m), λ, b(x). We assume  

ω(m,t) = n(m,t)/N; N = o∞∫ n(m,t)dm; 
λb(x) = β(m,x)n(x)/2,             (17) 

where n(m,t) = <Xm>/L3 is the concentration of clusters 
with m monomers, β(m,x) =W(m,x)L3 is the coagulation 
coefficient, that is the core of the kinetic coagulation equa-
tion. The factor 1/2 arises because one accounts one coagu-
lation act twice. Substituting (17) in (16) at r=0 get 

(∂n(m)/∂t)/N - (∂N/∂t)(n(m)/N2)=(1/2) o∞∫ 
 [β(m-y,y)n(y)n(m-y)/N - β(m,y)n(y)n(m)/N]dy. (18) 

It is worth while mentioning that the choice of ω and 
λb(x) in (17) is not quite correct from the point of view of 
traditional storage model. There is a dependence of λb(x) in 
(17) on ω(x) (through n(x)=ω(x)N), on t (through the time 
dependence in n(x,t), β(m(t),x(t))) and on m (through 
β(m,x)) which is in contradiction to the primary supposi-
tions of (Prabhu, 1980). Nevertheless we start from (16) 
supposing that its solution satisfies (17). It was this ap-
proximation that led to (18) which in its turn yields the 
Smolukhovsky equation of the free coagulation 

∂ω(m)/∂t=N[(1/2)o
m∫β(m-y,y)ω(m-y)ω(y)dy-o

∞∫β(m,y) 
ω(y)dyω(m)]-ω(m)∂lnN/∂t,        (19) 

if 
 -∂lnN/∂t ≅ (1/2) o∞∫ o∞∫β(x,y)ω(x)n(y)dxdy ≅ (1/2) 

o
∞∫β(m,y)n(y)dy.               (20) 

First identity in (20) corresponds to the Smolukhovsky’s 
equation and the second one arises from the fact that one 
chooses a cluster m on random: whatever cluster of the sys-
tem can figurate instead. 

Thus the Smolukhovsky equation (19) is obtained from 
the general master-equation of the storage theory under fol-
lowing assumptions: a) one supposes in (16) r=0 which 
corresponds to the situation of the constant growth of a 
given cluster, b) the solution of (16) should satisfy (17) if 
r=0, the dependence of λb(x) on m brinding obstacles to the 
use of the storage model because of c) the cluster m is arbi-
trary and can be replaced by any other cluster of the system 
which implies (20). 

If one considers, like in (1)-(7) a random number of clus-
ters Xi of the size i the corresponding multycomponent ki-
netic potential takes on the form 

Φ(v1,v2,...;X1,X2,...) = ij Σ [(exp{vij}-1)/2] W(i,j) Xi 
(Xj-δ(i,j)); vij=vi+j-vi-vj .         (21) 

Substituting (21) into (8) leads directly to (1); into (10) 
with the transition from (9) to (2) yields (3). As random 
value q one can take either the cluster energy, velocity, 
charge etc or several such values simultaneously. In 
(Fuchs,1964) the backward Chapman equation for the mod-
el (11) was applied to a number of important problems in 
the theory of aerosols (such as the time of diffusive sedi-
mentation etc). This equation was used in (Ryazanov, 1989) 
for investigating the lifetime of aerosols in the storage 
model. (Under the notion of lifetime we understand the 
random time moment of the degeneration of a cluster which 
itself exists only under certain general conditions of ther-
modynamic character, such as the existence of stationary 
states. For example, these conditions break for the case of 
pure coagulation). The degeneration of all clusters means, 
for example, the resolving of a cloud. Another outcome of 
the evolution can be the coagulation of all clusters into a big 
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one which means the precipitation. One more possible gen-
eral result of the evolution is the transition to the domain of 
states with no stationarity (Ryazanov, 1993a). The physical 
manifestation of these effects is either the destruction of a 
system or at least some phase transition (Ryazanov, 1991) 
when the nature of representative value q changes. It was 
shown that the storage model seems to fit better for eluci-
dating these occurrences than the Smolukhovsky equation 
(7), birth-and-death model (1), (21) or diffusion approxima-
tion (11). The attainment of zero level by a process can be 
considered in more general frame of the attainment of an 
arbitrary level or a border. For the Laplace transform of the 
probability density g(x,t) for the process q(t) starting at t=0 
in the point q(t=0)=x to reach for the first time the point 
zero at the moment t (that is lifetime of a system equals Γx ) 

