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Abstract  Convection-Diffusion Problems occur very frequently in applied sciences and engineering. In this paper, the 
crux of research articles published by numerous researchers during 2007-2011 in referred journals has been presented and 
this leads to conclusions and recommendations about what methods to use on Convection-Diffusion Problems. It is found 
that engineers and scientists are using finite element method, finite volume method, finite volume element method etc. in 
flu id mechanics. Here we discuss real life problems  of fluid engineering solved by various numerical methods .which is 
very useful for finding solution of those type of governing equation, whose analytical solution are not easily found.  
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1. Introduction 
Computational fluid  dynamics is a  branch of Engineering 
and science that,[1] with the help of d igital computers, 
produces quantitative prediction of fluid-flow phenomenon 
based on those conservation laws governing fluid mot ion. 
These predictions normally occur under those conditions 
defined in terms of flow geometry. Convection- Diffusion 
Problems arises where fluid flow p lays a significant 
role .We must account for the effects of convection. 
Diffusion occurs always alongside convection in nature. 
The numerical solution of convection-diffusion transport 
problems arises in many important applications in science 
and engineering. These problems occur in many 
applications such as in the transport of air and ground water 
pollutants, oil reservoir flow, in the modeling of 
semiconductors, and so forth[3]. This paper describes 
several fin ite difference schemes for solving the 
convection-diffusion equation. Therefore; we examine 
computation methods to predict combined convection- 
diffusion equation. The convection–diffusion equation is a 
parabolic partial differential equation combin ing the 
diffusion equation and the advection equation, which 
describes physical phenomena where part icles or energy (or 
other physical quantities) are transferred inside a physical 
system due to two processes: diffusion and convection. In 
its simplest form (when the diffusion coefficient and the 
convection velocity are constant and there are no sources or 
sinks) the equation takes the form as following:
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The two terms on the right hand side represent different 
physical processes: the first corresponds to normal diffusion 
while the second describes convection or advection, which 
is why the equation is also known as the 
advection–diffusion equation. c is the variable of interest 
(species concentration for mass transfer, temperature for 
heat transfer), the constant D is the diffusivity for mass or 
heat transfer, and is the velocity. Stationary 
convection-diffusion equation refers to this same equation 
with the time derivative omitted. 

In this paper we d iscuss different types of 
Convection-Diffusion Problems and also discussed various 
computation methods for solving these problems. The paper 
is organized as follows; section two describes research work 
carried out by researchers for solving convection-diffusion 
problems in various dimensions, subsections of this section 
providing solution of one, two and three Diemensniol 
convection-diffusion problems. Linear and Nonlinear 
convection-diffusion problems are described in section 
three, in  same fashion solution of steady/unsteady 
convection-diffusion problems are describing in section 
four; section five is devoted for solving singularly perturbed 
convection-diffusion problems. In section six we are taking 
convection-dominated diffusion problems and finally we 
are given conclusion of this art icle. One thing is important 
that the categorizat ion given in this paper is not unique one 
can change this categorization; we are categorizing this 
paper only on the basis of a specific property of 
convection-diffusion problems. As for example it is possible, 
singularly perturbation problems can also undergoing in 
category of convection-dominated diffusion problems. 

2. Convection-Diffusion Problems with 
Various Dimensions 

It is discussed in introduction part of the art icle that the 
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obtained governing equation of convection-diffusion 
problems are differential equation. In this section we are 
taking convection-diffusion problems of various dimensions. 
section 2.1 provides methods for solving the one 
dimensional convection-diffusion problems, similarly two 
Diemensniol and three Diemensniol convection-diffusion 
problems are discussed in section 2.2 and 2..3 respectively.  

2.1. One Dimensional Convection-Diffusion Problems   
In year 2010, Prashanth Nadukandi et al. Presented an 

article “A high-resolution Petrov–Galerkin method for the 
one Diemensniol convection–diffusion–reaction 
problem”[4]. This article was divided in seven section. 
Section two described high-resolution Petrov–Galerkin 
method (HRPG), in section three authors provided 
derivation of the HRPG expression via the fin ite-calcu lus 
(FIC) procedure, in section four authors discussing Gibbs 
phenomenon in 2L -projections, in section five authors 
implemented the methodology to the transient 
convection-diffusion-reaction problem. They split the 
design into four model problems and derive the stabilization 
parameters accordingly, section six g ives the Extension to 
multi-dimensions finally authors gives conclusion of article 
in section seven, which are as follow: A high-resolution 
Petrov–Galerkin method is presented for the one 
Diemensniol convection-diffusion- reaction problem. The 
prefix ‘h igh-resolution’ was used in[4] the sense 
popularized by Harten, i.e. second order accuracy for 
smooth/regular regimes and good shock- capturing in 
non-regular reg imes. The HRPG method could be 
understood as the combination of upwinding plus a 
nonlinear discontinuity capturing operator. The d istinction 
is that in general (mult i-d imensions) the upwinding 
provided by h is not streamline and the discontinuity- 
capturing provided by ˆ. rH u  is neither isotropic nor 
purely crosswind. The HRPG form could  be considered as a 
particular class of the stabilized governing equations 
obtained via a fin ite-calcu lus (FIC) procedure. For the one 
Diemensniol problem, the HRPG method is similar to the 
CAU method with new defin itions of the stabilization 
parameters. The one Diemensniol examples presented 
demonstrate that the method provides stabilized and 
essentially non-oscillatory i.e. monotone to-the-eye 
solutions for a wide range of the physical parameters and 
boundary conditions. It is interesting to note that the HRPG 
method without the linear upwinding term, i.e. using a 

0α =  does solve all the steady-state examples to give 
high-resolution stabilized results. Nevertheless the presence 
of the linear perturbation terms improves the convergence 
of the nonlinear iterations especially for the transient 
problem. 

In year 2011 L.A. Sphaier p roposed an article “The UNIT 
algorithm for solving one-dimensional convection-diffusion 
problems via integral transforms”[5]. A unified approach for 
solving convection-diffusion problems using the 
generalized Integral Transform Technique (GITT) was 
advanced and coined as the UNIT (Unified Integral 
Transforms) algorithm, as implied by the acronym. The 

unified manner through which problems are tackled in the 
UNIT framework allowed users that are less familiar with 
the GITT to employ the technique for solving a variety of 
partial-differential problems. This article consolidates this 
approach in solving general transient one-dimensional 
problems. Different integration alternatives for calculating 
coefficients arising from integral transformat ion are also 
discussed in[4]. Besides presenting the proposed algorithm, 
aspects related to computational implementation were also 
explored. Finally, benchmark results of different types of 
problems were calcu lated with a UNIT-based 
implementation and compared with previously obtained 
results. The conclusion of the art icle was g iven as; this 
article presented a unified algorithm for solving part ial 
differential systems using the generalized integral transform 
Technique (GITT). The Unified Integral Transforms (or 
simply UNIT) approach, as implied  by the coined acronym, 
was thus developed for handling  a wide class of 
partial-differential problems in a unified way. This was 
accomplished by first grouping all spatial operators into a 
single source term. The main advantage of such approach 
was that a great part of the integral transformat ion process 
was carried out in one single operation. Second, this 
integral transformation is handled through a semi analytical 
integration scheme, which preserved the analytical 
evaluation of the oscillatory Eigen functions integrals, and 
provides a flexib le and cost-effective alternative to 
automatic numerical integration routines. Finally, the mixed 
symbolic-numerical implementation takes the advantage of 
the analytical nature of the methodology. 

