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Abstract  This paper investigates higher-order approximations in order to extract Sturm-Liouville eigenvalues in 
one-dimensional vibration problems in continuum mechanics. Several alternative global approximations of polynomial 
form such as Lagrange, Bernstein, Legendre as well as Chebyshev of first and second kind are discussed. In an instructive 
way, closed form analytical formulas are derived for the stiffness and mass matrices up to the quartic degree. A rigorous 
proof for the transformation of the matrices, when the basis changes, is given. Also, a theoretical explanation is provided 
for the fact that all the aforementioned alternative pairs of matrices lead to identical eigenvalues. The theory is sustained by 
one numerical example under three types of boundary conditions. 
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1. Introduction 
In the framework of the standard Galerkin/Ritz method 

for the solution of one-dimensional boundary value prob-
lems governed by a differential equation within the domain 
[0,L], the usual procedure consists of subdividing [0,L] into 
a certain number of finite elements for which piece-
wise-linear (i.e., local) interpolation is assumed[1]. In gen-
eral, the shortest the elements are the more accurate the 
numerical solution is (h-version). Alternatively, higher or-
der p-methods[2] suggest the introduction of nodeless basis 
functions based on differences of Legendre polynomials (up 
to the seventh degree) that cooperate with the two linear 
shape functions, i.e., ( ) ( )1 21 ,N x x L N x x L= − = , the latter 
associated to the ends x = 0 and x = L. A literature survey 
suggests that for a certain discretization of the domain, the 
corresponding p-version is generally more accurate than the 
h-version[3-6]. 

The matter of using higher order approximations through 
computer-aided-design (CAD) based Coons-Gordon mac-
roelements has been recently discussed for two- and 
three-dimensional problems[7-11]. In those works some 
similarities and differences of the so-called ‘Coons macro-
elements’ with respect to the ‘higher order p-method’ have  
been reported in detail. Moreover, alternative CAD based 
NURBS or/and Bézier techniques have been proposed  
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within the last eighteen years[12-16]. 
In this context, this paper continues the investigation on 

the eigenvalue problem by moving from 2-D and 3-D to 1-D 
eigenvalue problems, and seeks for any similarities or es-
sential differences between five alternative methods. The 
study includes classical Lagrange polynomials and extends 
to the Bernstein polynomials that are inherent in the defini-
tion of Bézier CAD curves[17], as well as to Chebyshev 
polynomials that have been previously used in spectral and 
collocation methods (e.g.[18]). In this paper it was found that 
all the aforementioned polynomials are equivalent in the 
sense that (after the proper transformation) they symbolically 
coincide with the classical higher order p-method (or 
p-version)[2] as well as with the class { }nx  (Taylor series).  

2. Galerkin/Ritz Formulation 
2.1. General 

A general Sturm-Liouville problem can be written in the 
following differential equation 

( ) ( ) ( )( )d d 01d d
Up x r x q x U

x x
λ⎛ ⎞+ − =⎜ ⎟

⎝ ⎠  

It can be reduced to a study of the canonical Liouville 
normal form 

( )( ) 0U q x Uλ′′ + − =            (1) 
Without loss of generality, in this paper we deal with the 

particular case that ( ) 0q x = , for which Eq(1) degenerates 
to the well-known ‘Helmholtz equation’: 

( ) ( ) [ ]0, 0,U x U x x Lλ′′ + = ∈       (2) 
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Equation (2) covers many practical problems in physics 
and engineering such as the axial elastic vibrations of a beam 
or the sound propagation along a straight acoustic pipe.  

The solution of Eq(2) is usually expressed as a series ex-
pansion in two alternative ways: 

( ) ( )
0

n

j j
j

U x N x U
=

= ∑               (3a) 

or 

( ) ( )
0

n

j j
j

U x f x a
=

= ∑               (3b) 

where fi (x) are the basis functions and aj the generalized 
co-ordinates that refer to n+1 nodeless parameters. Also, 
Nj(x) are the shape functions and Uj the nodal displace-
ments at the positions x=xj , j=0,…,n. It is reminded that 
Nj(x) are cardinal functions, i.e. Nj(Xi)=δij (= Kronecker’s 
delta) and also partition the unity, i.e.  

( )
0

1
n

j
j

N x
=

≡∑  

for all [ ]0,x L∈ . There are also some formulations in 
which both shape and basis functions participate such as 
higher order p-methods[2].  

In any case, the Galerkin/Ritz procedure[1] consists first 
of the Galerkin method, i.e. 

( ) ( )[ ]
0

d 0, 0, ,
L

iW U x U x x i nλ′′ + = =∫ … , 

with ( ) ( )i iW x N x≡

( )U x′′

 denoting the weighting function, 
and second by the partial integration of the second order 
term , which finally leads to the alternative matrix 
formulations: 

( ) , 0, ,i i iλ− = =K M U 0 … n          (4a) 
or 

( ) , 0, ,i i iλ− = =K M a 0 … n          (4b) 
where the elements of the mass ( ,M M ) and stiffness 

( ,K K ) matrices are given by: 

( ) ( ) ( ) ( )
0 0

,
L L

ij i j ij i jm N x N x dx k N x N x d′ ′= =∫ ∫ x   (5a) 

or 

( ) ( ) ( ) ( )
0 0

,
L L

ij i j ij i jm f x f x dx k f x f x d′ ′= =∫ ∫ x    (5b) 

2.2. Basis Functions and Shape Functions 

Below, occasionally either the Cartesian coordinate 
[ ]0,x L∈  or its normalized value [ ]0,1u x L= ∈  will 

be used. It is well known that any interval [a, b] can be re-
duced to[0,1] by a simple change of variable 

( )x b a u a= − + .  

