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Abstract  Krasnosel’skii-Pokrovskii (KP) model is one of the great operator-based phenomenological models which is 

used in modeling hysteretic nonlinear behavior in smart actuators. The time continuity and the parametric continuity of this 

operator are important and valuable factors for physical considerations as well as designing well-posed identification 

methodologies. In most of the researches conducted about the modeling of smart actuators by KP model, especially SMA 

actuators, only the ability of the KP model in characterizing the hysteretic behavior of the actuators is demonstrated with 

respect to some specified experimental data and the accuracy of the developed model with respect to other data is not vali-

dated. Therefore, it is not clear whether the developed model is capable of predicting hysteresis minor loops of those ac-

tuators or not and how accurate it is in this prediction task. In this paper the accuracy of the KP model in predicting SMA 

hysteresis minor loops as well as first order ascending curves attached to the major hysteresis loop are experimentally vali-

dated, while the parameters of the KP model has been identified only with some first order descending reversal curves at-

tached to the major loop. The results show that, in the worst case, the maximum of prediction error is less than 18.2% of the 

maximum output and this demonstrates the powerful capability of the KP model in characterizing the hysteresis nonlinear-

ity of SMA actuators. 
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1. Introduction 

In systems with hysteretic behavior, like piezoelectics, 

piezoceramics, magnetostrictives and shape memory alloys, 

the input-output relationship is a multi-branch nonlinearity 

for which branch-to-branch transitions occur after input 

exterma[1]. It means that the output value is a function not 

only of the current input, but also of the previous inputs 

and/or the initial value. Indeed, at any accessible point in the 

input-output diagram there are many curves that may 

rep-resent the future behavior of the system. Each of these 

curves depends on the sequence of past extermum values of 

the input[2]. Therefore, mathematical modeling as well as 

controller design of these systems is a complex and difficult 

task. 

Since un-modeled hysteresis causes inaccuracy in trajec-

tory tracking and decreases the performance of the control 

systems, an accurate modeling of hysteresis behavior for 

performance evaluation and identification as well as con-

troller design is essentially needed[3]. Therefore, it is nec-

essary to develop hysteresis models that not only 

 
* Corresponding author: 

sayyaadi@sharif.edu(H. Sayyaadi) 

Published online at http://journal.sapub.org/am 

Copyright © 2011 Scientific & Academic Publishing. All Rights Reserved 

identification of the model parameters, to adapt the model to 

the real hysteretic nonlinearity, can easily and precisely be 

per-formed but also are suitable for real time control and 

compensation system design.  

A number of models have been proposed to capture the 

observed hysteretic characteristics of smart actuators, which 

could be classified into physics-based hysteresis models and 

phenomenological hysteresis models[4]. Physics-based 

models are generally come from the underlying physics of 

hysteresis and are combined with empirical factors to 

de-scribe the observed characteristics[5-7]. However, these 

models have limited range of applicability, as the physical 

basis of some of the hysteresis characteristics is not com-

pletely understood[8]. Furthermore, considerable effort is 

required in identifying and tuning the model parameters to 

accurately describe the hysteresis nonlinearity. Another 

major drawback of these physical models is that they are 

specific to a particular system, and this implies separate 

controller design techniques for each system[9].  

Since the early 1970's, systematic mathematical analyses 

of the hysteresis as a general nonlinear behavior, from purely 

phenomenological viewpoint, have been carried out[10]. 

Phenomenological models are based on the phenomeno- 

logical nature and mathematically describe the observed 

phenomenon without necessarily providing physical insight 

into the problems. The most important phenomenological 
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hysteresis models include operator based hysteresis models 

and differential equation-based hysteresis models[11]. 

Preisach model[2], Krasnosel’skii-Pokrovskii model[1], and 

Prandtl-Ishlinskii model[12] are some important operator- 
based hysteresis models while Duhem model, Bouc-Wen 

model and Jiles-Atherton model[13] are most widely used 

differential equation-based hysteresis models. Choosing a 

proper phenomenological model among the mentioned 

models is a task of crucial importance since the mathematical 

complexity of the identification and inversion problem de-

pend directly on the phenomenological modeling method 

and strongly influences the practical use of the design con-

cept[14]. Furthermore, the accuracy of the modeling method 

in characterizing system hysteretic behavior consequently 

affects the whole compensator design task. For example, 

Philips[15] compared the computation results from the 

Jiles-Atherton model and the Preisach model. It was found 

that the identification of the parameters in the Jiles-Atherton 

model requires less measurement while the Preisach model 

fits the hysteresis loop better. 