E(x,s) = E(exp{-sΓx}) = o∞∫exp{-st} g(x,t)dt     (22) 
the relation can be derived from the backward Chapman 
equation 

Nx, ∂ Φ(∂/∂x, x) E(x,s) = sE(x,s); 
 E(x=0,s) = E(x,s=0) = 1.           (23) 

For average and second moment of <Γx> = -∂E(x,s)/∂s | 
s=0, <Γ2

x> = ∂2E(x,s)/∂s2 | s=0 
one has 

Nx,∂ Φ(∂/∂x, x) <Γx> = -1; 
Nx,∂ Φ(∂/∂x, x) <Γ2

x> = -2<Γx>.        (24) 
If an inhomogeneous Markovian process is considered 

(that is Φ(θ,q,t) depends explicitly on time) the equation (23) 
modifies to include explicitly the initial moment to 

s Eto(x,s) = ∂Eto(x,s)/∂t0 + sNx,∂ Φ(∂/∂x, x, t→to-∂/∂s) 
(Eto(x,s)/s).                      (25) 

3. Generalization of the Storage Model 
The transform of kinetic potential Φ(x,q) is written, ac-

cording to (Stratonovich,1992) as 
R(y,x) = ∫Φ(y,q)ωx(q)dq= limτ→0(τ-1)∫[exp{y(q2-q1)}-1]×  

×exp{-xq}p(q2|q1) ωst(q1)dq1dq2/F(x) = n=0
∞Σynκn(x)/n!, (26) 

where p(q2|q1) are transition probabilities for the Markovian 
process, ωst(q) is the stationary distribution, ωx(q) = exp 
{-xq} ωst (q)/F(x); F(x) = ∫exp {-xq} ωst (q) dq; κn(x) = 
∫Kn(q)ωx(q)dq; Kn(q) = (τ-1)∫ (q2-q1)np(q2|q1)dq2 are kinetic 
koefficients. The fluctuation-dissipation relations in none-
quilibrium stationary case take on the form 

R(x,x) = 0.                  (27) 
For the diffusion process (11) κn=0 n≥3 then 

RD(y,x)=yκ1(x)[1-y/x] (as seen from (11) and (27)). For the 
storage scheme another approximation is used: namely, in-
dependence of κn(x) on x, n≥2 (or independence on q of Kn ,  
n≥2). Then 

RS(y,x) = yκ1(x) [1-κ1(y)/κ1(x)].      (28) 
In (Stratonovich,1992) the diffusion schema was adopted 

as basic one to which successive amendments were consi-
dered. We develop similar extension procedure for the sto-
rage scheme assuming following series for Kn : 

Kn(q) = Kn,0+γKn,1 q+γ2 Kn,2 q2/2!+...+γkKn,k qk/k!+...,  (29) 
where γ is the formal expansion parameter. The kinetic po-

tential takes on the form 
Φ(y,q)=n=1

∞Σyn Kn(q)/n!= 
yK1(q)+k=0

∞Σ(γkqk/k!)(n=2
∞ΣynKn,k/n!)=yK1(q)-ηo(y)-  

-γη1(y)q - ... - γkηk(y)qk/k! -...; -ηk(y)=n=2
∞ΣynKn,k/n!;  

η0(y)=ϕ(-y)+yρ; ρ=∂ϕ(θ)/∂θ | θ=0,        (30) 
and its transform is  

R(y,x)=yκ1(x)-η0(y)-γη1(y)<A(x)> - ... –  
γkηk(y)<Ak(x)>/k!-...; <Ak(x)=∫qkωx(q)dq.      (31) 

The expression (31) can be regarded as some series on 
the basis 1,<A(x)>, <A2(x)>,...., which naturally arises from 
the shape of stationary distribution for concrete case, that is 
represents the "eigen" basis for the problem. The full series 
(31) is, of cource, equivalent to the full series of Gaussian 
scheme, but usually we intend to truncate the series at some 
<Ak(x)> ; this form (contrary to the usual method implying 
the truncating at the term xk) seems to be more convenient, 
for example, for investigating chaotic systems because it is 
quite natural to investtigate their characteristics (in particu-
lar, Kn(q)) as arising from some averaging procedure over 
the areas of parameter space which yields either constant or 
smoothly varying in q coefficient functions. Applying (27) 
to (31) get (Shpyrko, Ryazanov, 2006) 

RS(y,x) = yκ1(x) [1-κ1(y)/κ1(x)] - k=1
∞Σ γk ϕk(y)/k! 