2.2.1. First Degree (Linear) Finite Element 
According to the standard literature[1], for a finite ele-

ment of length lk, the two linear shape functions, that is 
( ) ( )0 11 ,k k

kN x x l N x x l= − = k , are associated to the 
ends x = 0 and x = lk. It is well known[1] that the basis 
functions related to the aforementioned shape functions are: 
( )0 1f x = and ( )1f x x= , that is ( ) ( ) ( )0 1,U x t b t b t x= + .  

2.2.2. Lagrangian Type Macroelement 
The domain [0,L] is subdivided into n (preferably equi-

distant) segments, thus leading to  nodes. Then, the 
variable U is globally interpolated within the entire domain 
[0,L] in terms of 

1n +

1n + Lagrange polynomials associated to 
the aforementioned 1n +  nodes. For a non-decreasing 
sequence of 1n +  points, 0 , , nx x… , the Lagrange poly-

nomial ( )n

kL x  is defined as:  

( ) ( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

0 1 1 1

0 1 1 1

n k k n
k

k k k k k k k n

x x x x x x x x x x
L x

x x x x x x x x x x
− +

− +

− − − − −
=

− − − − −

… …

… …
(6) 

giving unity at kx  and passing through n points. Typical 
sets of Lagrange polynomials are shown in Table 1. There-
fore, Equation (3a) holds with  denot-

ing the jth Lagrange polynomial (

( ) , 0, ,jN x j n= …

( ) ( )n

j jN x L x= ). As for 
each k the denominator in Eq(6) is a constant, whereas the 
nominator is a polynomial of degree n, the latter can be 
written in terms of its roots  
( 1 0 2 1 1 2 1 1, , , , , ,k k k k n nx x x xρ ρ ρ ρ ρ

− + + +
x= = = =… … = ) as 

follows: 

Table 1.  Lagrange polynomials of low degree (1 4n≤ ≤ ). 

n ( )0
nL u  ( )1

nL u  ( )2
nL u  ( )3

nL u  ( )4
nL u  

1 1 u−  u  - - - 
2 ( ) ( )2 1 1u u− −  ( )4 1u u−  ( )2 1u u −  

- 
 

22 3u u− +1
 

24 4u u− + 22u u−
3 ( ) ( ) ( )1 2 3 1 3 2 1u u u− − − ( )( )9 2 3 2 1u u u− − ( )( )9 2 3 1 1u u u− −  ( )( )1 2 3 1 3 2u u u− −   

- 
3 29 119 1

2 2
u u u− + − + 3 227 45 9

2 2
u u− + u  

 3 227 918
2 2

u u− + − u  
 3 29 9

2 2
u u u− +  

4 ( )( )( )( )13 4 1 2 1 4 3 1u u u u− − − −  ( )( ) ( )16 3 2 1 4 3 1u u u u− − − ( )( )( )4 4 1 4 3 1u u u u− − − ( )( )( )16 3 4 1 2 1 1u u u u− − −  ( )( )( )1 3 4 1 2 1 4 3u u u u− − −

4 3 232 80 70 25 1
3 3 3 3

u u u u− + − + 4 3 2128 20896 16
3 3

u u u− + − + u u4 3 264 128 76 12u u u− + − 4 3 2128 224 112 16
3 3 3 3

u u u− + − + u 4 3 232 2216
3 3

u u u− − + − u
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)

n( )( ) ( )
( )

(

( )

1

1 1 0

1 2

1

1

2

1 2 1 3 1

1 21

n n

n n

n

n n

n n

n

n n

n

n

a x a x a x a

a x x x

a x x

x

ρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ

−

−

−

−

−

+ + + +

≡ − − −

≡ − + +

+ + + +

+ + −

⎡⎣

⎤⎦

"

"

"

"

" "

 

2.2.3. Bernstein Polynomials 
According to standard computer-aided-geometry know-

ledge, for example[17], a Bézier curve of n-th degree is 
defined in terms of the normalized coordinate u x L=  as  

( ) ( ),
0

0
n

i n i
i

u B u u
=

= ∑C P 1≤ ≤        (7) 

In standard mathematical texts the variable ( )uC  in 
Eq(7) is called “Bernstein polynomial of degree n” and is 
denoted by  [19, p. 36], whereas the basis or 

blending functions, 

( )nB u

( ),i nB u , are named “Bernstein basis” 
and are defined as 

( ) ( )
( )

( ),

!
1

! !
n i n ii

i n

n n
B u u u u u

i i n i
− −

= − = −
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

1i   (8) 

The geometrical coefficients, { }iP , are called control 
points. Equation (8) denotes that for a curve that is defined 
by (n + 1) control points, the highest degree is , which 
means that the degree of a Bézier curve is defined by the 
number of control points. It has been shown that Bernstein 
polynomials have the property of partition of unity and also 
the first ( ) and the last of them ( ) give un-

ity at the first (

nu

)u( )0 ,nB u (,n nB

( )0,B 0n = 1) and the last end ( ( )1 1,n nB = ) 
of the interval [0,1], respectively. It is remarkable that at 
any internal control point  is less than the unity 
[17], and also vanishes at the endpoints u = 0, 1. It is trivial 
to prove that, at least for the case of a straight segment, 
when the interval [0,L] is uniformly divided into a number 
of so-called breakpoints, the control points coincide with 
them.  

(,i nB )u

Following the ideas of CAD/CAE integration previously 
proposed by the author in the context of closely related iso-
parametric Coons interpolation[7-11] as well as the “iso-
geometric” idea of Hughes et al.[14] referring to NURBS 
representation, in this work we propose to substitute the 
Cartesian coordinate ( )x u= C  in Eq.(7) by the variable 

. Therefore, with respect to Eq.(3b), the basis func-

tions 
( )U u

( )if x  correspond to ( )B u x L=,i n
 and also the 

control points  are replaced by the coefficients .  iP ia

2.2.4. Higher Order P-Method 
Following Szabó and Babuška[2], the variable is ex-

panded to a series like that in Eq(3b). According to this 

technique [2, p.38], the two first basis functions, which 
correspond to x=0 and x=L, are identical with the linear 
shape functions associated to the end points of the entire 
interval [0,L], i.e., ( )0 1f x x= − L  and ( )1f x x= L and 
are called nodal shape functions. The rest (n-1) basis func-
tions are called internal shape functions and are taken as 
suitable integrals of Legendre polynomials properly multip-
lied by specific coefficients dependent on the ascending 
order. It must become clear that the latter refer to nodeless 
quantities (general coefficients) and, therefore, they are also 
called “bubble modes”.  