2.2. Two Dimensional Convection-Diffusion Problems 

Mariela Castillo et al.[6] described a technique for 
solving two-dimensional convection-diffusion equation 
with variable velocity with the help of Neumann series and 
obtain fundamental solution of two-dimensional convection 
–diffusion equation. The fundamental solution of the two- 
dimensional convection–diffusion equation with variable 
coefficients and its adjoint equation are obtained in complex 
form in terms of the unknown density of two equivalent 
uniquely solvable Voltera integral equations of the second 
kind whose analytical solutions are given exp licit ly as 
convergent Neumann series. The Volterra integral equations 
are obtained by integrating the complex fo rm of the original 
differential equations, without additional change of 
variables as proposed by previously authors. In the 
numerical examples, cases corresponding to non-self- 
adjoint operators were considered. As a validation, the 
proposed approach is used to derive the fundamental 
solution of the adjoint to the convection–diffusion equation 
with constant velocity. In this case, the series solution can 
be evaluated analytically. For more general velocity  fields, 
the recursive terms of the series can be evaluated by 
symbolic computation or numerical integration. In this 
article author tells that the boundary element method (BEM) 
is a very attractive solution technique, since it reduces the 
dimension of the problem by one unit. The basis of the 
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BEM method is to transform the original partial differential 
equation (PDE) that describes a given physical problem into 
an equivalent integral equation, either by means of the 
Green’s representation formula (direct method), or by 
means of a continuous distribution of singular solutions of 
the PDE over the boundaries (indirect method). The 
unknowns in the integral formulat ion of the boundary-value 
problem are either the p rimit ive variables on the boundary 
(direct formulation) or fictitious surface densities of the 
singular solutions (indirect formulation). Since the solution 
of the integral equation satisfies the governing field 
equation exact ly, one seeks to satisfy the imposed boundary 
conditions. In this way author categorized the article in to 
three parts: in first, part they have given introduction of the 
article, in  the second part, authors gave the 
integral-representation formulas, Riemann and fundamental 
solutions, in part third, fundamental solutions, as Neumann 
series are given  after that finally, for validation of result 
the author have taken constant velocity. 

Mehdi Dehghan[7] proposed time-splitting  procedures 
for the So lution of the two-dimensional transport equation. 
The purpose of this paper is given as the 
diffusion-advection phenomena occurring in many physical 
situations such as, the transport of heat in fluids, flow 
through porous media, the spread of contaminants in flu ids 
and as well as in many other branches of science and 
engineering. So  it  is essential to approximate the solution of 
these kinds of partial differential equations numerically in 
order to investigate the prediction of the mathematical 
models, as the exact solutions are usually  unavailable. In 
this article, several different computational locally 
one-dimensional (LOD) methods were developed and 
discussed for solving the two-d imensional transport 
equation. These schemes are based on the time-splitting 
fin ite difference approximat ions. In section one, authors 
describing introduction of paper after that in section two 
authors describe The finite d ifference schemes, after that 
they was describing the time-splitting procedures, in  section 
three they was describe locally one-dimensional 

 Technique after that LOD with the Lax-Wendroff 
explicit  procedure. Finally, they were giv ing conclusion of 
the article: In  this art icle, numerical methods were applied 
to the two-dimensional transport equation. The proposed 
numerical procedures solved model has been taken by 
author quite satisfactory. The LOD procedure is simple to 
implement and economical to use. It is very efficient and it 
needs less CPU t ime than the fully explicit finite difference 
techniques. The method of time-splitting with fin ite 
difference schemes is very easy to implement for similar 
three-dimensional problems, but it may be more difficu lt 
when dealing with the classical fully implicit fin ite 
difference scheme. The numerical results show a significant 
improvement over the traditional schemes. The LOD 
approach is more generally applicable than the classic 
approach and it represents a promising idea to derive further 
new algorithms which have wider stability range. One 
direction fo r future research will be to generalize the LOD 

procedure for h igher-dimensional case. There also remain 
plenty of questions for future investigations: one can try to 
improve authors approach for developing more accurate 
fin ite difference schemes in the LOD procedure. Retention 
of accuracy by proper treatment on boundaries at 
intermediate. 

2.3. Three Dimensional Convection-Diffusion Problems 
In year 2010, Yongguang Chen and Bing Hu[8] proposed 

an article “Fin ite Element Programming  for Three- 
dimensional Convection Diffusion Problems”. The classes 
of finite element models for convection diffusion problems 
are designed in C++. There are vector classes, matrix 
classes, element classes, material classes and method 
classes of finite element. On the basis of these classes, an 
object-oriented finite element program for three- 
dimensional convection diffusion problems was 
accomplished, which was able to simulate similar problems. 
It can also be applied to large universal computational 
software for science and engineering. In  the convection- 
diffusion problems, when the convection effect was not 
apparent that Peclet number is small, fin ite element method 
for three-d imensional steady convection-diffusion equations 
is a high precision, stable and fast numerical methods. 
When Peclet number is large, the finite element mesh must 
be encrypted to obtain a stable solution. Traditional fin ite 
element program generally use structured methods and 
structured programming languages. It has some defects, 
such as limited expansion capability, low code reuse, and 
debugging complex. However, the object-oriented 
programming has some advantages, such as encapsulation, 
inheritance and polymorphism. What is more, easier 
debugging, maintenance, expansion, and data management 
security, which can greatly improve finite element software 
performance and the efficiency of finite element software, 
they will also provide favorable conditions and flexib ility 
for integrating other software’s. As object-oriented fin ite 
element software research continues, object-oriented 
programming language C++ would be used. Under finite 
element analysis of three-dimensional convection-diffusion 
problems, calculat ion will be completed by establishing 
related classes. 

3. Linear and Nonlinear Convection- 
Diffusion Problems 

In year 2007 Ming Chau et al.[9] solved liner and 
nonlinear convection-diffusion problems by MPI 
implementation of parallel subdomain methods. In this 
article, authors discussed MPI implementation of parallel 
Schwarz alternating methods on distributed memory 
multiprocessor and also author studied parallel synchronous 
asynchronous iterative scheme of computation together with 
analysis of experimental result obtained from IBM-SP 
series machine. Further, authors discussed the benefits of 
using parallel asynchronous Schwarz alternating methods. 
Demonstrated that convection-diffusion problems occur 
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very frequently in finance and hydraulics, when, 
Disceitizing these problems then these problems leads to 
very large scale systems of algebraic equation. The 
introduction of parallelis m via decomposition techniques 
can be very attractive and overlapp 
-ing subdomain methods, as the Schwarz alternating method, 
can be very efficient when they are applied  to the solution 
of these algebraic systems of equations. The purpose of this 
article is to show how authors have implemented parallel 
overlapping subdomain methods via MPI on distributed 
memory multiprocessors. In particular, parallel 
asynchronous iterative schemes of computation are 
considered. In  the case where several subdomains are 
assigned to each processor, the combination of parallel 
asynchronous iterative schemes of computation with the 
Schwarz alternating method permits one to obtain a 
behavior similar to the one of a mult iplicative Schwarz 
alternating method. In first part of the article, authors have 
described introduction part of the art icle and in second part; 
they are discussing linear convection-diffusion problems. 
After that they have discussed nonlinear case taking 
different cases viz. nonlinearity arises on boundary or 
within domain and in third part of article, authors described 
Schwarz alternating  method. The effectiveness of domain 
decomposition methods is well known for boundary value 
problems. These methods are also well suited to parallel 
computing. Authors concentrate here on parallel Schwarz 
alternating methods, which are based on overlapping 
sub-domains. In fourth part, they have described 
implementation and Asynchronous algorithms with flexib le 
communicat ion, Synchronous algorithms, in fifth part they 
have shown results and given conclusion. 

