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Abstract  Emerging evidence acknowledge the view that Aquaporin’s (AQP’s) water channels are the controller of 

transcellular water flow in the Gastro intestines (GI), relating with their expressions in most intestinal tissues. And diverse 

physiological and pathophysiological processes. Owing to peculiar role of AQP’s in the GI, Changes in their distribution play 

important role in etiopathogenesis of diarrhoea, as they have direct involvement in the normal dehydration of faecal contents. 

Intensive studies on animal and cell model suggested inflammation and regulatory pathways such as cAMP/PKA/CREB 

affects activities of AQP’s gene expression, and the current information on regulatory pathways and directed mechanistic 

research are hypothesized to work out new approach for these clinical implications. Researchers are aimed on developing 

AQP modulators, blockers and inhibitors for therapeutic needs, and better understanding the role of intestinal AQP’s in inter 

individual susceptibility to diarrhoea diseases. Here we found that, α-ketoglutarate (AKG), nisin, genistein, anti-diarrheal 

Chinese medicine: Rhubarb tannin extract, N-acetylcysteine (NAC), neutrophil elastase inhibitor sivelestat and deletion of 

AQP4 help in clinical management of intestinal diarrhoea in different models of diarrhoea. It is there fore effective at 

reducing symptoms, possibly specific targets for AQP’s modulation. This review seeks to compile scientific evidence on 

changes in the abundance and modulation of AQP water channels that occur in different models of diarrheoa, marking a 

potential novel therapeutic target.  
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1. Introduction 

Aquaporins (AQP’s) are fundamental proteins which are 

classified among the major intrinsic protein family. They 

form channels in the cell membrane, which regulate water 

movement and partially allow the movement of ions or 

other micromolecules in and out of the cells [1-3]. Scholars 

around 1980s to early 1990s by chance discovered an 

enormous protein that causes osmotic flux of water in the 

membrane of red blood cell [4-6]. They were unknown  

until the first discovery of a 28kDa membrane protein, 

"Aquaporin-CHIP28", and later known as Aquaporin one 

(AQP1). Transcripts and proteins related to the AQP-CHIP 

water channel and their activity was demonstrated by 

practical work in a Xenopus oocyte. The DNA transfection 

in oocytes has showed that AQP is the one that permits  

the diffusion of water molecules through the cell membrane 

in response to  an osmotic reaction.  Since, it completely 
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increased the rate of osmotic swelling of oocytes. Isomers 

of AQP’s, have been categorized into three classes; 

"orthodox" "classical" Aquaporins, Aquaglyceroporins  

and Superaquaporins (S-aquaporins) respectively. The 

orthodox/classical Aquaporin and Aquaglyceroporins 

discretely which permits movement of water, glycerol, and 

small solutes. While S-aquaporins only are present in 

mammals and have an uncertain permeability [7-11]. 

Currently, fifteen (15) genes encoding AQP’s in Mammals 

AQP0 - AQP14 [12-15], and in total, thirteen (13) isomers 

of AQP’s were identified in human body AQP0 - AQP12 

[16,17]. The classical AQP’s are AQP 0, AQP 1, AQP 2, 

AQP 4, AQP 5, AQP 6, and AQP 8. The aquaglyceroporins 

are AQP3, AQP 7, AQP 9, and AQP 10 [18-20]. And 

finally, Mammalian S-aquaporins are AQP11 and 12 

[11,20,21]. Different subfamilies of AQP’s they are located 

and expressed at membrane sites in most epithelial of 

different tissues [22-25]. Even if the functions of AQP’s are 

well described in the kidney, lung, and heart, the knowledge 

on the subject of AQP’s pathophysiologic functions in the 

gastrointestinal tract remains to be illuminated. This paper 

aimed at reviewing the pathophysiology of the potential role 

of AQP’s in Gastro intestine (GI) specific to small and large 

intestine in different diarrhoeal pathological conditions. 
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2. The AQP’s Dynamic Physiology, and 
Their Expressions and Distributions 
in Normal Human’s Small and Large 
Intestine 

The physiologic role of the GI is complicated metabolic 

processes associated with the small intestine and colon as 

well as other primary organs. Along the GI wall, the 

existence of various specialized differentiated cells and gut 

microbiota permeates severus processes with the last act in 

the production of feces. Immediately after food intake, 

nutrient and water, came to be drawn up in the first segment 

of the intestinal tract, this stabilise osmotic pressure on the 

GI content and uplifted fluid recirculated within the 

intestinal cells. The fluid absorptions within the small 

intestine and the colon is ant osmotic and isotonic 

respectively (the balance is regulated with the Gl hormone, 

neurotransmitter, inflammatory mediators and AQP’s). The 

AQP’s is important modulator in fluid transportation in   

GI tract. [26]. Most essential for near-iso osmolar 

trans-epithelial rapid fluid movement driven by pressure 

gradient [27-29]. Their appearance in a variant forms 

distributed all over the gut has been sufficiently shown [30]. 

Among thirteen (13) AQP isoforms that is expressed in 

humans, at least eleven (11) AQP isomers located in the GI 

epithelial cells [31], with AQP1, AQP2, AQP3, AQP4, 

AQP7, AQP8, and AQP10 suggested to play are critical 

function’s in the GI (large and small intestine) related to 

intestinal fluid absorption and secretion. More ever, 

extensive evidence suggested most of the GI AQP’s were 

localized within the salivary gland, stomach, small intestine, 

gallbladder, pancreas, and finally, the colon [32,33], 

providing clues to their possible functional roles, which in 

most cases they are localized in cells and particularly 

tissues required higher water permeability [34].  