By elaborating on [2], in cases of n = 2, 3 and 4, the bub-
ble basis functions are given by (0 <u < 1):  

n = 2:         ( ) (2 6f u u u )1= −               (9a) 

n = 3:      ( ) ( )(3 10 2 1 1f u u u u )= − −           (9b) 

n = 4:

 

( )
( ) ( )

(4

5 5 5 5
5 14 1

10 10
f u u u u u

− +
)= − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− (9c) 

2.2.5. Chebyshev Polynomials 

Chebyshev polynomials are categorized as first and 
second kind. 

I. First kind 
( ) ( )

( ) ( )

1

22 2 4 2

cos cos

1 1
2 4

n

n n n

T x n x

n n
x x x x x

−

− −

=

= − − + −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

…−
(10a)

 

II. Second kind 

( )
( ){ }
( )

( ) ( )

1

1

22 2 4 2

sin 1 cos

sin cos

1 1 1
1 1

1 3 5

n

n n n

n x
U x

x

n n n
x x x x x

−

−

− −

+
=

+ + +
= − − + −
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�

…− (10b)

 

2.2.6. General Remarks 

From the above analysis, it becomes obvious that La-
grange, Bernstein, Legendre, and Chebyshev polynomials 
are different options with the following characteristics: 

I. Lagrange polynomials are cardinal shape functions that 
operate directly on the nodal values, . , 0, ,U i n= …i

II. Bernstein (basis) polynomials are generally 
non-cardinal basis functions. The only exception are the two 
basis functions, and , which are associated to the 
ends (x = 0, x = L); thus they operate directly on the nodal 
boundary values  and . The remaining coefficients 

0,nB

0U

1

,n nB

nU

, 1, ,ia i n= −…

iP

 are associated to the internal control 

points . 
III. Legendre polynomials create bubble basis functions 
( )i uφ  that operate on nodeless generalized coefficients, a. 
IV. Chebyshev polynomials (both of first and second kind) 

differ from the above cases in the sense that they neither 
become unit nor vanish at the ends of the domain.  
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A careful inspection of all above five polynomial inter-
polations [Eqs.(6),(8),(9) and (10)], and considering the 

well known binomial expansion ( )
0

n
n n k k

k

n
x a x

k
−

=

+ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ a

≤

, it 

is easily concluded that all these polynomials can be ex-
panded in a Taylor (power) series of the form:  

( ) [ ]0 1
0

1

0 1
n

i

i n
i

n

u
x u a u a a a u

u

=

= = ⋅ ≤

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ …
#

(11) 

For each of the five abovementioned polynomials, dif-
ferent coefficients ja  [Eq(11)] are derived.  

2.2.7. Special Cases 

In order to bring insight in the topic of subsection 2.2.6, 
some special cases of small size will be discussed in full 
detail.  

I. First, in the first four (Lagrange, Bernstein, P-method, 
Chebyshev of 1st kind) alternative types of polynomials, the 
case of using only one segment for the discretization (n = 1) 
is strictly related to the linear interpolation between the two 
endpoints. Therefore, the same classical finite element ma-
trices, which are given below by Eq.(12a) and (12b), are 
obtained. For Chebyshev of 2nd kind ( ( ) ( )0 11, 2U x U x x= =� � ), 

the factor “2” in  induces a slight modification.  ( )1U x�

II. Second, in the case of two subdivisions, equivalent 
polynomials which include terms up to the second degree, is 
represented in Table 2. From Table 2, it becomes obvious 
that all functional sets are complete, as they include all the 
terms of the set {1, u, u2}. Moreover, while Lagrange and 
Bernstein (basis) polynomials ensure the partition of unity 
(rigid body) property, the p-method and Chebyshev poly-
nomials do not. 

3. Analytically Calculated Matrices 
Based on Eqs(5), the stiffness and mass matrices are 

analytically calculated through manipulation and are shown 
below. 

3.1. Linear Interpolation (n = 1) 

In this case, all three formulations of this paper degenerate 
to the simple case of the conventional linear finite element of 
the literature[1]. The matrices are given by: 

1 11

1 1
k

kl

−
=

−

⎡ ⎤
⎢ ⎥⎣ ⎦

K , 
2 1

1 26
k k

consistent

l
=

⎡ ⎤
⎢⎣ ⎦

M ⎥     (12) 

where  denotes the length of the finite element. It is 
well known that accuracy increases when the total length L 
of the domain is divided into an increasing number of such 
elements (h-version). In this case, the total mass and stiff-
ness matrices are obtained from the assemblage of all finite 
elements involved [1].  

kl

3.2. Quadratic Approximation (n = 2) 

The relevant matrices are: 
1. Lagrange polynomials: 

7 8 1 4 2 1
1

8 16 8 , 2 16 2
3 30

1 8 7 1 2 4

L

L

− −

= − − =

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

K M

⎦
  

(13a) 

2. Bernstein polynomials: 
4 2 2 6 3 1

1
2 4 2 , 3 4 3

3 30
2 2 4 1 3 6

L

L

− −

= − − =

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

K M

⎦

   (13b) 

3. Higher order P-method: 
10 15 6 53 0 3

1
0 6 0 , 15 6 6 15 6

3 30
3 0 3 5 15 6 10

L

L

−−

= = −

− −

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

K M − (13c) 

3.3. Cubic Approximation (n = 3) 

Based on Eqs(5), the stiffness and mass matrices are 
given by: 