Modeling the SMA actuators by each of the mentioned 

groups has their own advantages and disadvantages. Models 

of the first group are better suited to deal with the effects of 

complex multiaxial thermomechanical loading paths and 

cyclic effects of SMAs, due to the flexibility of introducing 

internal state variables in their formulation. However, these 

classical models usually give poor predictions to the minor 

loop hysteretic response[16]. Phenomenological models, on 

the other hand usually give excellent predictions of the minor 

loop behavior if the loading path does not change. 

Among the phenomenological models, the Preisach model 

has found extensive application for modeling hysteresis in 

SMAs and other smart actuators[17-18,2]. In Preisach mod-

eling technique, overall system with hysteresis behavior is 

modeled by weighted parallel connections of non-ideal re-

lays termed as Preisach elementary operators. Output of 

these Preisach operators would be only +1 or –1 (zero in 

some models). Every elemental operator as a nonlinear op-

erator consists of two parameters; upper and lower switching 

values of input respectively. Along with the set of Preisach 

operators is an arbitrary weight function, called the Preisach 

Density Function (PDF), which works as a local influence of 

each operator in overall hysteresis model. 

The time continuity of an operator is important for 

physical considerations, while the parametric continuity is 

important for designing well-posed identification method-

ologies[19]. However, the kernel of the Preisach operator has 

no continuity in time space or in parameter space. In[20] 

Banks et.al, introduced the smoothed version of the Preisach 

operator. To construct the continuous preisach operator in 

time space, they first define a smoothed delayed operator, 

each of whose ascending and descending branches are con-

tinuous. This continuous Preisach model yields a continuous 

output hysteresis, even for measures that are not absolutely 

continuous with respect to Lebesgue measure. However, this 

operator was also not continuous in parametric space. 

In order to have continuous operator in time domain as 

well as in parameter space Krasnosel’skii-Pokrovskii[12] 

allowed the Preisach kernels to be any reasonable functions. 

The KP type operator, a special case of a so-called general-

ized play operator, is a hysteretic operator treating continu-

ous branches rather than jump discontinuities like in the 

Preisach operator. This kind of generalization finally sepa-

rates the Preisach model from its physical meaning and ends 

up with a purely mathematical and phenomenological op-

erator[21]. This generalized Preisach model has been further 

investigated and applied in[20], where kernels other than 

non-ideal relay operators are employed to achieve some 

mathematical properties. Banks et al.[20] proved that K-P 

operators are continuous in time as well as in parameter 

space. They also compared the physical and mathematical 

properties of K-P operator with those of the classical 

Preisach operator. 

Since the original integral form of the KP model easily 

cannot numerically and practically implemented, the linearly 

parameterized KP model usually applied. This stems from 

these reasons that it is very difficult to formulate suitable 

weighting function which is double-integrable and also it is 

impossible to describe the outputs of the kernel as continu-

ous functions due to nonlinearity of the kernel[22]. In this 

method, a finite number of the kernel functions is utilized 

and each kernel function itself stands for a reasonable ap-

proximation of actual hysteresis curves of the actuator. 

There are many experimental researches about modeling 

SMA actuators by Preisach model in order for evaluating and 

predicting their behaviors but using the KP model in this area 

is much less. Webb et al.[23] presented an adaptive hystere-

sis model, which was a linearly parameterized version of the 

KP hysteresis model. This model can be updated continu-

ously by using adaptive method so that it can describe the 

hysteresis behavior of an SMA wire actuator successfully 

under extended disturbances and various loading conditions. 

They provided laboratory evidence of the success of the 

proposed adaptive KP model for feedback control of an 

SMA wire actuator. Since the proposed KP hysteresis model 

can adaptively identify, it is robust in the presence of large 

measurement errors. Moreover, by computing the inverse of 

it, the effect of the hysteresis in SMA actuator can be actively 

compensated. Koh[24] used a similar adaptive control tech-

nique with a KP hysteresis operator. It was shown that the 

inverse of hysteresis behavior also has qualitatively the same 

characteristics of hysteresis. Therefore, in order to evade the 

computation of the inverse of the KP model, the inverse 

model with KP hysteresis operator was directly used. Finally, 

the result of the proposed controller is experimentally com-

pared with ones of a PI controller. 