In year 2008, Fuzheng Gao and Yirang Yuan[10] presente 
d an article for solving nonlinear Convection- dominated 
diffusion problem by characteristic fin ite volume element 
method. The finite volume element method (FVEM) is a 
discretizat ion technique for partial differential equations, 
especially for those arising from physical conservation laws 
including mass, momentum and energy. This method has 
been introduced and analyzed by Li and his collaborators. 
The FVEM uses a volume integral formulat ion of the 
original problem and a fin ite element partit ion of the 
domain T  to discretize the equations. The 
approximate solution is chosen from a fin ite element space. 
The FVEM is widely used in computational fluid mechanics 
and heat transfer problems. It possesses the important and 
crucial property of inherit ing the physical conservation laws 
of the original problem locally. Thus it can  be expected to 
capture shocks, to produce simple stencils, or to study other 
physical phenomena more effect ively. The art icle is 
organized as fo llows: Section one, contains abstract and 
introduction of article: in this section authors also 
describing some real life problem which occur very 
frequently in mechanics and mathematics. CFVEM, and 
some important lemmas was described in section three. 
Section four describing convergence analysis of the 
problem (taken by authors). Section five describes 
Numerical experiment. 

In year 2011, A. Shidfar et al.[11] proposed an article 
“Approximate analytical solutions of the nonlinear 
reaction-diffusion-convection problems” In this article, the 
series pattern solutions of the nonlinear reaction- 
diffusion-convection initial value problems are obtained by 
using the homotopy analysis method (HAM). A complete 
description of this method is derived and the convergence of 
this method is shown. Finally, two test examples are given. 
In this article, the homotopy analysis method was employed 
for solving nonlinear reaction-diffusion-convection 
equations with given init ial conditions. The problems of 
these types of PDEs occur in  modeling of some phenomena 
in sciences and engineering. The general form of recurrent 
relation, defined by authors in their art icle, for obtaining the 
series pattern solutions of the problems, was introduced and 
convergence of the method was investigated. The homotopy 
analysis method was a suitable method to obtain the series 
form approximate analytical solutions of the nonlinear 
problems, because it provides a convenient way to control 
the convergence of solution series, which was a 
fundamental qualitative characteristic of the HAM. In the 
last section, the mentioned method was applied for two test 
examples.  

In year 2011, Tong Zhang proposed[12] an art icle “The 
semid iscrete fin ite volume element method for nonlinear 
convection–diffusion problem”. In  this article, a 
semid iscrete finite volume element method for the 
nonlinear convection-diffusion problem is considered. 
Under some regular assumptions, they obtain the 2L and 

1H  norm error estimates of numerical solution. 
Furthermore, they investigated two-grid fin ite volume 
element method for the considered equations. Compared 
with the standard method, the two-grid method is of the 

same order as the standard method in the 
1H -norm as long 

as the mesh sizes satisfy
1
3H o h

 
=   

 
. However, the 

two-grid  method involves much less work than the standard 
method. Finally, some numerical results were provided to 
verify  the established theoretical analysis. The conclusion 
of the article is given as: in this article, Tong Zhang 
considers a semid iscrete finite volume scheme for the 

nonlinear convection–diffusion problem. The 
2L  and 1H

-norm error estimates for standard finite volume method 
were derived under some assumptions. For two-grid 
algorithm, by using Taylor expression and the known 
solution HU , which obtained in coarse mesh, the nonlinear 
system transforms into a linear system, which was much 
easier to solve than the origin ones, numerical results 
confirm the effectiveness of their algorithm. 

4. Steady/Unsteady Convection–   
Diffusion Problems 

4.1. Steady State Convection–Diffusion Problems 
In year 2008, A. L. Rocca1, H. Power[13] presented an 
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article, “A double boundary collocation Hermitian  approach 
for the solution of steady state convection-diffusion 
problems”. In this article a double boundary collocation 
approach based on the meshless radial basis function 
Hermitian  method (symmetric method) is proposed and 
compared with the conventional single collocation. In the 
double boundary collocation approach, at the boundary 
collocation points the boundary condition and the governing 
partial 
different ial equat ion  are requ ired  to  be sat is fied s imulta  
-neously instead of only the boundary condition as required 
in the single collocation. They were ab le to carry out this 
type of algorithm due to the robustness of the proposed 
Hermite interpolation scheme, in  which the resulting matrix 
will be non-singular as long as the partial differential 
operators applied to each point are linearly  independent; 
even if in a single node authors impose two different 
differential conditions. The results obtained with this new 
method are characterized by a higher precision especially 
for the prediction of the fluxes at the boundaries. This is due 
to the higher order of continuity of the approximat ion at the 
boundary points imposed by the double collocation. The 
main objective of authors work is to develop and test a RBF 
Hermitian  (symmetric approach) double co llocation scheme 
at the boundary. The scheme is similar to the one proposed 
by Fedoseyev et al. for the unsymmetric approach but with 
the difference that at each boundary collocation points the 
boundary condition and the governing equation are required 
to be satisfied simultaneously and not using different set of 
boundary collocation points where these conditions 
(boundary condition and governing equation) are 
independently imposed as is the case of the Fedoseyev et al. 
approach. The requirement of satisfying simultaneously 
both the boundary condition and the governing equation 
results in a higher order of continuity at the boundary points 
of the approximated solution. This article was dividing into 
much section: section first contains the introduction of 
article; Radial basis function described was in section two 
meshless approaches. In section three Convection-diffusion 
problems was describing, section four involves Numerical 
examples for different boundary value problems obtained 
obtained by double boundary collocation mesh-free method: 
in this section authors also discuss Convection-diffusion 
equation (constant velocity and variable velocity). After that 
author was giving conclusion of the article which are as 
follow: The meshless radial basis function collocation 
method based on the Hermite interpolation scheme is 
known to be a robust technique to solve 
convection-diffusion problems with variab le coefficients. 
Moreover, the robustness of the Hermite scheme allows A. 
L. Rocca1 et al. to implement a double boundary 
collocation scheme, where at the boundary collocation 
points the boundary condition and the governing partial 
differential equation are required to be satisfied 
simultaneously instead of only the boundary condition as 
required in the single collocation. The proposed double 
boundary collocation approach results are more accurate 

than the single collocation on the prediction of the unknown 
variable. In particu lar it is notorious the high precision 
obtained on the evaluation of the boundary fluxes, which 
results in one order, or higher, of magnitude more accurate 
than the ones predicted by the single collocation approach. 