1. Lagrange polynomials: 
148 -189 54 -13

-189 432 -297 541

54 -297 432 -18940

-13 54 -189  148

L
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K

, 
128 99 -36 19

99 648 -81 -36

-36 -81 648 991680

19 -36 99 128

L
=

⎡ ⎤
⎢
⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
⎥
⎥

         

(14a) 

2. Bernstein polynomials: 
6 3 2 1

3 4 1 23

2 1 4 310

1 2 3 6

L

− − −

− −
=

− −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K , 

60 30 12 3

30 36 27 12

12 27 36 30420

3 12 30 60

L
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

          

(14b) 

3. Higher order P-method: 
1 / 2 0 0 1 / 2

0 1 0 02

0 0 1 0

1 / 2 0 0 1 / 2

L

−

=

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K , 

2 / 3 1 6 1 3 10 1 / 3

1 6 2 / 5 0 1 6

2 1 3 10 0 2 / 21 1 3 10

1 / 3 1 6 1 3 10 2 / 3

L

−

− −
=

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

   One can notice that in the case of the p-method, no sym-
metry exists along the diagonal terms of the mass matrix 
which correspond to internal modes (

(14c) 

2 5 2 21≠ ). This fact 
can be explained on the basis of Table 3, where one can 
notice that the shape functions  and  of Lagrange 
and Bernstein polynomials are symmetric with respect to 
the central point u=1/2, while the same does not hold for the 

1N 2N
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p-method.  70 35 15 5 1

35 40 30 16 5

15 30 36 30 15
630

5 16 30 40 35

1 5 15 35 70

L
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M       (15b) 3.4. Quartic Approximation (n = 4) 

Based on Eqs(5), the stiffness and mass matrices are 
given by: 

1. Lagrange polynomials: 
4925 -6848 3048 -1472 347

-6848 16640 -14208 5888 -1472
1

3048 -14208 22320 -14208 3048
945

-1472 5888 -14208 16640 -6848

347 -1472 3048 -6848 4925

L
=

⎡
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

⎤

, 

3. Higher order P-method: 
1 / 2 0 0 0 1 / 2

0 1 0 0 0
2

0 0 1 0 0

0 0 0 1 0

1 / 2 0 0 0 1 / 2

L

−

=

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K , 

292 296 -174 56 -29

296 1792 -384 256 56

-174 -384 1872 -384 -174
5670

56 256 -384 1792 296

-29 56 -174 296  292

L
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
  (15a) 2/ 3 1 6 1 3 10 0 1/ 3

1 6 2/ 5 0 1 5 21 1 6

1 3 10 0 2/ 21 0 1 3 10
2

0 1 5 21 0 2/ 45 0

1/ 3 1 6 1 3 10 0 2/ 3

L

−

− −

= −

−

− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M (15c) 

2. Bernstein polynomials: 
80 -40 -24 -12 -4

-40 48 12 -8 -12
1

-24 12 24 12 -24
35

-12 -8 12 48 -40

-4 -12 -24 -40 80

L
=

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢
⎢
⎢⎣

K
⎥
⎥
⎥
⎥
⎥⎦

, One can notice that in the case of the p-method, again no 
symmetry exists along the diagonal terms of the mass ma-
trix which correspond to internal modes ( 2 5 2 45≠ ).  

 

Table 2.  Alternative polynomials involved in case of n = 2 (series expansion is included in the lower row). 

Formulation Shape of Basis functions Sum 
N0 or f0 N1 or f1 N2 or f2 

Lagrange ( )( )2 1 1u u− − ( )4 1u u−  ( )2 1u u −   
1 

22 3u u 1− + 24 4u u− + 22u u−
Bernstein ( )21 u−  ( )2 1u u−  2u  

 
1 

2 2 1u u− + 22 2u u− + 2u
P-method 1-u ( )26 u u−  u ( )26 u u−  

Chebyshev of 1st kind 1 u 22 1u −  22u u+  
Chebyshev of 2nd kind 1 2u 24 1u −  24 2u u+  

Table 3. Alternative polynomials involved in case of n = 3. 

Formulation 
Shape of Basis functions 

N0 or f0 N1 or f1 N2 or f2 N3 or f3 

Lagrange ( ) ( )( )1 2 3 1 3 2 1u u u− − −  ( ) ( )9 2 3 2 1u u u− − ( )( )9 2 3 1 1u u u− −  ( )( )1 2 3 1 3 2u u u− −

Bernstein ( )31 u−  ( )23 1u u−  ( )23 1u u−  3u  

P-method 1-u ( )6 1u u −  ( )( )10 2 1 1u u u− −  u 

3.5. Chebyshev Polynomial Based Matrices 

4nBelow we present the matrices for the most general case dealt in this study, which is for the quartic approximation ( = ). 
Obviously, for any other m < 4, the upper left submatrix should be taken ( , , 0 ,i jk i j m≤ ≤

( )

). 

3.5.1. Chebyshev Polynomial of First Kind 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 3

4 2

0

8

64 6 5

5 8 8 9

1024 5 7 3

L

L

L L

L L

− −

− −

−

+ −

2 2 2 2

2 2 2 2

2 2 2 3 2 2

0 0 0 0

0 1 2 4 3 1

0 2 16 3 6 2 1 15

0 4 3 6 2 1 9 24 6 5 24

0 8 1 64 6 5 15 8 8 9 24 5 256 3

L L L

L L L L LL

L L L L L L

L L L L L L L L

=

− − + − +

− − − +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K  
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( ) ( )

( ) ( ) ( )

( ) ( )

2 2
2 2

2 3 22 4
2

2 2 2 3 22 2
2 2

3 24 4
2 2 2 2 3 2 2

2 3
1 1 1 8

2 3 2 5 3

1 24

2 3 2 5 3 2

1 4 3 5 8 152 3 16 24 10
1 1 1

3 2 15 6 2 7 5 3

8 153 4 3 8
10 21 3 4

2 5 6 2 35

L L L
L L L

L L L LL L L L
L

L L L L L LL L L
L L L

L LL L L
L L L L L L L L

− − + −

− −
− +

− − −
= − + + − + −

−
− − + − +

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎛ ⎞ ⎤
⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠

M

1

2 3

( )

2

3 22 2 2 2
2 2 2 3 2 2 2 2 2

28 3

3 2

2 2 31 16 24 10 28 3 64 12
1 8 1 4 1 16

5 3 3 2 7 5 3 3 2 9 7 3

L

L LL L L L L
L L L L L L L L L

− −

−
+ − + − + − − − + − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞ ⎡ ⎛ ⎞ ⎤ ⎡ ⎤ ⎧ ⎡ ⎛ ⎞ ⎤⎛ ⎞⎢ ⎥

8 16 ⎫
⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎝ ⎠ ⎦ ⎣ ⎦ ⎩ ⎣ ⎝ ⎠ ⎦⎣ ⎦⎝ ⎠

⎥ ⎭

2

 (15d) 

3.5.2. Chebyshev Polynomial of Second Kind 

2

2 2

2 2 3

2

2 2

2 2 2

2 2 2 2 23 4

8 16 8 8 (4 3)

8 (64 ) / 3 16 (3 1) (64 (8 5)) / 5

16 8 16 (3 1) 16 (64 (9 5)) / 5 16 (16 13) 48

8 (4 3) (64 (8 5))

0 0 0 0 0

0 4

0

0

/ 5 16 (16 13) 48 (1024 (20 21)) 50 / 3 192

L L L L

L L L L L L

L L L L L L L L

L L L L L L L L L

L

− −

− −

− − + − − +

− − −

=

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

L+

, 

2 2

2 2

2 2 2 2

2 2 2

2 2

2 3 2 3

2 3 2 3 2

2 3

(4 ) / 3 1 2 ( 1) 1 (4 (4 5)) / 5

(4 ) / 3 2 (8 (6 5)) /15 (2 (8 9)) / 3

(4 ) / 3 1 2 1 (8 (6 5)) /15 (2 (8 9)) / 3 2 ( ((64 ) / 7 64 / 5) 16 / 3) 1

2 ( 1) (8 (6 5)) /15 (2 (8 9)) / 3 2

1

(6

L L L L L L

L L L L L L L L L

L L L L L L L L L L L

L L L L

L

L L L

− − + −

− − − +

− − + − − + − + −=

− − − +

M
4 2 3

2 3 3 2

2 2 2

2 2 2 2 2 2 2 2 2 2

4 (5 7)) / 35 (16 ) / 3 ( (16 80 / 3) 14) 2

1 (4 (4 5)) / 5 (2 (8 9)) / 3 ( ((64 ) / 7 64 / 5) 16 / 3) 1 ( (16 80 / 3) 14) 2 1 ( ( ((256 ) / 9 384 / 7) 176 / 5) 8)

L L L L L L L

L L L L L L L L L L L L L L L L

− + − + −

+ − − + − + − − + − + − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(15e) 

3.6. Implementation of the Boundary Conditions 

In this two-point boundary value problem, three alterna-
tive types of boundary conditions may exist, as follows: 

i). Free-free (F-F) boundary conditions:  
( ) ( )0 0,U U L′ ′= 0=

0=

=

          (16a) 
ii). Both ends under Dirichlet (D-D) boundary conditions:  

( ) ( )0 0,U U L=           (16b) 
iii). One end under Dirichlet, the other free (D-F): 

( ) ( )0 0, 0U U L′=           (16c) 
In general, the mathematical problem becomes: 

det 0λ− =K M              (17) 
It is well known that for small problems Eq(17) can be 

solved even through the characteristic polynomial, whereas 
for large-scale problems it is usually elaborated using any 
known algorithm such as subspace iteration, Lanczos, QR, 
etc.  

Details about the treatment of boundary conditions will 
be discussed in Section 4.  

4. Numerical Results 
The domain [0, L] is subjected to either of boundary con-

ditions (b.c.) given by Equations (16) at x = 0 and at x = L. 
For simplicity, the computations were performed for 

1L = . 
According to the boundary conditions, the exact eigen-

values are: 
(i) Free-free b.c. (F-F): 

2 2

, 2
, 0, 2,i exact

i
i

L

π
λ = = …           (18a) 

(ii) Both ends under Dirichlet b.c. (D-D): 
2 2

, 2
, 1, 2,i exact

i
i

L

π
λ = = …

     
 (18b) 

(iii) One end fixed (Dirichlet b.c.), the other free (D-F): 

( )2 2

, 2

2 1
, 1, 2,

4i exact

i
i

L

π
λ

−
= = …       (18c) 

All numerical and symbolic (Symbolic Toolbox) calcula-
tions were performed on a PC (DELL Latitude E6500) us-
ing MATLAB 7.12.0 (R2011a). Given the stiffness K and 
mass matrices M, the symbolic eigenvalues were found 
using the command eig(inv(M)*K), whereas the alternative 
command eig(K,M) works for the numerical operations 
only. 

For a given polynomial of degree n, the error norm of the 
i-th calculated eigenvalue  is determined as:  ,i calculatedλ

( ) ( ), ,

,

, 0, ,i calculated i exact

r i

i exact

e i
λ λ

λ

−
= = … n     (19) 

4.1. Free-Free (F-F) Boundary Conditions 

This case requires no special care as none row or column 
has to be eliminated.  

In all six cases, i.e. (i) Lagrange, (ii) Bernstein, (iii) 
p-method, (iv) Chebyshev of 1st kind, (v) Chebyshev of 
2nd kind, and finally (vi) Taylor series, the eigenvalues 
were found to be identical. Moreover, the convergence 
quality is excellent (the same quality with the results pre-
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sented in Table 4) but it is not presented for the sake of 
briefness.  