In[25] Galinaitis demonstrated the ability of KP model to 

model hysteresis of piezoelectric actuator and also the ef-

fectiveness of the inverse compensation to minimize hys-

teresis. In addition using the experimental data collected 

from a piezoelectric actuator with scalar hysteresis, the ac-

curacy of the forward model was also demonstrated. Fur-

thermore, the feasibility of using inverse of KP model to 

provide the necessary compensation for reducing positioning 
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error created by hysteresis was displayed.  

In most of the researches conducted about the modeling of 

SMA actuators by KP model, only the ability of the KP 

model in characterizing the hysteretic behavior of the ac-

tuators is demonstrated with respect to some specified ex-

perimental data and the accuracy of the developed model 

with respect to other data is not validated. In other words 

only the parameters of KP model are identified in order to 

adapt the model response to the real hysteretic nonlinearity 

with some specific experimental data and finally the outputs 

of the obtained KP are compared with those same data. 

Therefore, it is not clear whether the developed model is 

capable in predicting hysteresis minor loops of SMA mate-

rials or not and how its accuracy in this prediction task is. 

Some of the shortcomings of the mentioned studies are due 

to the fact that the tested actuator was not available in the 

laboratory and therefore further experimental tests were not 

performable. Also, if the inverse of the KP model is a can-

didate for hysteresis nonlinearity compensation using an 

open loop feedforward controller, it is important to know 

how accurate the developed model would model the 

ob-served input-output relation and determine whether using 

a feedback controller is essential or not. 

In this paper, first the parameterized KP model is identi-

fied by some experimentally measured data obtained from an 

experimental test set-up consisting of a flexible beam actu-

ated by a shape memory alloy wire. The training data are the 

data of first order descending curve attached to the ascend 

branch of the major hysteresis loop. The parameters of the 

KP model are identified by least square method in order to 

adapt the model response to the real hysteretic nonlinearity. 

Then the accuracy of the developed KP model with known 

parameters in predicting nonlinear hysteretic behavior of 

first order ascending curves and higher order minor loops, is 

validated with some other experimental data. Although the 

model has been trained with data of first order descending 

reversal curves, it has good power in behavior prediction of 

first order ascending curves as well as higher order minor 

loops. 

2. Krasnosel’ski-Pokrovkii (KP) Hys-

teresis Model 

Preisach model is a famous hysteresis identification tech-

nique which was first introduced on the base of phenome-

nological analysis of ferromagnetic materials by German 

physicist F. Preisach in almost 75 years ago [26]. The Rus-

sian mathematician, Krasnoselskii, in 1970 represented 

Preisach model into a pure formulized mathematical form in 

which hysteresis is modeled by linear combination of hys-

teresis operators[12]. Mathematical form of the classical 

Preisach model can be sketched by equation as follows: 

,( ) ( , ) [ ( )]f t u t d d 

 

     


          (1) 

where f(t) is the output of the model at state t and u(t) is the 

input at same state, and γα,β denotes elementary hysteresis 

operator with α and β (   ) parameters as upper and 

lower switching values respectively (see figure. 1). Output of 

elementary operators would be only +1 or –1 (zero in some 

models). In (1), μ(α,β) is density function value or Preisach 

function corresponding to α and β which should be deter-

mined by use of some experimentally measured data. 

 
Figure 1.  Preisach elementary operator. 

In order to have continuous operator rather than jump 

discontinuities like the Preisach operator, Krasnosel’skii- 

Pokrovskii[12] allows the Preisach operators to be any rea-

sonable functions. The elementary operator of the KP model 

which is referred to as the KP kernel, a special case of a so 

called generalized play operator, is a continuous function on 

the Preisach plane and has minor loops within its major loop. 

Let P be the Preisach plane over which hysteresis occurs: 

 2
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where U
+
 and U

-
 represent the positive and negative 

saturation values of input ],0[)( TCtu   respectively. The 

positive Parameter a is the rise constant of the kernel and is 

chosen based on the discrete implementation explained later. 