In year 2009, Hoa Nguyen et al[14] proposed an article 
for solving Adaptive anisotropic meshing for steady 
convection-dominated problems. In this article authors 
discuss about obtaining accurate solutions for 
convection-diffusion equations is challenging due to the 
presence of layers when convection dominates the diffusion. 
To solve this problem, they design an adaptive meshing 
algorithm which optimizes the alignment o f an isotropic 
meshes with  the numerical solution. Three main ingredients 
are used. First, the streamline upwind  Petrov-Galerkin 
method is used to produce a stabilized solution. Second, an 
adapted metric tensor is computed from the approximate 
solution. Third, optimized anisotropic meshes are generated 
from the computed metric tensor by an an isotropic 
centroidal voronoi tessellation algorithm. Their algorithm is 
tested on a variety of two-dimensional examples and the 
results shows that the algorithm is robust in detecting layers 
and efficient in avoid ing non-physical oscillations in the 
numerical approximation. The organization of art icle is as 
follow: in section first authors describe introduction of the 
article, section two describe the streamline upwind 
Petrov-Galerkin  method (SUPG) in  section three authors 
describing Metric tensor for anisotropic mesh generation, in 
section four Anisotropic centroidal Voronoi tessellations 
(ACVT) was described, Adaptive algorithm was described 
in section five, section six contains Computational 
experiments with manufactured solutions, Computational 
experiments with unknown solutions was given in section 
six and finally they are giv ing concluding remarks which 
are as follow: author’s adaptive anisotropic mesh algorithm 
has substantially improved the numerical approximat ion for 
steady-state convection-diffusion problems. It  works well 
on both diffusion-dominated and convection-dominated 
problems. The results converge at a quasi-optimal or 
optimal rate (depending on the characteristics of the layers) 
and with low computational cost. Due to the efficiency and 
robustness of authors’ algorithm, non-physical oscillations 
in the numerical solutions in the layers are not present. 
Since adaptive anisotropic meshes are used in their 
algorithm, any local phenomena in the solutions (for 
example, layers, singularit ies, etc.) are captured 
automatically. This capability will allow author’s to explore 
more practical and complicated problems in future. 

In year 2010, Flavius Guia presented an article[15] 
“Direct simulation of the infinitesimal dynamics of 
semi-discrete approximations for convection-diffusion- 
reaction problems”. In this article, a scheme for 
approximating solutions of convection-diffusion reaction 
equations by Markov jump processes was studied. The 
general princip le of the method of lines reduces evolution 
partial d ifferential equations to semi-discrete 
approximations consisting of systems of ordinary 
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differential equations. F. Guia approach was to use for this 
resulting system a stochastic scheme which is essentially  a 
direct simulation of the corresponding infinitesimal 
dynamics. This implies automat ically the time adaptivity 
and, in one space dimension, stable approximat ions of 
diffusion operators on non-uniform grids and the possibility 
of using moving cells for the transport part, all with in the 
framework of an exp licit  method. Flavius Guia present 
several results in one space dimension including free 
boundary problems, but the general algorithm was simple, 
flexib le and on uniform grids it can be fo rmulated for 
general evolution partial differential equations in arbitrary 
space dimensions. This article is organized as follows: The 
general algorithm for approximat ing systems of ord inary 
differential equations by Markov jump processes was 
described in section two. Section three is dedicated to a 
model problem. In Sect ion four Flavius Guia consider 
reaction-diffusion problems which are standard examples 
for employing deterministic schemes with grid adapativity 
in time and space. In their examples the time adapativity is 
given intrinsically by the stochastic method and the grid 
was considered to be uniform. In Section five F. Guia 
simulate diffusion on non-uniform grids by the same basic 
principle of an explicit stochastic scheme, a fact that is 
fairly impossible in exp licit deterministic methods. This 
feature opens the possibility of using moving grids. In 
Section six they consider cells which are t ransported 
according to the corresponding velocity and diffusion is 
simulated on a non-uniform grid configurat ion. Flav ius 
Guia apply this method to the v iscous Burgers’ equation. 
Section 7 deals with an example of a free boundary problem, 
namely the Black-Scholes equation for American put 
options. Finally Flavius Guia given concluding remarks 
concerning the features of the approach, presented in this 
article[15].  

In year 2011, N. Ahmed et al.[16] p roposed an article 
“Discontinuous Galerkin t ime stepping with local p rojection 
stabilization for transient convection-diffusion-reaction 
problems”. A t ime-dependent convection-diffusion- 
reactions problem was discretize in space by a continuous 
fin ite element method with local pro jection stabilization and 
in time by a discontinuous Galerkin method. Authors 
presented error estimates for the semidiscrete problem after 
discretizing in space only and for the fully discrete problem. 
Numerical tests confirm the theoretical results. The article 
was organized as follows: Section two introduces the 
problem under consideration and defines the basic notations. 
The semidiscretization in space and the local projection 
stabilization are introduced in section three. Furthermore, 
an optimal error estimate for the semid iscretized problems 
will be given. Error analysis for the fu lly discrete problem 
after a time discretisation by a discontinuous Galerkin 
method was described in section four. Numerical results 
which confirm the theoretical predictions Described in 
Section five. Finally, Sect ion six provides some concluding 
remarks. They have analyzed the error estimate for the time 
dependent convection diffusion-reaction problem with local 

projection stabilizat ion in space and discontinuous Galerkin 
method in time. The optimal error estimates in strong and 
weak norms have been obtained. From the numerical results, 
N. Ahmed et al. find that the parameters of LPS leads to 
different influences to first and second order schemes. The 
first order schemes are more sensitive for the parameters of 
LPS than the second order schemes. 

4.2. Unsteady Convection–Diffusion Problems 

In year 2009, Xin Cai et al.[17] proposed Finite Volume 
Method for time-dependent convection diffusion large 
Reynolds number problem. Time-dependent convection 
diffusion equation, with a d iscontinuous data and large 
Reynolds number, was examined. This kind of problem 
leads to interior layer phenomena due to the discontinuity. 
The solution was changes rapidly near interior layer. 
Traditional fin ite volume method is applied. Two efficient 
numerical methods are constructed. One is Shishkin’s fin ite 
volume method, another is Improved-Shishkin’s fin ite 
volume method. Shishkin’s finite volume method applies 
Shishkin’s idea to construct mesh partit ion. Improved- 
Shishkin’s fin ite volume method applies multitransition 
point’s technique to reconstruct mesh partition near interior 
layer. Numerical experiments indicate that both methods are 
well fitted the property of interior layer. Both methods are 
uniformly convergence scheme. Improved- Sh ishkin’s fin ite 
volume method was more accurate than fin ite difference 
method, which is constructed by Farrell in his previous 
work. 