4.2. One Dirichlet (D-F) or Two Dirichlet (D-D) Bound-
ary Conditions 

For the last two types of boundary conditions [D-D and 
D-F: Eq(16)b,c], and for the first three types of polynomials 
[i.e. (i) Lagrange, (ii) Bernstein, and (iii) p-method], the 
row(s) and column(s) that correspond to the restricted end(s) 
is (are) simply eliminated. As previously happened, in all 
these three types of polynomials the eigenvalues were found 
to be identical. Moreover, convergence quality is shown in 
Table 4, labeled as D-D and D-F.  

In contrast, in case of either Chebyshev polynomials or 
Taylor series the way of elimination of row(s) and column(s) 
is not apparent yet. 

5. A Theoretical Explanation  
Since all types of polynomials dealt in this study [i.e. (i) 

Lagrange, (ii) Bernstein, (iii) p-method and relevant Legen-
dre polynomials, as well as (iv) Chebyshev of first and (v) 
Chebyshev of second kind] span the basis functions in-
cluded in the class { }nx  (Taylor power series): 

( ) , 0, ,t i

if x x i= = … n             (20) 
it becomes necessary to obtain the corresponding stiff-

ness  and mass t  matrices. It is clarified that hen-
ceforth the upper left superscript ‘t’ in Eq(20) will stand for 
the word “Taylor”. 

t K M

Table 4.  Calculated eigenvalues using polynomials of nth degree (n uniform subdivisions). Results are shown as errors (in %) for two support conditions: 
(a) both ends are fixed (D-D), and (b) one end is fixed and the other is free (D-F). 

(a ): D-D 

 
 

MODE 

Exact 2ω  
Eq(7a) 

ERRORS (in %)                           

Degree of polynomial 
n = 2 n = 3 n = 4 n =5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12

1 9.87 1.32 1.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 39.48 - 6.39 6.39 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00

3 88.83 - - 14.98 14.98 0.39 0.39 0.00 0.00 0.00 0.00 0.00

4 157.91 - - - 26.97 26.97 1.32 1.32 0.03 0.03 0.00 0.00

5 246.74 - - - - 42.24 42.24 3.11 3.11 0.12 0.12 0.00

6 355.31 - - - - - 60.57 60.57 5.96 5.96 0.38 0.38

7 483.61 - - - - - - 81.73 81.73 9.94 9.94 0.92

8 631.65 - - - - - - - 105.51 105.51 15.05 15.05

9 799.44 - - - - - - - - 131.74 131.74 21.25

10 986.96 - - - - - - - - - 160.31 160.31

11 1194.22 - - - - - - - - - - 191.16

(b ): D-F 

 
MODE 

Exact 
2ω  

Eq(7b) 

ERRORS (in %)                           

Degree of polynomial 
n = 1 n = 2 n = 3 n =4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 

1 2.47 21.59 0.75 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 22.21 - 44.91 5.33 0.52 0.03 0.00 0.00 0.00 0.00 0.00 0.00 
3 61.69 - - 76.93 12.51 2.18 0.29 0.03 0.00 0.00 0.00 0.00 
4 120.90 - - - 119.85 22.58 5.21 1.05 0.16 0.02 0.00 0.00 
5 199.86 - - - - 173.07 35.90 9.79 2.54 0.55 0.09 0.01 
6 298.56 - - - - - 235.83 52.46 16.06 4.93 1.34 0.30 
7 416.99 - - - - - - 307.65 72.04 24.07 8.36 2.68 
8 555.17 - - - - - - - 388.21 94.40 33.74 12.87 
9 713.08 - - - - - - - - 477.34 119.32 44.95 
10 890.73 - - - - - - - - - 574.94 146.66 
11 1088.12 - - - - - - - - - - 680.93 
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5.1. The Class { }nx  

In this case the variable U is expanded in a Taylor series: 

( )
0

0

1

, ,
n

t i t t

i n
i n

U x a x a a

x
=

= = ⋅

⎡ ⎤
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ … #      (21) 

According to Eq.(5b), the elements of the mass and stiff-
ness matrices will be given by: 

( )
( )

( )
( )

1

1

,
1

0 , , 0

, , 1, ,
1

i j
t

i j

t
i ji j

L
m

i j

i j

k i j
L i j n

i j

+ +

+ −

=
+ +

=

=
=

+ −

⎧
⎪
⎨
⎪⎩

…

       (22) 

5.2. A Proof for the Identical Eigenvalues  

For a single square matrix  of order (n+1), Ralston 
and Rabinowitz[19, p. 484] (Theorem 10.3) have demon-
strated that any similarity transformation 

A

1−PAP  applied to 
 leaves the eigenvalues of the matrix unchanged. The 

same is found in the textbook of Bathe [20, p. 45] where, 
provided  is orthogonal, a poof is given through the cha-
racteristic polynomial.  

A

P

In this paper we generalize the proof to any pair of 
stiffness  and mass  matrices (Theorem 3); the 
upper left superscript ‘

μ K μ M
μ ’ takes the symbolic values ‘t’, ‘l’, 

‘b’, ‘p’ as well as ‘c1’ and ‘c2’, which correspond to the 
initials of the six alternative polynomials (Taylor series, 
Lagrange polynomials, Bernstein basis, P-method/Legendre, 
as well as Chebyshev of 1st and 2nd kind). Theorem 1 and 
Theorem 2 aim to support Theorem 3. 