If C[0,T] denotes the space of continuous piecewise 

monotone functions on the interval [0,T], then the elemen-

tary KP hysteresis operator is a mapping as following: 

],0[],0[:),( TyTCuk pp 
 

where ξp , parameterized by p, represents the initial con-

dition of the kernel and memory the previous extreme output 

of kernel, and y[0,T] is the function space of output. Indeed, 

for a specified u(t) the KP operator Kp(u, ξp) maps points 

p(p1,p2) to the interval [-1,1] and is given by: 
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where r(x) is Lipschitz continuous ridge function. It 

should be mentioned that whenever the rate of input u(t) 

change sign, the value of memory variable ξp(t), depending 

on the kernel kp, is updated. As mentioned formerly, time 

continuity of an operator is very important for physical con-

siderations, while the parametric continuity is just useful for 

designing well-posed identification methodologies[19]. It 

was proved in[20] that for a fixed input ],0[)( TCtu  , the 

KP kernel has continuity in time domain as well as in pa-

rameter space. These advantages enable the KP model as a 

more effective practical model to formulate and model the 

u(t) 
α β 

+1 

γα, β 

–1 
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smart material hysteresis behavior.  

The nondecreasing continuous ridge function can get any 

form but it is popular to select it as a continuous piecewise 

linear function defined as following: 

1 0

2
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r x if x a
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         (4) 

Based on the above equations the KP elementary operator 

is depicted in figure. 2. By comparing the Preisach elemen-

tary operator and KP operator it is clear that unlike the 

Preisach kernel with only two branches, the KP kernel con-

sists of a family of curves that are bounded by the curves 

r(u-p2) and r(u-p1) as shown in figure. 2. The envelope 

curves  r(u-p2)  and r(u-p1) link at p1 and p2+a . As the 

input u(t) varies with time, the kernel output will either track 

along a horizontal line between the two envelope curves 

r(u-p2) and r(u-p1), or along one of the these bounding 

curves. 

 
Figure 2.  KP elementary operator. 

The Krasnosel’skii-Pokrovskii (KP) hysteresis model can 

be expressed as an integral of KP kernels over the Preisach 

plane by: 

1 2 1 2( ) ( ( ), ) ( , )p p

p

y t k u t p p dp dp      (5) 

where μ(p1,p2) is the density of kernel KP which is utilized 

to weight the output of kernel KP. It means that each point 

p(p1,p2) in the Preisach plane P is associated with a specific 

kernel and has a specific density value μ(p1,p2). Therefore, 

the KP hysteresis model can be interpreted as a parallel 

connection of an infinite number of weighted kernels (figure. 

3). It is reasonable to consider μ(p1,p2)≥0 which will auto-

matically ensure monotone output on monotone input, pro-

vided r(x) is nondecreasing[19]. It should be mentioned here 

that since every KP kernels can be expressed an integration 

of infinite weighted Preisach relays, the KP kernel provides 

more information of the nonlinearity than the Preisach op-

erator. Also, the KP model, due to its kernel, has the memory 

effect to record all previous extremes of the hysteresis in-

put-output behavior. Therefore, the KP model has this facil-

ity to use less elements than Preisach model to accurately 

model the hysteresis behavior of smart materials. 

It should be mentioned here that since the KP hysteresis 

model is a subclass of the classical Preisach model, the 

wiping-out property and the congruency property constitute 

the necessary and sufficient conditions for a hysteresis 

nonlinearity to be represented by this model. Hughes and 

Wen[10] demonstrated that the conditions of an SMA can be 

satisfied with these properties. It was concluded that the 

wiping-out property holds to a significant extent for the 

SMA actuators, while the congruency property was not 

completely satisfied. However, the deviation was not sig-

nificant. This may, to some extent, affect the behavior pre-

diction accuracy of the hysteresis of the SMA actuators using 

the classical Preisach model or KP model. 

 
Figure 3.  KP model as parallel connection of weighted kernels. 

It should be mentioned here that since the KP hysteresis 

model is a subclass of the classical Preisach model, the 

wiping-out property and the congruency property constitute 

the necessary and sufficient conditions for a hysteresis 

nonlinearity to be represented by this model. Hughes and 

Wen[10] demonstrated that the conditions of an SMA can be 

satisfied with these properties. It was concluded that the 

wiping-out property holds to a significant extent for the 

SMA actuators, while the congruency property was not 

completely satisfied. However, the deviation was not sig-

nificant. This may, to some extent, affect the behavior pre-

diction accuracy of the hysteresis of the SMA actuators using 

the classical Preisach model or KP model. 