[<Ak(x)>-<Ak(y)>]            (32) 
with "arbitrary" ϕ(x). The functions ϕ are thus “dissipative 
undetermined” (Stratonovich, 1992) in the macroscopic 
approach of (30)-(32) which is based on taking as primitive 
(initial) quantities the "observables", that is a) stationary 
distributions and b) equations of motions (stored, as one can 
easily check, in κ). Another approach to the model specifi-
cation consists in specificating rather the process generating 
these observables than the observables themselves. Thus we 
arrive at the specification of the process in terms of jump 
input and release rates. Split K1(q) in (30) into two parts 
K1(q)=ρ-r(q), where r(q) is arbitrary release function and 
ρ(q) enters into (30) as the term with n=1. One can write the 
series analogous to (29): ρ(q)=ρo+γ ρ1 q+γ2 ρ2 q2/2!+... , 
where ρl are coefficients Kn,k from (29), n=1, k=0,1,2,... In 
this case we arrive at the kinetic potential analogous to the 
ordinary storage model (15) 

ΦS(y,q) = -yr(q) + k=0
∞Σ(γkqk/k!)(n=1

∞ΣynKn,k/n!).  (33) 
Functions 

-ϕk(y) = n=1
∞ ΣynKn,k/n!           (34) 

can be interpreted (like (14)) in terms of input functions. 
Generalized input intensity is  

λ(q)=λo+γλ1 q+γ2 λ2 q2/2+...; λk=ϕk(y=-∞); 
distribution function b(Δ,q) is related with function  

ϕ = kΣ ϕkγkqk/k! = λ - λ ∫exp{-yΔ}b(Δ,q)dΔ . 
For example, we can set all functions ϕl(y)=ϕ(y)λl equal 

within a factor (proportional); this is the situation of the 
birth-and-death processes. This construction is to some ex-
tent analogous to that of (Prabhu, 1994) if one takes the 
modulating process I(t) (Prabhu, 1994) coinciding with the 
main process q(t). 

Substituting (33) into (10) we obtain the relation 
∂F(x,t)∂t = -x r(d/dx) F - ϕ0(x) F - k=1

∞Σ γk ϕk(x) (d/dx)k F/k!. 
(35) 
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The equation (35) can be solved in successive approxi-
mations in γ : F=Fo+γF1+γF2/2!+... 

Lets give an example. The expression (12) is rewritten as 
Φ(v1,v2,...;X1,X2,...)=-(1/2) ij Σ ϕ2ij (vij) Xi (Xj-δ(I,j)) ; 

ϕ2ij(vij)=o
∝∫(1-exp{-vijuij}) λij bij(uij) duij ; 

uijvij=ui+jvi+j-uivi-ujvj;             (36) 

λijbij(uij)=δ(ui-1)δ(uj-1)δ(ui+j-1)W(I,j), 
which coincides with (33) if γ=1, r=0, k=δ(k;2). 

Substituting (36) into (10) leads to 
∂F(exp{-θ},t)/∂t=-(1/2)ijΣ ϕ2ij(θij) (∂2/∂θi∂θj 

+δ(I,j)∂/∂θi)F(exp{-θ},t),              (37) 
coinciding with (3) if θ = - ln si , ∂/∂θI = -si ∂/∂si . 