THEOREM-1. The change of basis between a basis po-
lynomial ( ) , 0, ,jf x j nμ = …  [such as Lagrange, Bernstein, 
P-method, Chebyshev et cetera], and the class { }nx  (Tay-
lor series), induces a relationship of quadratic form between 
the mass matrices  and t .  μ M M

PROOF. 
First, we consider the basis vectors of order (n+1), for both 

abovementioned functional sets: 
( )

( )

01

,t

n

n

f x

x f x

μ

μ

μ

= =

⎡ ⎤⎡ ⎤
⎢⎢ ⎥
⎢⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

N N# ⎥
⎥#         (23) 

Based on Eq(23), the corresponding mass matrices [cf. 
Eq(5b)] are given in compact form as follows: 

( ) ( )
0 0

d , d
L L

T Tt t t x xμ μ μ= ⋅ = ⋅⎡ ⎤ ⎡
⎣ ⎦ ⎣∫ ∫M N N M N N ⎤

⎦
 

(24) 

Second, we consider the equivalent expressions of U(x) 
using either Taylor series or the μ -type polynomial basis, 
for which it holds: 

( ) ( ) ( ) ( ) ( )T Tt tU x μ μ= ⋅ = ⋅a N a N       (25) 

Since U(x) is a scalar, it equals to its transpose, therefore: 

( ) ( ) ( ) ( ) (T Tt tU x μ μ= ⋅ = ⋅N a N

Left-multiplication of Eq(25) by Eq(24) in parts, leads to: 

( )[ ] ( ) ( )( ) ( )

( ) ( )( ) (

2 T Tt t t t

T T

U x

μ μ μ μ

= ⋅ ⋅

= ⋅ ⋅

⎡ ⎤
⎣ ⎦
⎡ ⎤
⎣ ⎦

a N N a

a N N a)
     (27) 

Integrating the last two parts of Eq(27) over the interval 
[0,L], and considering that the vectors  and ( )t a ( )μ a  are 
constant (so they can exit the integral), we obtain: 

( ) ( )( ) ( )

( ) ( )( ) (
0

0

L
T Tt t t t

L
T T

dx

dxμ μ μ

⋅ ⋅

= ⋅ ⋅

⎧ ⎫⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭

∫

∫

a N N a

a N N )μ a

     (28) 

Substituting Eq(24) into Eq(28), one obtains the desired 
matrix identity: 

( ) ( ) ( ) ( )T Tt t t μ μ μ⋅ ⋅ = ⋅ ⋅a M a a M a      (29) 

Equation (29) constitutes the proof of the theorem. 
Remark: It is reminded that Eq(29) is the well known 

matrix transformation (from local to global system) in the 
finite element praxis (e.g., [1,20]). Nevertheless, in this study 
only mathematical considerations have been taken into ac-
count, whereas in engineering books it is usually derived on 
the basis of virtual work (the latter is considered to be inva-
riable in both local and global orthogonal co-ordinate sys-
tems). In contrast, in this work no orthogonality relationship 
between the different bases was considered. 

THEOREM-2. The contents of Theorem-1 is extended to 
the stiffness matrices  and t  as well. μ K K

PROOF. 
Taking the derivatives in x of the vectors in Eq(23), we 

obtain the two new vectors: 

( ) ( ) ( )

( )

01

,
t

t t

n

n

f x

x x x x
x f x

μ

μ

μ

∂ ∂∂ ∂
′ ′= =

∂ ∂ ∂ ∂

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

N N
N N� # � # (23a) 

Therefore, the corresponding stiffness matrix [Eq(5b)] is 
written as: 

( )

( )
0

0

d ,

d

L
Tt t t

L
T

x

xμ μ μ

′ ′= ⋅

′ ′= ⋅

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎣ ⎦

∫

∫

K N N

K N N

       (24a) 

Henceforth the proof is the same as in Theorem-1, leading 
to the identity:  

( ) ( ) ( ) ( )T Tt t t μ μ μ⋅ ⋅ = ⋅ ⋅a K a a K a      (30) 

THEOREM-3. For any pair of matrices ( , ), which 
corresponds to a basis polynomial 

μ K
( )

μ M
, 0, ,jf x j = nμ

)
… , the 

corresponding eigenvalues ( i

μλ  are identical with the 

eigenvalues ( )t

iλ , 0,i , n= …  of the pair ( t , t ) that 

is produced by the class 

K M

{ }nx  (Taylor series).  )a      (26) 
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n

PROOF. 
Considering the stiffness t  and mass  matrices 

[Eq(22)], the reference eigenvalue problem becomes ( t  
stands for the coefficients in Taylor series): 

K t M
ia

( ) ( ) , 0, ,t t t T t

i i iλ− ⋅ ⋅ = =⎡ ⎤⎣ ⎦K M a 0 …
μ

    (31) 

Furthermore, considering the stiffness  and mass 
 matrices, the new eigenvalue problem becomes ( i  

stands for the corresponding coefficients in 

K
μ M μ a

μ -type poly-
nomial basis):  

( ) ( ) , 0, ,i i iμ μ μ μλ− ⋅ ⋅ = =⎡ ⎤⎣ ⎦K M a 0 … n

n

=

)i

    (32) 

By left-multiplying Eq(31) by  we obtain: ( )Tt

ia

( ) ( ) ( ) , 0, ,
Tt t t t T t

i i i i nλ⋅ − ⋅ ⋅ = =⎡ ⎤⎣ ⎦a K M a 0 …   (33) 

Equations (29) and (30) of Theorems 1 and 2, respectively, 
are generally applicable and therefore they hold even for the 
i-th eigenvector. Under these circumstances, substituting 
them into Eq(33) we obtain: 

( ) ( ) ( ) , 0, ,
T t T

i i i i nμ μ μ μλ⋅ − ⋅ ⋅ = =⎡ ⎤⎣ ⎦a K M a 0 …

( )Tμ
 

(34) 

By left-multiplying Eq(24) by , one obtains: a

( )μ⋅M a( ) ( ) , 0, ,
T

i i i iμ μ μ μλ⋅ − ⋅ = =⎡ ⎤⎣ ⎦a K 0 … (35) 

Finally, subtracting Eq(34) and eq(35) in parts, one ob-
tains: 

( ) ( ) ( ) ( ) 0
Tt

i i i i

μ μ μ μλ λ−⎡ ⎤⎣ ⎦ a M a      (36) 

Since the quadratic form  cannot va-
nish, it is concluded that: 

( ) (T

i

μ μ μa M a

( ) ( )t

i

μ

iλ λ=                 (37) 

which constitutes the proof of the theorem. 
Corollary. The identical eigenvalues ( ) ( )t

i i

μ

iλ λ λ≡ ≡  
can be expressed by common Rayleigh quotients: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1

1

, 0, ,

T

i

i T

i

Tt t t t

i

Tt t

i

i n

μ μ μ μ

μ μ
λ

−

−

=

=

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎣ ⎦

a M K a

a a

a M K a

a a
…=

     (38) 

5.3. Application of Arbitrary Boundary Conditions 

Whatever follows is generally applicable but for the pur-
poses of this paper it has particular value for Taylor series 
and Chebyshev polynomials, which do not directly apply for 
the boundary conditions.  