3. Linearly Parameterized KP Hys-

teresis Model  

Although the first form of the KP model was first pre-

sented as equation (5) but for numerical implementing it on a 

real system or process there are some difficulties to calculate 

the hysteresis output. First of all, due to the nonlinearity 

nature of the kernel it is impossible to describe the outputs of 

the kernel as a continuous function. Second, it is a difficult 

task to formulate a proper weighting function ),( 21 pp  

which is double-integrable over the Preisach plane[22].  

In order to numerically implementing the KP model, 

equation (5) must be transformed into parameterized form by 

dividing the Preisach plane P, as shown in figure. 4, into a 

mesh grid. If the Preisach plane P is uniformly divided by l 

horizontal lines and l vertical lines, then the number of small 

cells representing the Preisach plane P is N=0.5(l+2)(l+1). 
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If l is selected large enough, the discretization becomes very 

fine and the cells become very small resulting to the param-

eterized KP model acts like the integral KP model. However, 

the computational cost become expensive forcing us to con-

sider a suitable l. The coordinates ),( ji uu of lower-left 

nodes of each cells expressed as: 

( 1)

( 1)

i

j

u U i u

u U j u





     
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     

          (6) 

where 
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and 

U U
u

l

 
                     (8) 

is the interval of the divided input u(t). The numerical iden-

tification experiments in[27] suggested that, for the repre-

sentation of hysteresis using the parameterized KP model, 

the optimal value of the rise constant, a, of equation (4) 

should be selected as u , so that the kernels overlap cell by 

cell to create the smoothest hysteresis curves. 

 
Figure 4.  The discertized Preisach plane. 

After discretization of the Preisach plane P we can con-

sider the total contribution of each cell to the KP hysteresis 

model (5) to be lumped together as the effect of the kernel 

associated with the lower-left node of the cell. Therefore, 

one has: 


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where pijk is the kernel associated with the lower left 

node of the cell and ij  is called the lumped density of the 

ijth cell to its lower-left node with coordinate ),( ji uu . By 

combining equation (5) and (9) one has: 
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Therefore, after parameterization the integral form of the 

KP hysteresis model, equation (5), it is reduced to the fol-

lowing form: 

))(()( tudKty T                 (11) 

where 

11 21 22 31 32 ( 1)( 1)
[ , , , , ...., ]

l l

T N

p p p p p pK k k k k k k
 
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N
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Vectors K  and   are called kernel vector and density 

vector, respectively. The term d(u(t)) is the modeling error 

resulted from the parameterization process. As it is men-

tioned before if the number of grid lines (l) increases to large 

value this term approaches to zero. In order to model a 

specified hysteresis system by the linearly parameterized KP 

hysteresis model, according to equation (11), its parameters 

(density vector  ) must identified in advance. From the 

practical view first the output experimental data of the sys-

tem due to a known input must be gathered. The number of l 

dividing lines, which determines the precision of approxi-

mation, should be chosen upon the requirement of modeling 

precision before performing the test. Then by using equation 

(6)-(8) and observing the positive and negative saturation 

states form experimental data, the value of u  as well as 

),( jiij ppp   are calculated and as stated before the value 

of the rise constant, a, of equation (4) should be selected as

u . Since the kernels 
ij

k are characterized by 

),( jiij ppp   and the rise constant, a, then they can easily 

be obtained afterward. Finally, by matching the experimental 

data to the simulated results, using an optimization method 

like least square method, the density vector  can be ob-

tained. After identification process and by using this calcu-

lated density vector, the simulated output corresponding to 

any input signal can easily be computed by using equation 

(11). 

Table 1.  Parameters of Flexible Aluminium Beam. 

Parameter Length Thickness Width Young Module Yield Stress SMA Wire Offset Distance 

Value 400 mm 1.27 mm 25 mm 70 GPa 410 MPa 10 mm 

Table 2.  Thermomechanical Parameters of SMA Wire Actuator 

Parameter 
Martensite Finish 

Temperature  

Martensite Start 

Temperature 

Austenite Start 

Temperature 

Austenite Finish 

Temperature 

Maximum  

Recoverable Strain 

Value 43.9 °C 48.4 °C 68 °C 73.75 °C 4.10 % 
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Figure 5.  Schematic of the cantilever flexible beam set-up actuated by a SMA wire. 