The Laplace transform of (37) yields F(θ,s) = o
∞∫F 

(exp{-θ},t)exp{-st}dt 
sF(θ,s)-F(exp{-θ},t=0)=(1/2) 

ijΣW(I,j)(exp{-θij}-1)[∂2/∂θi∂θj+δ(I,j)∂/∂θi]F(θ,s). 
In (Lushnikov, 1978) the generating functional is written 

in the Smolukhovsky approximation when Xi→<Xi> and 
Xj-δ(I,j)→Xj in (21) and (36) when the solution for the ini-
tial conditions  

F(exp{-θ},t=0)=exp{ - iΣθiXoi } has a form 
Fsm(exp{-θ},t)=exp{ - iΣθiXoi –  

ijΣϕ2ij(θij)o
t∫<Xi(τ)><Xj(τ)>dτ}.        (38) 

The kinetic potential corresponding to the Poisson distri-
bution 

ΦSm(v,X) = ijΣ[(exp{vij}-1)/2]W(I,j)<Xi><Xj> 
corresponds to the storage model with the input intensity 
proportional to <Xi><Xj > and zero release. The expressions 
of (Ryazanov, 1991) for the storage model (12-15) corres-
pond to the approximation 

ΦS(v,X) = ijΣ[(exp{vij}-1)/2]W(I,j)X0iXoj, when 
<Xk>=X0k+(t/2)ijΣW(I,j)D(I,j|k)X0iX0j 

(D is given in (5)). The time t* of degeneration of the value 
N(t)=kΣ<Xk>/V, t*=2No/cM2, W(I,j)=cij, M = Mo = 
kΣk<Xk>/V coincides with the results of (Voloschuk, 1984) 
from the Smolukhovsky equation. Thus, the model sug-
gested first in (Ryazanov, 1991) can be generalized at sev-
eral levels.  

The expressions (36), (37) are readily to yield the equa-
tions with higher than (38) precision (involving higher mo-
menta). For example, one gets the refined version of Smo-
lukhovsky equation: 

Φ(1)
Sm(v,X) = ijΣ (exp{vij}-1)W(I,j)Xi<Xj>/2; 

∂F(1)
Sm/∂t = 

-(1/2) ij Σ W(I,j)(exp{-θij}-1)<Xj>∂F(1)
Sm(exp{-θ},t)/∂θI . 

Rewriting (21) and (36) in the form 
Φ(v,X) = ijΣ (exp{vij}-1) [<Xi><Xj>+Δi(<Xj>-δ(I,j))- 

-δ(I,j)<Xi>+Δj<Xi>+ΔI Δj]; Δ I = Xi - <Xi>, 
we get 

-∂F/∂θI | θ=0 - <Xi> = <Xi> - <Xi> = 0; 
∂<Xk>/∂t=(1/2) ijΣW(I,j)D(I,j|k)[<Xi><Xj> + ΔiΔj - 

δ(I,j)<Xi>], 
two last terms representing the amendments to the Smo-
lukhovsky equation. 

From (37) it is possible to derive the “one-particle” Lap-
lace transform of  

Pk(Xk) = ∫...∫ ω(X1,...,Xk-1,Xk,Xk+1,...)dX1...dXk-1dXk+1... ; 
fk(exp{-θk})= ∫...∫ exp{-θkXk} ω(X1,X2,...)dX1dX2... = 

∫ exp{-θkXk}Pk(Xk)dXk . 
The equation for f is 

∂fk(exp{-θk}/∂t = ijΣ (1/2)W(I,j)(exp{-θk}-1)× 
×D(I,j|k) [<XiXjexp{-θkXk}-δ(I,j)Xiexp{-θkXk}>]. (39) 

With an assertion <XiXkexp{-θkXk}> ≅ -<Xi> ∂fk/∂θk ; 
<XiXk-iexp{-θkXk}> ≅ <XiXk-i> fk (39) yields 

(exp{-θk}-1)[∂2f/∂θ2-a∂f/∂θ-fb] = -(W(k,k))-1∂f/∂t; 
a=(W(k,k))- 1 × 

× [i=1
∝

i≠kΣW(k,i)<Xi>-W(k,k)]; 
bW(k,k)=1≤i≤k-1Σ(1/2)W(I,k-i)<XiXk-i-δ(I,k-i)Xi> 

with following stationary solution 
fst(θ)=[(c-a/2-<Xs

k>)exp{(a/2+c)θ} 
+(c+a/2+<Xs

k>)exp{(a/2-c)θ}]/2c;  
c=[(a/2)2+b]1/2; <(Xs

k)2> = b – a<Xs
k> . 

For Poisson distribution 
<X2

k> ≅ <Xk>2 + <Xk>, 
and <Xk>=[(a+1)/2]2±([(a+1)/2]2+b)1/2 . 