In year 2010 Jiansong Zhang and Danping Yang was 
presented an article[18]. “Time-dependent convection- 
diffusion system by Parallel least-squares finite element 
method”. A short description of article are given On the 
basis of overlapping domain  decomposition, they construct 
a parallel least-square finite element algorithm (PLS) for 
solving the first-order time-dependent convection-diffusion 
system. The algorithm is fully parallel. At each time step, 
only one or two iterations are needed to reach to given 
accuracy. Some numerical results are supported to the 
theoretical results. The outline of th is article[18], is as 
followed: The least-squares fin ite element procedure for the 
convection-diffusion system and formulation of the parallel 
least-squares finite element algorithm was described in 
section two, in Sect ion three J. Zhang et al. Give some 
lemmas, which was important to prove the convergence 
theorem of the approximate solution. And then, authors 
prove convergence theorem in Sect ion four. After that, some 
numerical examples are provided to confirm J. Zhang et al 
theoretical results in Section five. Finally, some concluding 
remarks are given in Section six. In this article, they have 
proposed a parallel least-squares finite element method for 
time-dependent convection-diffusion system. The advantage 
of this method is that only one or two iterations are needed 
to reach given accuracy at each time level. However, for a 
general iterative-type parallel algorithm, many iteration 
steps are needed to reach given accuracy, which produce 
much more global amount of computational works. 
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Moreover, the theoretical analysis also indicates that the 
convergence of the PLS algorithm is independent of the 
number of sub-domains N. Though one dimensional 
convection-diffusion problem is chosen as J. Zhang et al: 
model in this article, in fact, this method was also applied 
for more general problems and multid imensional problems, 
e.g., the Navier–Stokes equations, miscible displacement 
problems in  porous media etc., which was author’s further 
work. 

5. Singularly Perturbed Convection– 
Diffusion Problems 

In year 2008, Mohan K. Kadalbajoo et al.[19] presented 
an article B-Spline collocation method for a two- parameter 
singularly perturbed convection-diffusion boundary value 
problems. In this article they are using B-spline co llocation 
method on piecewise-uniform Shishkin mesh, which leads 
to a tridiagonal linear system. The convergence analysis 
was also given and the method is shown to have uniform 
convergence of second order. Numerical results are 
presented in the end of the article which also supports the 
theoretical results. This article is d ivided in to six sections 
introductory part of the art icle is d iscussed in section first, 
which is given in short above, Section two involves Mesh 
selection strategy, in this section they formed the 
piecewise-uniform grid  in  such a way that more points are 
generated in the boundary layer regions than outside of it. 
They divide the interval[0, 1] in to three sub-interval. 
Section three involves B-Spline collocation method. 
Derivation for uniform convergence was given in section 
four. In section five they give numerical results and 
verify ing with experimental convergence. In section six, 
they give conclusion which is as fo llow: B-spline 
collocation method for the solution of two-parameter 
singularly perturbed convection-diffusion boundary value 
problems g iven in [19]. It is relatively simple to co llocate 
the solution at the mesh points, to set up the collocation 
system and to solve them. The results obtained using this 
method are more accurate then the stated existing method 
with same numbers of nodal points and gives the order of 
convergence to be two. Also this method produces a spline 
function which is useful to obtain the solution at any point 
of the interval, whereas the fin ite difference method gives 
the solution only at selected nodal points. The numerical 
results given in tables of article show that the present 
method approximates the exact solution very well.  

In year 2009 G. I. Shishkin and L. P. Shishkina[20] 
presented an article, “higher order Richardson scheme for a 
singularly perturbed Semilinear Elliptic Convection– 
Diffusion Equation” .The Dirichlet problem on a vertical 
strip is examined for a singularly perturbed semi linear 
elliptic  convection–diffusion equation. For this problem, the 
basic nonlinear difference scheme based on the classical 
approximations on piecewise uniform grids condensing in 
the vicinity of boundary layers converges ∈ -uniformly 
with an order at most almost one. The Richardson technique 

is used to construct a nonlinear scheme that converges ∈
-uniformly with an improved order, namely, at the rate 

( )2 22
11 2ln ,o NN N− −+ where 1 1N   and 2 1N  are the 

number of grid nodes along the 1x -axis and per unit 

interval of the 2x -axis, respectively. Th is nonlinear basic 
scheme underlies the linearized iterat ive scheme, in which 
the nonlinear term is calculated using the values of the 
sought function found at the preceding iteration step. The 
latter scheme was used to construct a lineralized iterative 
Richardson scheme converging ∈ -uniformly with an 
improved order. Both the basic and improved iterative 
schemes converge ∈-uniformly at the rate of a geometric 
progression as the number of iteration steps grows. The 
upper and lower solutions to the iterative Richardson 
schemes are used as indicators, which makes it possible to 
determine the iteration step at which the same ∈-uniform 
accuracy is attained as that of the non-iterative nonlinear 
Richardson scheme. It was shown that no Richardson 
schemes exist for the convection-diffusion boundary value 
problem converging ∈ -uniformly with an order greater 
than two. Principles were d iscussed on which the 
construction of schemes of order greater than two can be 
based. This article is divided in to various part: in first part, 
authors are given introduction of problem which are arising 
in real life system, after that they are giving statement of the 
problem. In next section they, describe the priori bounds on 
solutions and their derivatives, finally authors are giving 
conclusion. In this article[20], Richardson schemes of 
improved accuracy were constructed for the boundary value 
problem on a vertical strip for the singularly perturbed 
semilinear elliptic Convection-Diffusion equation. These 
schemes converge-uniformly in the maximum norm with 
the second order (up to a logarithmic factor). 

In year 2009 Katarina Surla et al.[21] proposed an article 
“A robust layer-resolving spline collocation method for a 
Convection-Diffusion problem”. They consider fin ite 
difference approximation of a singularly perturbed 
one-dimensional convection-diffusion two-point boundary 
value problem. The problem is numerically treated by a 
quadratic spline collocation method on a piecewise uniform 
slightly modified Shishkin  mesh. The position of 
collocation points is chosen so that the obtained scheme 
satisfies the discrete min imum principle. They prove 
pointwise convergence of order ( )2 2lnO N N−  inside the 

boundary layer and second order convergence elsewhere. 
The uniform convergence of the approximate continual 
solution is also given. Further, they approximate normalized 
flux and give estimates of the error at  the mesh points and 
between them. The numerical experiments presented in the 
article confirm their theoretical results. The paper is 
organized as fo llows: In Section two, K. Surla et al. recall 
the decomposition of the problem taken in article[21] and 
its properties and give the construction of Sh ishkin mesh 
and derivation of the spline d ifference scheme. Section 
three is devoted to the construction of the barrier function 
for the boundary layer function. In Section four, pointwise 
convergence of the method and uniform pointwise 
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convergence of the normalized flux was proved in section 
four and five, while Section six contains the proof of 
uniform convergence of the normalized flux between the 
mesh points on a slightly modified Sh ishkin mesh. In 
Section seven, Katarina Surla et al. give the convergence 
result for the continual solution. Finally, the numerical 
results were presented in Section eight. 