4. Experimental Test Set-up 

Figures 5 and 6 present a PC-based experimental test 

set-up and its associated instruments which is used to inves-

tigate the capability of the linearly parameterized KP hys-

teresis model in prediction of a flexible beam behavior un-

der a SMA wire actuation. of the beam does not change 

during cooling and heating process. 

 
Figure 6.  Experimental test set-up used for verification of the current 

analysis results. 

 
Figure 7.  Top view of the deformed beam after the wire actuation. 

Since the tip of the beam does not move on a straight line 

after the SMA wire actuation, the tip of the beam is con-

nected to a precise frictionless rectilinear displacement 

transducer (PZ12-A-125, GEFRAN Inc.,) while the other 

side of the transducer is joined to a high resolution rotary 

encoder (E50S series, Autonics Corporation). By measuring 

the length of the transducer and its angle, with respect to their 

initial quantities, the tip deflection of the beam can easily be 

computed. In addition, the output voltage of these sensors are 

fed to a computer-based data acquisition (not shown in figure. 

6) using a AD/DA PCI multifunction card (PCI 1711, Ad-

vantech Inc.,) and Matlab Real Time Data Acquisition 

Toolbox (Matlab R2008a, Mathworks Ltd.,). The activation 

electric voltage over the SMA wire is set by the computer 

generated voltage controlling a voltage amplifier which is 

capable of delivering up to 3A current. Figure. 7 shows the 

top view of the deformed structure after the heating process 

5. Identification and Validation 

Processes 

The input voltage applied to the SMA actuator in the 

training process is a slow decaying ramp signal and is shown 

in figure. 8. The rate of change of the input voltage is se-

lected so small in order to allow the temperature to stabilize, 

as in the steady state temperature will be determined by 

applied electrical voltage. In the training process of the 

linearly parameterized KP hysteresis model, 439 data set, 

consist of the major loop and 10 first order descending re-

versal curves attached to the major loop, is used. For identi-

fication density vector   of linearly parameterized KP 

hysteresis model following values are used: 
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It should be mentioned here that if the wiping-out and 

congruency properties are valid, then it does not matter 

which transition curves are used for modeling of hysteresis 

nonlinearity by the Preisach or KP model and all of them will 

theoretically lead to the same result[2]. However, from the 

practical viewpoints, the first-order transition curves have 

some clear merits. First, it is easier to get these curves ex-

perimentally rather than higher-order transition curves. 

Second, measurements of these curves start from a 

well-defined state – the state of negative (or positive) satu-
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ration[2]. We performed the wiping out and congruency tests 

in this research (not reported here) and it is concluded that, 

same as the result of[18], the wiping-out property holds to a 

significant extent for our SMA actuator, while the congru-

ency property is not completely satisfied. However, the 

deviation is not significant. It is worth mentioning that since 

the output of the system (tip deflection of the beam) never 

gets negative values, the ridge function (equation (4)) is 

corrected as following: 
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The switching values of the descending reversal curves are 

selected as: [2.4, 2, 1.8, 1.75, 1.7, 1.65, 1.6, 1.55, 1.5, 1.45, 

and 1.4] (volt). For switching values less than 1.4 (volt), the 

change in the beam deflection is not considerable. The ex-

perimental input-output hysteresis loops of the flexible beam 

with SMA wire actuator, under the abovementioned input 

voltage is shown in figure. 9.  

 
Figure 8.  The decaying ramp input voltage applied in the training process. 

 
Figure 9.  Experimental data of hysteresis behavior between the beam tip 

deflection and the SMA wire voltage in the training process. 

For evaluation and comparing the prediction of the beam 

end deflection by the linearly parameterized KP hysteresis 

model with respect to the experimentally measured data, in 

the first validation process the voltage profile shown in fig-

ure. 10 is applied to the SMA actuator. It should be men-

tioned that although the form of the voltage applied in this 

validation process looks like what was applied in the training 

process, the extremums are different. The switching values 

of these descending reversal curves attached to the major 

loop are selected as: [2.325, 1.975, 1.725, 1.675, 1.625, 

1.575, 1.525, 1.475, and 1.425] (volt). The experimental 

input-output hysteresis loops of the flexible beam with SMA 

wire actuator, under the abovementioned input voltage is 

also shown in figure. 11. The experimentally measured data 

of the beam tip deflection is compared with the prediction of 

the linearly parameterized KP hysteresis model in figure. 12. 

let's define the percentage of error as following: 

 
Figure 10.  The decaying ramp input voltage applied in the first validation 

process. 