Setting  
<Xs

i>=δ(I,M), get a = w(k,M)/w(k,k), b=0; 
<Xs

k> = w(k, M)/w(k,k)=1 by k=M . 
The approach of this chapter allows the representation of 

the birth-and-death and some other kinds of processes in the 
frame of the generalized storage models. 

4. Application of the Storage Model to 
the Number of Monomers in a Cluster 

Consider the random number of monomers m in a single 
cluster (12)-(20). Combining (15)-(17) with (10) leads to 

F(exp{-θ},t)=E(exp{-θm})=o
∞∫exp{-θu}ω(u,t)du; 

∂F(exp{-θ},t}/∂ t=∫[(exp{-uθ}-1)/2]β(u,-∂/∂θ) 
n(u)duF(exp{-θ},t).             (40) 

For β(m,x) ≈ ma  with 1<a<1 (40) corresponds to frac-
tional terms in the series (29) and fractional derivatives in 
(40) which is the manifestation of the fractal character of 
cluster formation (Nigmatullin, 1992). Thus the relations 
(15-20) used in (Ryazanov, 1991) correspond to the exten-
sion of the storage model with generalized Tailor series of 
fractional derivatives. The explicit form of Φ in (40) allows 
us to solve this equation specifying the kernel β(m,x). So, 
for β(m,x)=a=const taking into account n(u,t)=N ω(u,t) (17) 
one arrives at (set a=1 without loss of generality) 

∂Fa(θ)/∂ t = a (Fa(θ)-1) Fa(θ)/2; 
Fa(θ,t)=y(t)Fa(θ,t=0)/{1-Fa(θ,t=0) 

[(N(t=0)/2)o
t∫y(τ)dτ+y(t)-1]};  

y(t)=exp{-o
t∫ N(τ)dτ}/2}. 

Stationary function F=1 corresponds to the delta-shaped 
peak of the probability density (for example, δ(m-M)). For 
(17) ω(x,t) = n(x,t)/N, F(exp{-θ},t) = n(θ)/N, n(θ) = o

∞∫exp 
{-θx}n(x,t)dx.  

These results are in correspondence with the results of 
(Voloschuk, 1984) for β(m,x) =a =const. For the kernel 
β(m,x)=c(m+x) (40) get 
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∂F(θ)/∂t = -cN [∂F(θ)/∂θ (2F(θ)-1) + MF(θ)/N]/2. 
For β(m,x)=cmx, ∂F(θ)/∂t=(c/2)N [∂F/∂θ + M/N] ∂F/∂θ. 
These equations lead to results which are close to those 

obtained from the Smolukhovsky equation (Voloschuk, 
1984) but do not coincide with them completely. The ques-
tion remains open about the approximation fitting better to 
the description of aerosols. 

The specification of λmbm(x) should lean upon the physi-
cal assumptions as to the physics of coagulation. The rela-
tion (17) corresponds to the assumption of instantaneous 
stirring of the system between successive coagulation acts 
resulting in quasihomogeneous state of the system and thus 
in the statistical identity of all clusters which (equation (20)) 
ensures the coincidence of the kinetic equation (16) with the 
Smolukhovsky equation (19) (if r=0 and (17) holds). One 
can detalize the model adding some function b1(x) to (17): 

λb(x) = β(m,x) n(x)/2 + λ1b1(x).          (41) 
Then the kinetic equation (16) with the condition (41) 

and r=0 coincides with (19) (ln N being equal to the first of 
expressions (20)) under the condition 

N∫ω(y) [∫β(x,y)ω(x)dx - β(m,y)]dy 
= 2λ1 ∫[(ω(m-y)/ω(m))-1] b1(y)dy,       (42) 

which can be considered as the equation for λ1 b1(x) given 
the functions β and ω. As ω =n/N is the required function 
one arrives at the system of equations (16) with (41)-(42) 
for two functions ω and λ1b1.  

When choosing (41) one should add the term -ϕ1(θ)F; 
ϕ1(θ) = o

∝∫(1-exp{-θu})λ1b1(u)du to the right hand side of 
(40) that is 

∂F(exp{-θ},t)/∂t 
= ∫(exp{-uθ}-1)β(u, -∂/∂θ)n(u)duF/2 - ϕ1(θ)F.  (43) 

So, using (42)-(43) for β=m+x (and for other β(x,y) as 
well) we arrive at the expression for n(θ)=FN coinciding 
with similar expressions derived from Smolukhovsky equa-
tion in (Voloschuk, 1984). 