In year 2011, Peng Zhu et al.[22] presented an article “A 
uniformly convergent continuous-discontinuous Galerkin 
method for singularly perturbed problems of 
convection-diffusion type”. In this article, they introduce a 
coupled approach of local discontinuous Galerkin and 
standard fin ite element method for solving singularly 
perturbed convection–diffusion problems. On Sh ishkin 
mesh with linear elements, a rate ( )1 lnO N N− in an 

associated norm isestablished, where N is the number of 
elements. Numerical experiments complement the 
theoretical results. Moreover, a rate ( )2 2lnO N N−  in  a 

discrete L∞  norm, and ( )2O N −  in  2L  norm, are 

observed numerically on the Shishkin mesh. The article is 
organized as fo llows: the coupled LDG and CFEM for the 
singularly perturbed problems were introduced in section 
two. The stability and error analysis of the coupled method 
with  linear elements on a Sh ishkin mesh is given in Section 
three. The implementation of their coupled method on a 
Shishkin mesh is presented in Section four. The aims of 
article to validate author’s theoretical result. Further, they 
numerically observe the uniform convergence rate 

( )2 2lnO N N−  in a d iscrete L∞ norm, and ( )2O N −  in  

2L  norm. Finally in last Section five authors give some 
concluding remarks. In the sequel, with C Peng Zhu et al. 
would denote a generic positive constant independent of the 
perturbation parameter ∈and mesh size. 

In year 2011, Fatih Celiker et al.[23] present an article 
“Nodal Super convergence of SDFEM for Singularly 
Perturbed Problems”. In this article, they analyzed the 
streamline diffusion fin ite element method for one 
dimensional singularly  perturbed Convection-Diffusion- 
reaction problems. Local error estimates on a sub-domain 
where the solution was smooth are established. The 
organization of the art icle is as follows: In Section two, they 
display the method and state their main results in[23]. The 
proof of these results was given in  Section  three. Numerical 
results verifying the sharpness of author’s. Theoretical 
findings are provided in Section four. At last authors gave 
his concluding remark which  is as fo llows: authors 
considered streamline diffusion finite element method 
(SDFEM) for one dimensional singularly-perturbed 
convection-diffusion reaction problems. They proved that 
on Shishkin-type meshes the nodal error super converges 
with a rate o f order ( ) ( )

2 21ln / ln /
K KN N Nε − , depending on 

the choice of the transition point of the mesh. Their result 
can be considered as an extension to the 
singularly-perturbed regime of the nodal estimate proved by 
Douglas and Dupont in[23]. Celiker and Cockburn[23] 

proved a super convergence result similar to that of Douglas 
and Dupont for the discontinuous Galerkin method. 
However, their result is the first such result for 
singularly-perturbed problems. In a forth coming art icle, 
they will consider an element-by-element post processing 
resulting in a new approximation  that converges with the 
same rate as that of the nodal erro r throughout the 
computational domain. The other part of their main result is 
a local error estimate. They prove that, in  a suitably defined 
norm, the error of the SDFEM converges uniformly in ε  
in the part of the mesh where the exact solution is regular. 
In other words, they prove uniform-in- ε  convergence 
away from the boundary layer. 

6. Convection-Dominated Diffusion 
Problems 

In the year 2007, Petr Knobloch “Numerical Solution of 
Convection–Diffusion Equations Using a Nonlinear Method 
of Upwind Type”[24] presented an article. The focus of the 
author was on scalar Convection-Diffusion problem which 
is solved by using a nonlinear method of upwind type. In 
this article the author extended Mizukami-Hughes method 
which is a nonlinear method of upwind type using 
conforming piecewise linear triangular fin ite elements. The 
author extended this method on whole range of the diffusion 
parameter whereas the original method was introduced for 
the convection-dominated reg ime only. After that the author 
proved that the extended method satisfies the discrete 
maximum principle and also illustrated its properties by 
means of numerical results. This article categorized in to six 
parts: the first parts contain introduction of the article, 
second part contains streamline upwind/Petrov–Galerkin 
method (SUPG) Method and spurious oscillat ions at layers 
dimin ishing methods (SOLD), third part contains 
Mizukami–Hughes Method, in fourth part the author 
describes the improved Mizukami–Hughes method in fifth 
part the author describes suppression of the Upwind 
Character of the Mizukami–Hughes Method. In 
introduction part, the author give a discussion about some 
numerical techniques.  

.u b u fε− ∆ + ∇ =    in   Ω , bu u=    on  DΓ ,

u g
n

ε ∂ =
∂

 on NΓ          (1) 

Since it is well known that the numerical solution of (1) 
is a challenging task since convection often dominates 
diffusion and hence the solution of (1) typically contains 
narrow inner and Boundary layers. Discrete solutions of (1) 
are then often polluted by spurious oscillations. Therefore, 
many various stabilized methods have been developed 
during the past decades. At last author has given conclusion 
of this article, which is the improved Mizukami-Hughes 
method applied to scalar steady Convection-Diffusion 
equations in small and moderate Peclet number reg imes. 
Author has shown that, in this case, the method introduces 
two much artificial diffusion, which may decrease the 
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accuracy of the discrete solution. Therefore, they proposed 
modifications of the Mizukami–Hughes method, which 
preserve its favorable properties for large Peclet  numbers 
and reduce its upwind character if the Peclet number is 
small. Numerical Results justify the proposed 
modifications. 

In year 2007 Volker John et al.[25] proposed an article on 
spurious oscillations at layers d iminishing (SOLD) methods 
for convection-diffusion equations. In this article, authors 
proposed that “in streamline upwind/Petrov- Galerkin 
(SUPG) stabilizat ion of convection-dominated 
convection-diffusion equations is the presence of spurious 
oscillations at layers”. Since the mid of the 1980s, different 
methods have been proposed to remove or, at least, to 
dimin ish these oscillat ions without leading to excessive 
smearing of the layers. This art icle gives a review, state of 
the art of these methods, discussed their derivation, 
proposed some alternative choices of parameters in the 
methods and categorizes these methods. Some numerical 
studies which supplement this review provide a first insight 
into the advantages and drawbacks of the methods. In this 
problem[25] taken by authors is scalar Convection- 
Diffusion equation when convection is strongly dominant. 
Then basic difficu lty is that, in this case, the solution of 
taken problem is typically possesses interior and boundary 
layers, which are s mall sub regions where the derivatives of 
the solution are very large. The widths of these layers are 
usually significantly smaller than the mesh size; due to that 
reason the layers cannot be resolved properly. This leads to 
unwanted spurious (nonphysical) oscillations in the 
numerical solutions, the attenuation of which has been the 
subject of extensive research for more than three decades. 
This article[25] is categorized in seven: part summary of 
first part are given above, in second part authors described 
usual Galerkin Discretisation, part  three and this section 
also described introductory concept of SUPG method. 
Section four described the accuracy of the SUPG method is 
greatly influenced by the choice of the stabilizing parameter, 
section five described brief review of SOLD method. A 
basic problem of all SOLD methods is to find the proper 
amount of artificial diffusion which  leads to sufficiently 
small nonphysical oscillat ions (requiring that the artificial 
diffusion is not ‘too small’) and to a sufficiently  high 
accuracy (requiring that the artificial d iffusion is not ‘too 
large’). Since the art ificial diffusion is the sum of the 
contributions coming from the SUPG term and the SOLD 
term, the defin ition of both terms will be thoroughly 
presented and discussed in this article[25]. Results of 
numerical tests with the SOLD Methods at two typical 
examples are reported in section six, and finally author’s 
given conclusions and an outlook of article[25]. 