 
Figure 11.  Experimental data of hysteresis behavior between the beam tip 

deflection and the SMA wire voltage in the first validation process.  

 
Figure 12.  Comparison between the displacement response of the linearly 

parameterized KP hysteresis model and the measured data of the flexible 

smart beam in the first validation process. 
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then the effectiveness of the linearly parameterized KP 

hysteresis can also be seen from the percentage of absolute 
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error (%) plot, in the time domain, presented in figure. 13. As 

it is clear from these figures, the linearly parameterized KP 

hysteresis model has excellent ability in predicting the beam 

behavior under the voltage actuations which are same as 

ones implemented in the training process. In order to show 

this property more clearly, the maximum, mean and mean 

squared values of the absolute error are also presented in 

 
Figure 13.  Time history of percentage of error in the first validation 

process. 

Table 3.  Error of The Linearly Parameterized KP Hysteresis Model in 
First Validation Process 

Mean of Absolute 

Error (mm) 

Max of Absolute 

Error (mm) 

Mean of Squared 

Error (mm) 

0.9513 17.1450 3.2029 

Table. 3. Since the maximum deflection of the beam under 

the SMA wire actuation is 134.5 mm, the peak prediction 

error in this case is about 12.7% of the maximum output. 

 
Figure 14.  The input voltage profile applied in the second validation 

process. 

For better evaluation of the linearly parameterized KP 

hysteresis model in predicting the beam hysteresis behavior, 

in the second validation process the voltage profile shown in 

figure. 14 is selected for actuation of SMA wire. Unlike the 

first validation process, this form of actuation voltage leads 

to some first order reversal ascending curves attached to the 

descending part of major loop. The experimental in-

put-output hysteresis loops of the flexible beam with SMA 

wire actuator, under the abovementioned input voltage is 

shown in figure. 15. The switching values of these ascending 

reversal curves are selected as: [0.3, 0.9, 1.1, 1.15, 1.2, 1.25, 

1.3, 1.35, 1.4, 1.45 and 1.5] (volt). The experimental meas-

ured displacement, as a result of this actuation voltage, is 

compared with the prediction of the linearly parameterized 

KP hysteresis model in figure. 16. The percentage of error, in 

the time domain, is also presented in figure. 17. The maxi-

mum, mean and mean squared values of the absolute error 

are also presented in Table. 4. The result clearly shows that 

in this validation process, in which the form of the actuation 

voltage differs from what is applied in the training process, 

the prediction of the linearly parameterized KP hysteresis 

model is weaker than the first validation process but ac-

ceptable. 

Table 4.  Error of The Linearly Parameterized KP Hysteresis Model in 
Second Validation Process 

Mean of Absolute 

Error (mm) 

Max of Absolute 

Error (mm) 

Mean of Squared 

Error (mm) 

3.5077 23.1998 24.4681 

 
Figure 15.  Experimental data of hysteresis behavior between the beam tip 

deflection and the SMA wire voltage in the second validation process. 

 
Figure 16.  Comparison between the displacement response of the linearly 

parameterized KP hysteresis model and the measured data of the flexible 

smart beam in the second validation process. 

 
Figure 17.  Time history of absolute error between linearly parameterized 

KP hysteresis model and experimental measured displacement responses in 

the second validation process. 
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As stated before if wiping out and congruency tests are 

completely satisfied it does not matter which first order 

reversal curves (descending or ascending) are selected for 

the training process and all of them leads to the same results. 

however, since the congruency tests are not completely sat-

isfied for the SMA materials[18] as well as our actuator and 

also due to the training process by first order descending 

reversal curves, then the linearly parameterized KP simula-

tion results for the first order ascending reversal curves have 

some differences with respect to the experimental data and in 

this case the error are more than the first validation process. 

In this case the peak prediction error is about 18.2% of the 

maximum beam deflection. 

 
Figure 18.  The input voltage profile applied in the third validation 

process. 

 
Figure 19.  Comparison between the displacement response of the linearly 

parameterized KP hysteresis model and the measured data of the flexible 

smart beam in the third validation process. 