Equation (25) is collocated at (n + 1) points within the 
interval [0,L]. One possible, but not restrictive possibility is 
to uniformly divide the domain [0,L] into n segments, thus 
introducing the breakpoints:  

( )
0 1 1

1
0, , , ,n

n LL
nx x x x

n n−

−
= = = =… L      (39)  

Therefore, we derive a relationship in the form:  

( ) ( )

( ) ( )
[ ]

N

0 0 0 0

0

n

n n n n

U f x f x a

U f x f x a
μ

μ μ

μ μ

= = ⋅
0

n

μ

μ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A a

U
…

# # # #
"

�����	����


#   (40) 

which in vector form is written as: 
{ } [ ] { }μ= ⋅U A a               (40a) 

or equivalently: 

{ } [ ] { }1μ −
= ⋅a A U               (41) 

Substituting Eq(41) into Eq(35) we derive: 

( )* * 0λ− ⋅ =K M U               (42) 

where 

( ) ( )* 1 1 ,
T− −= ⋅ ⋅K A K A and (43) ( ) (* 1 T− −= ⋅ ⋅M A M A )1

In this framework, it is now trivial in Eq(42) to eliminate 
the row and column that corresponds to the Dirichlet boun-
dary condition.  

6. Discussion 
The motivation of this work was the interesting paper by 

Çelik[18] that deals with the collocation method using 
Chebyshev polynomials, which constitute a complete func-
tional set. Previously, the state-of-the-art was the use of basis 
functions in the form of algebraic polynomials in the form 
( ) ( )( ) ( )1 2n nf x a x x xρ ρ= − − −" ρ , with 1 aρ =  and 

2 bρ = , so as to ensure satisfaction of the homogeneous 
Dirichlet boundary conditions in the interval [a,b] (for ex-
ample, [21]).  

At that period the author had accumulated numerical ex-
perience on the excellent behavior of global approximation, 
either using B-splines or Lagrange polynomials ([7-11], 
among others). Later, when he tried to compare the eigen-
values obtained using (i) Lagrange polynomials, (ii) 
Bernstein (basis) ones, and (iii) Taylor series, a numerical 
coincidence was remarked when the same collocation points 
were used [22]. 

The abovementioned numerical coincidence pushed the 
author to extend his research from collocation to the most 
popular finite element method in which closed form analyt-
ical formulas of the matrices can be derived. In this formu-
lation, not only the previously found coincidence[22] was 
repeated, but also it was further found that the famous 
P-method[2] is also identical with all others.  

Although one could simply state that all these polynomials 
(Lagrange, Bernstein, Legendre, and Chebyshev) have the 

same basic basis, which is the class { }nx  (Taylor series), 

the possible statement that the Rayleigh quotient is the same 
has to be mathematically proven.  

Another interesting point is the way that the boundary 
conditions are imposed. As previously mentioned, Lagrange 
polynomials are associated directly to the nodal values of the 
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primary variable U all-over the domain, whereas the 
Bernstein (basis) polynomials refer to control points. How-
ever, since the extreme control points, P0 and Pn, coincide 
with the two ends, there is no problem to impose free-free or 
Dirichlet boundary conditions. Similarly, the p-method is 
based on the well known linear shape functions associated to 
the ends of the interval [a,b], and simply its functional set is 
enriched by the nodeless bubble functions.  

In contrast to the two aforementioned polynomials, similar 
to the Taylor series, Chebyshev polynomials have a more 
spectral character, as they refer to arbitrary coefficients in-
stead of the pure values of the variable U, i.e. U0 and Un. It is 
worthy to mention a common characteristic similarity be-
tween Chebyshev polynomials and P-method. In more de-
tails, as the degree n of the polynomial increases, the stiff-
ness matrix Kn and mass matix Mn (both of order (n+1)) can 
be immediately derived from the previously calculated 
submatrices Kn-1 and Mn-1 (both of order n), by simply 
completing the (n+1)-th row and the (n+1)-th column (it is 
reminded that in Section 2 the indices vary between 0,…,n). 

Despite the coincidence found in one-dimensional prob-
lems, preliminary comparisons in two-and three-dimensional 
problems suggest that there is a significant difference be-
tween Lagrangian type finite elements and the p-method, as 
the first occupy a broader space than the second ones [9,10].  

7. Conclusions  
In this work, the entire one-dimensional domain [0,L] was 

considered as a single macroelement (global approximation), 
at the ends of which three (all possible) different types of 
boundary conditions were imposed. Also, for the spatial 
approximation of the variable U five different types of global 
higher order polynomials were considered. It was found that 
all these five basis functions, i.e. (i) classical Lagrange po-
lynomials, (ii) Bernstein polynomials (useful in CAD curve 
representation), (iii) bubble functions based on Legendre 
polynomials (p-method), as well as Chebyshev polynomials 
of (iv) first kind and (v) second kind, share the same func-
tional space, i.e. { }1, , , nx x… . Although the coefficients of 
series expansions and relevant matrices highly depend on the 
particular polynomial chosen, the calculated eigenvalues 
were found always the same, a fact that was also rigorously 
proven initially in case of free-free and then for arbitrary 
boundary conditions. 
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