In the year 2008, Volker John et al.[26] described 
numerical studies of stabilized FEM for solving scalar 
time-dependent Convection-Diffusion-reaction equation; 
this article was focused on those types of problems in which 
diffusion was small. In their study[26], they include 
streamline-upwind Petrov-Glerkin (SUPG) method with 

different parameters, various suspicious oscillation at layers 
dimin ishing (SOLD) method. A local p rojection 
stabilization (LPS) scheme based on enrichment and two 
fin ite elements method flux corrected transport (FEM-FCT) 
method and then main focus was on the evaluation of the 
numerical results on the reduction of spurious oscillat ion. 
The basic idea in application of stabilized FEM is that after 
the temporal Discretisation of the time-dependent equation, 
the equation has the form of a steady-state Convection- 
Diffusion-Reaction equation. Article[26] was divided in 
eight sections, whose short discussion is given bellow. In 
section first author described the simulation of 
time-dependent Convection-Diffusion-Reaction equation by 
an example of chemical reaction and gave the introduction 
and various methods used in[26]. Section two contains 
basic discretisation and described that in the case of 
dominant convection the Galerkin fin ite element 
formulat ion becomes instable. SUPG method was described 
in section three. The stability of the SUPG method applied 
to time dependent Convection-Diffusion equation was 
studied analytically in[4].It can be proved that the coupling 
of the SUPG method to implicit time stepping schemes 
leads to a stable Discretisation, regardless of the length of 
the time step. In addition, it was pointed out that spurious 
oscillation may be expected for small t ime steps, which can 
be observed in numerical studies in section seven. In section 
four the author described (SOLD) methods; this method 
was used to remove spurious oscillat ion at layers from 
SUPG finite element solution of steady-state scalar 
convection-diffusion-reaction equation, and given merits 
and demerits of SOLD methods. After that author described 
isotropic SOLD methods. In section five the author 
described local projection stabilizat ion schemes; the goal of 
these schemes consists in adding appropriate stabilization to 
small scales of the fin ite element solution only this 
approach is related to the idea of variation mult iscale 
methods for the simulation of multiscale phenomenon .In 
section six the author describes the Finite element 
method-flux corrected transport schemes, a non-linear 
FEM-FCT scheme and A linear FEM-FCT .In  section seven 
the author describes the numerical study of these methods 
described and after that they are considering these methods 
on Standard benchmark problems for time-dependent scalar 
Convection-Diffusion-Reaction and also discussing a body 
rotation problem .In section eight, Volker John et al. 
discussed summary of this article and found that FEM-FCT 
schemes were clearly the best schemes by taking an 
example the author shown that these scheme may lead to 
some spurious oscillation. In particu lar, the linear FEM- 
FCT scheme shows a very good ratio of accuracy and 
efficiency. The smearing which is introduced by these 
schemes will be tolerable in  many applicat ions. This 
scheme has been identified to be a promising candidate to 
be used in the simulation of the chemical react ion in 
precipitation process. 

In year 2008 R. Bermejo and, J. Carpio[27] described 
“An adaptive finite element semi-Lagrangian implicit– 
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explicit Runge-Kutta-Chebyshev method for convection 
dominated reaction–diffusion problems”. Authors introduce 
an adaptive method that combines semi-Lagrangian 
schemes with a second order implicit-explicit Runge-Kutta- 
Chebyshev (IMEX RKC) method to calculate the numerical 
solution of convection dominated reaction–diffusion 
problems in which the reaction terms are highly stiff. The 
convection terms are integrated via the semi-Lagrangian 
scheme, whereas the implicit-exp licit Runge-Kutta- 
Chebyshev treats the diffusion terms exp licit ly and the 
highly stiff reaction terms implicit ly. The space adaptation 
is done in the framework of fin ite elements and the criterion 
for adaptation is derived from the information supplied by 
the Semi-Lagrangian step; so that, this can be considered a 
heuristic approach to adapativity that is somewhat similar to 
the so-called r-adapativity strategy. In this article, problems 
taken by authors are time dependent advection-diffusion- 
reaction equations with highly stiff reaction terms. In 
second part, authors describe briefly the fin ite element 
Semi- Lagrangian implicit-exp licit  Runge-Kutta-Chebyshev 
method and this section also involves many subcategory 
which are Fin ite element Discretisation, The semi- 
Lagrangian IMEX RKC method after that they are 
surmising Semi- Lagrangian-IMEX RKC Algorithm, The 
adaptive method was described in section three, at every 
time step authors will adapt first the spatial mesh and then 
the length of the time step. Authors approach to mesh 
adaptation will be heuristic rather than analytical. Based on 
the goal of mesh adaptation that consists of generating a 
mesh adapted to the problem such that the numerical 
solution satisfies an error criterion, one refines the mesh in 
those regions where the numerical solution experiences 
large spatial variat ions, because it is in these regions where 
the local errors are presumably  larger. On  the other hand, in 
convection-dominated diffusion problems numerical 
experiments indicate that the residual of the underlying 
differential equation is dominated by the hyperbolic part of 
the equation due to the fact that important features of the 
solution, such as jumps and regions of strong gradients, are 
transported along the trajectories. Therefore, the 
informat ion given by the semi- Lagrangian step of authors’ 
method[27] may  be very valuable to devise an economical 
error indicator to adapt the mesh adaptive method in section 
four authors giving Numerical tests. 

In year 2009, Pengtao Sun et al.[28], presented an article 
“Numerical Studies of Adaptive Finite Element Methods for 
Two Dimensional Convection-Dominated Problems”. In 
this article, authors study the stability and accuracy of 
adaptive finite element methods for the 
convection-diffusion-reaction problem (convection- 
dominated) in the two  dimensional space. Through various 
numerical examples on a type of layer-adapted grids 
(Shishkin grids), they show that the mesh adaptivity driven 
by accuracy alone could not stabilize the scheme in all cases. 
Furthermore the numerical approximation was sensitive to 
the symmetry of the grid in the region where the solution 
was smooth. On the basis of these two observations, they 