Most of the phenomenological hysteresis models have 

difficulty in predicting higher order hysteresis minor loops 

and this leads to poor results when their inverse is imple-

mented as a feedforward controller. For appraising the abil-

ity of the linearly parameterized KP hysteresis model in 

these situations, in the third validation process a damped 

voltage profile shown in figure. 18 is applied to the SMA 

actuator. The prediction of the higher order hysteresis minor 

loops by the linearly parameterized KP hysteresis model is 

compared with the experimentally measured data in figure. 

19. The percentage of error, in time domain, is also presented 

in figure. 20. The maximum, mean and mean square values 

of the absolute error are also presented in Table. 5. The peak 

prediction error in this case is about 10.8% of the maximum 

output. 

Table 5.  Error of The Linearly Parameterized KP Hysteresis Model in 
Third Validation Process 

Mean of Absolute 

Error (mm) 

Max of Absolute Error 

(mm) 

Mean of Squared 

Error (mm) 

2.5593 14.5554 11.7153 

 
Figure 20.  Time history of absolute error between the linearly param-

eterized KP hysteresis model and experimental measured displacement 

responses in the third validation process. 

As it was expected and it is obvious from figure. 20 and 

Table. 5, the linearly parameterized KP hysteresis model has 

moderate accuracy in predicting the higher order hysteresis 

minor loops especially when, like this case, it has been only 

trained with some first order hysteresis reversal curves at-

tached to the major loop. The close match between the 

simulation result and the experimental data shows that the 

linearly parameterized KP model works well for predicting 

higher order hysteresis curves of the SMA actuator system. 

6. Conclusions 

The Preisach model is one of the powerful operator-based 

phenomenological models which is used in modeling com-

plex hysteretic nonlinear behavior in shape memory alloy 

actuators. In order to have continuous operator in time do-

main as well as in parameter space Krasnosel’ skii- Pok-

rovskii [12] allows the Preisach kernels to be any reasonable 

functions. The KP type operator, a special case of a so-called 

generalized play operator, is a hysteretic operator treating 

continuous branches rather than jump discontinuities like in 

the Preisach operator. 

Since the original integral form of the KP model easily 

cannot numerically and practically implemented, the linearly 

parameterized KP model usually applied. In this method, a 

finite number of the kernel functions is utilized and each 

kernel function itself stands for a reasonable approximation 

of actual hysteresis curves of the actuator. 

In most of the researches conducted about the modeling of 

SMA actuators by KP model, only the ability of the KP 

model in characterizing the hysteretic behavior of the ac-
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tuators is demonstrated with respect to some specified ex-

perimental data and the accuracy of the developed model 

with respect to other data is not validated. In other words 

only the parameters of KP model are identified in order to 

adapt the model response to the real hysteretic nonlinearity 

with some specific experimental data and finally the outputs 

of the obtained KP are compared with those same data. 

Therefore, it is not clear whether the developed model is 

capable of predicting hysteresis minor loops of SMA mate-

rials or not and how its accuracy in this prediction task is. 

This issue is important from this point of view that if the 

inverse of the KP model is a candidate for hysteresis 

nonlinearity compensation using an open loop feedforward 

controller, it is important to know how accurate the devel-

oped model would model the observed input-output relation 

and determine whether using a feedback controller is essen-

tial or not.  

In this paper, first the parameterized KP model is identi-

fied by some experimental data obtained from an experi-

mental test set-up consisting of a flexible beam actuated by a 

shape memory alloy wire. The training data are 439 data set, 

consist of the major loop and 10 first order descending re-

versal curves attached to the major loop. The parameters of 

the KP model are identified by least square method in order 

to adapt the model response to the real hysteretic nonlinear-

ity. Then the accuracy of the developed KP model with 

known parameters in predicting nonlinear hysteretic behav-

ior of first order ascending curves and higher order minor 

loops, is validated with some other experimental data. Al-

though the model has been trained with data of first order 

descending reversal curves, it has good power in behavior 

prediction of first order ascending curves as well as higher 

order minor loops. The maximum prediction error of the 

developed model in characterizing the first order ascending 

curves and higher order minor loops are, respectively, 18.2% 

and 10.8% of the maximum output. In order to achieve better 

results more data should be applied. According to result of 

this paper and it is a good candidate for predicting the hys-

teresis nonlinearity of SMA actuators as well as a feedfor-

ward controller to compensate the hysteretic nonlinearity 

behavior of SMA actuated structures. 
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