The Smolukhovsky equation is in no manner a standard 
and we wish to derive an equation yielding more refined 
description of the aerosol system. So an important task 
would be the specification of the function λ1 b1(x) from (41) 
describing the deviation from the homogeneity of the sys-
tem after the coagulation event. Lets set b1(x)=Po(t)δ(x) 
(that is the input of zero clusters) where Po(t) is the degene-
ration probability equal to the fraction of time the cluster 
stays degenerated. From (41) get 

λb(x) = λ1Po(t) δ(x) + β(m,x) n(x)/2.          (44) 
We can readily set λ1=λ. The function b(x) is thus pro-

portional to the distribution probability in the storage model 
which is ω(x)=Poδ(x)+g(x) with g(x) being a continuous 
function. This is the assumption of the fact that the input to 
a given cluster consists of other clusters (self-matching sto-
rage model). For pure coagulation the stationary probability 
of degeneration is Po=limt→∝Po(t)=0. If b1(x)=Po(t)δ(x), 
ϕ1=0 (43) takes the form (40). The equation (18) does not 
change either. Thus we recover the earlier results. But the 
refinement of the rather crude approximations used above 
are possible (basing, for example, on the reneval theory) 
which can contribute to changing (18) and (40). The value λ 

describes the intensity of the cluster motion and thus the 
frequency of coagulation events. For the monodisperse 
aerosol with the radius R the expression is written from 
(Fuchs, 1964) λ=8πRDn, where D is the diffusion coeffi-
cient, n is the cluster concentration. Integrating (44) get 

λ1Po=8πRDn-∫β(m,x)n(x)dx/2. By λ1=λ, n(x)=nδ(x-R), 
β(m,x)=8πRD, Po=1/2. 

Different characteristics of clusters are connected one to 
another being in fact different aspects of the same problem. 
For example, the concentration of clusters n(m,t) from 
(17-20) is expressed through the number of clusters from 
(1),(21): n(m,t)=<Xm>/L3. This fact allows to proceed from 
the models like (1), (17) to (15)-(17) (and vice versa) mak-
ing use of the peculiarities of the behaviour of aerosols 
found by means of some specific class of models. For ex-
ample, the external field yields the additional terms in the 
right hand of equations of (4), (7). When using the equa-
tions like (16) these terms are interpreted as some effective 
release of monomers (plus complication of the problem due 
to the spatial inhomogeneity). To make a connection be-
tween different characteristics of an aerosol system one can 
use the method of collective variables (van Kampen, 1984), 
the method of complex generating functional (Ryazanov, 
1993b) and identities of the probability theory (Wilde iden-
tity etc). Being specified, the kinetic potential allows inves-
tigating various temporal characteristics of the aerosol be-
haviour, for example, by means of expressions (22)-(25). 

5. Conclusions 
One of the advantages of the stochastic storage model is 

the clear criteria stated for the existence of stationary states 
in a system (Ryazanov, 1991). Besides the external fields, 
the stationarity conditions are determined by such factors as 
the presence of sources and sinks of clusters, evaporation, 
condensation, splitting etc. For the stationary state of sto-
rage model the relations describing its behaviour are known 
in details. Specific for the aerosol system is the stationary 
state resulting from the pure coagulation. In this case the 
release of monomers is zero, and the system is far from 
being stationary. The input function also vanishes when all 
clusters form a single bulk cluster; the stationarity condi-
tions remain undefined. 

The equations for the distribution function (16) and its 
Laplace transform (40), (43) encounter serious difficulties 
coming from the fractional derivatives; these difficulties 
however reflect the complex fractal (self-similar) behaviour 
of aerosol clusters. The fractional part of the derivative 
shows a fraction of systems states conserving during all the 
time of evolution. In (Nigmatullin, 1992) a broad class of 
systems was pointed out where one could expect the appari-
tion of the fractional derivatives, coagulating systems be-
longing to this class as well. Such systems were referred to 
in (Nigmatullin, 1992) as "systems with residual memory" 
occupying an intermediate position between full memory 
systems, on one hand, and completely stochastic (Marko-
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