develop a mult ilevel-homotopic-adaptive finite element 
method (MHAFEM) by combining streamline diffusion 
fin ite element method, anisotropic mesh adaptation, and the 
homotopy of the diffusion coefficient. Pengtao Sun et  al. 
used numerical experiments to demonstrate that MHAFEM 
can efficiently capture boundary or interior layers and 
produced accurate solutions. the conclusion of article is 
given bellow. By performing numerical tests of the standard 
fin ite element method for convection-dominated 
convection-diffusion- reaction problem on different 
layer-adapted grids, authors demonstrated that the 
stabilization of a standard scheme is necessary even for the 
layer adapted Shishkin grids. In particular, they shown that 
the convergence rate is first order instead of second order in 
maximum norm for piecewise linear fin ite element when 
the grid was only quasi-uniform in the smooth part. They 
demonstrated that the streamline diffusion finite element 
method (SDFEM) on correctly adapted grids can produce 
both stable and accurate approximation. For the case of 
solution bearing regular boundary layers, they showen that 
Shishkin grid can increase the stability and accuracy of the 
standard finite element method. Whereas, for solutions with 
parabolic boundary layer only, the standard finite element 
method is unstable on Shishkin g rid  when the number of 
grid points in convection direction was odd. The 
stabilization and accuracy of a standard scheme are 
recovered by having even number of grid points or having a 
grid size being ε along the convection direction. On the 
other hand, by perturbing Sh ishkin grid  points outside or 
inside the boundary layer, they indicate that the accuracy 
depends crucially on the uniformity of the grid in s mooth 
region. Generally the convergence rate is first order instead 
of second order in maximum norm for piecewise linear 
fin ite element when the grid is only quasi-uniform in the 
smooth part. For constructing a correctly adapted grid  in  a 
posteriori manner, they presented a mult ilevel 
homotopic-adaptive fin ite element method (MHAFEM) 
based on anisotropic mesh adaptation. Numerical 
experiments showed that MHAFEM significantly reduces 
the number of degree of freedom and increase the accuracy 
in the process of achieving the desired ε. Mean while, the 
singular boundary or interior layers are accurately captured 
and resolved by the properly adapted grids. They note that 
in their approach the anisotropic meshes generated in a 
posteriori manner is not as good as the Shishkin grid when a 
priori in formation, e.g., the location of the layer and the 
width of the layer, was known. Several mesh improvement 
techniques will fail when ε is as small as. They could 
improve the robustness of the anisotropic mesh adaptation 
by other techniques, e.g., notably moving mesh methods. 
They did not address the issue of the efficiency, especially 
the efficient solver for the linear algebraic system. Multigrid 
type solvers will be deserved for further studying. Another 
important ingredient is the recovery of the Hessian matrix 
of the solution. The accuracy of recovered derivatives of u 
will significantly affect the mesh adaptation. They should 
test and report more robust recovery schemes in  a future 
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work. 
In year 2009, Ningning Yan and Zhaojie Zhou[29] 

published an article which is “A RT Mixed FEM/DG 
Scheme for Optimal Control Governed by 
Convection-Diffusion Equations”. In this article authors 
provided a numerical scheme-RT mixed FEM/DG scheme 
for the constrained optimal control problem governed by 
convection dominated diffusion equations. A priori and a 
posteriori error estimates are obtained for the state, the 
co-state and the control. The adaptive mesh refinement can 
be applied indicated by a posteriori error estimator provided 
in this article. Numerical examples are presented to 
illustrate the theoretical analysis. In this article authors use a 
combined method of the Raviart-Thomas (RT) mixed FEM 
and the discontinuous Galerkin  method (DG) to 
approximate the convection diffusion equation in the 
optimal control problem. A priori and a posteriori error 
estimates are obtained for both the state, the co-state and the 
control. The adaptive mesh refinement can be applied 
driven by a posteriori error estimator provided in this 
article[29]. This Article is organized  as follows: in Section 
two, Authors introduce the model problem for the optimal 
control problem governed by convection dominated 
diffusion equations and present a RT mixed FEM/DG 
scheme as the approximat ion scheme of the model problem. 
In Sect ion three Authors p roved a priori erro r est imate for 
the new scheme on the optimal control problem. 
Furthermore, a posterior error estimate is established in 
Section four. Finally three numerical examples were 
presented in Section five to  illustrate authors theoretical 
results. Finally authors gave a very important discussion of 
the articles which are as fo llow: In  this article, authors’ 
derived a priori and a posteriori error estimates of a RT 
mixed FEM/DG scheme for the constrained optimal control 
problem governed by convection dominated diffusion 
equations. Numerical examples was presented to 
illustrate[29] theoretical results. In Their work, they pay 
more attention on the a priori and a posteriori error 
estimates of the control u, the state y and the costate z, 
because they are important quantities in practical control 
problems. More careful analysis for the auxiliary variables

p


and q


is ignored, although some better results may be 
expected. In this area, there are many important issues that 
still need to be addressed. For example, authors was going 
to study LDG method for the optimal control problem, and 
try make the comparison between the LDG and the 
combined method of RT mixed FEM and DG in further 
coming work. Moreover, many computational issues have 
to be addressed; it was also important and challenging to 
investigate the optimal control problem governed by 
convection dominated diffusion equation of evolution. 

Pedro Galan del Sastre and Rodolfo Bermej[30] 
published an article in 2010, which is “Error Analysis for 
hp-FEM Semi-Lagrangian Second Order BDF Method for 
Convection-Dominated Diffusion Problems”. Pedro G. d. 
Sastre et al. presented in this article an analysis of a 
Semi-Lagrangian second order backward  difference 
Formula combined with hp-finite element method to 
calculate the numerical solution of convection diffusion 

equations in 2R . Using mesh dependent norms, authors also 
prove that the a priori erro r estimate has two components: 
one corresponds to the approximat ion of the exact  solution 
along the characteristic curves, which is 

2 1 | log |1m hO t h
t


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, Repn resents the error committed 

in the calcu lation of the characteristic curves. Here, m is the 
degree of the polynomials in the finite  element space, u



 is 
the velocity vector, hu



 is the finite element approximat ion 

of u


 and p denotes the order of the method employed to 
calculate the characteristics curves. Numerical examples 
support the validity of Pedro G. d. Sastre et al. estimates. 
The organization of the article is as follows: Preliminary 
results concerning the approximat ion properties of the fin ite 
dimensional spaces was presented in section two, where one 
seeks to approximate the solution, and they introduce the 
semi-Lagrangian method. The analysis of the approximation 
to X(x, s; t) was undertaken in Section three. Section four 
was devoted to the error analysis of the semi-Lagrangian 
Euler and second order BDF schemes. Numerical tests were 
presented in Section five to support the error analysis. 

In year 2010, Xin Cai[31] presented an article 
“Computational Method for Convection-Dominated 
Problem”. In this article convection-dominated ordinary 
differential equation was considered. Asymptotic solution 
and numerical method are two common methods for solving 
this kind of equation also, a novel computational method, 
which combines asymptotic solution, Runge-Kutta method 
and finite element method, was constructed. The presented 
method was proved to be an effective computation method. 
The organization of the article is as following: in first 
section, authors gave introduction of article and tells, real 
life problem where convection-dominated diffusion 
problems are arising. In the next section authors present his 
considered problem. Decomposition was constructed in 
section three, with study of Runge-Kutta method. In final 
section, finite element method was also constructed. The 
error estimation was given in final section also. In this 
article, Convection-Dominated problem was considered. 
The problem will lead to large oscillation since the 
coefficient of diffusion term is small. Firstly, the analytical 
solution was decomposed into the smooth component and 
the singular component. Secondly, Runge-Kutta method is 
applied to solve the equation outside the boundary layer. At 
last, Petrov-Galerkin fin ite element method with 
piecewise-exponential test function and the piecewise-linear 
trial function is constructed in order to solve the boundary 
layer.  

7. Conclusions 
In the present paper computational methods for solving 

convection–diffusion problems arising in real life are briefly 
discussed, it contains and analyzes huge amount of 
literature related to problems convection-diffusion problems 
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of different types from various fields. This paper is devoted 
to crux of various research articles published in refereed 
journals within last five years to get a  better know-how of 
the state of art covering up the subject and will be an 
excellent reference for researchers to offer a state-of-the-art 
of most active recent developments of methods for solving 
convection–diffusion problems with their applications and 
remain ing challenges for such types of problems. After 
survey of last five year we see that there are many methods 
required for solving Convection-Diffusion Problems, by 
using these various methods we can reduce computatniol 
cast and provide fast convergence. 
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