2.1. Gastro Intestinal AQP’s in Relation with Absorption 

and Digestive Function 

2.1.1. The Physiologic Role’s of AQP’s and their 

Expression in the Human Small Intestine  

The lining of the small intestinal cells are classified into 

two types: the villus enterocytes and crypt cells. The villus 

enterocytes are the cells covering the villi which is matured 

and non-proliferative cells differentiated to perform the role 

of digestion and absorption.The expression and tissue 

distribution of AQP’s in the small intestines, are largely 

connecting AQP’s with the enterocyte for the 

fast-bidirectional movement of fluid, which is related to 

both and secretory and absorptive processes. The most 

common AQP’s isoforms that have been identified in 

human small intestine are AQP1, AQP3, AQP7, AQP8, and 

AQP10 (See Figure 1) mostly presented in the crypt of 

enterocytes and superficial villi, which revealed their 

physiologic role in fluid and solute secretion and absorption. 

The detection of human AQP3 at basal and lateral surface 

of villi, goblet cells, granule containing cells, and Paneth 

cells indicates the AQP3 physiologic role in fluid 

reabsorption. Meanwhile, both protein levels and mRNA 

for AQP7 and AQP8 were exclusively presented in the 

mucosal epithelium surface of human ileum [31,35]. With 

the cellular localization of AQP8 at apical surface of 

epithelium of the ileum, and AQP7 along the basal and 

lateral parts at epithelia of the human ileum, indicating both 

AQP7 and AQP8 with function’s in fluid reabsorption [36]. 

Interesting evidence comes with localization of AQP9 and 

AQP10, both have been detected on mucus secreting goblet 

cells, first indicating unique function of AQP9 in mucus 

secretion which protects the small intestinal cells [37], than 

the distribution of the AQP10 at apical surface domain of 

goblet cells, at the surface of absorptive cells, and the lining 

of the villi in the human small intestine, suggested in the 

small intestine, AQP10 as it could be a main water channel 

for water transportation [38]. With a suggestion from 

previous study that water movement occurred from the 

apical membrane of the absorptive epithelium mainly 

through AQP10 and partly through AQP8, and across the 

basolateral membrane through AQP3 [38,39]. 

Figure 1.  The AQP’s Cellular Localization along The Human Small Intestine 

Gastro intestinal 

parts 
Cell type AQP’s isoform Physiologic Role. Reference 

Small intestines     

 Basolateral membranes of villus cells AQP3 Fluid reabsorption. [31,35] 

 
Basolateral surface of ileum epithelia 

cells. 
AQP7 Fluid reabsorption. [36] 

 Apical parts of Ileum epithelial cells. AQP8 Fluid reabsorption. [36] 

 Apical part of brush border. 
AQP7 and 

AQP8 
Fluid reabsorption. [40] 

 Mucus-secreting goblet cells. AQP9 
Protects the small 

intestinal cells. 
[37] 

 Apical membrane of goblet cells. AQP10 Fluid reabsorption. [38,39] 

 
Apical sides of the villus and crypt 

epithelial cells. 
AQP8 Fluid reabsorption. [31,36] 
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2.1.2. The Expression and Physiologic Role’s of AQP’s in 

the Human Large Intestine  

AQP’s in the colon appeared with their critical roles in 

many GI studies. It is clear that the absorption’s of water in 

the colon draws approximately 1.5 to 2 litres of water per 

day across an osmotic gradient with outermost movement 

predominantly occurring through AQP’s. Data indicated 

AQP1, AQP3, AQP4, AQP7 and AQP8 as the principal 

AQP’s in the human colon. AQP1 was located in the human 

colonic vascular endothelium of mucosa cells [41,42], the 

AQP2 is proposed to functions in colonic water absorption 

[43] since they are expressed along the membrane of 

absorptive surface in the human colonic cells [44]. The 

expression AQP3 is at apical surface of human villus 

colonic cells, the AQP3 in the colon seems to be of special 

interest [34]. Silberstein and his group [45] for the first time 

have identified functional AQP3 in the human colon 

suggested with a role in fluid absorption across this 

particular intestinal section. The fact that the intercellular 

junctions of colonic cells were reported to be tight limits 

water transport across the paracellular route and suggests 

the transcellular route as the main pathway for water 

movement driven by ion absorption. If this is the case, 

regulation of AQP3 may contribute to maintaining the 

control of water absorption and its alteration could lead to 

abnormal states such as constipation and diarrhoea, with 

inhibition of AQP3 function either by Mercury(II)chloride 

(HgCl2) or Cupper(II)Sulphate (CuSO4) was reported to 

causes diarrhoea [45,46]. Meanwhile, the detection of 

AQP4 was at basal and lateral surface of colonic cells, 

Ishibashi and his colleague [19] denote involvement of 

AQP4 in the dehydration of the fecal contents through rapid 

restoration of luminal water back into the body [19], with a 

former literature revealed a higer content water in feces and 

reduction in osmotic water permeability in AQP4-/- knock 

out mice [20]. Additionally, the detection of AQP7 was at 

basal and lateral part of in the crypt and villi epithelia of 

human colon [36] while AQP8 was detected along the 

apical sides of the villus and crypt epithelial cells in the 

human colon, which indicated their possible roles in the 

secretion or absorption of water at these sites [31,36]. In 

general, AQP3, AQP4, AQP7, and AQP8 play remarkable 

roles in controlling GI fluid balance within the colon. For 

instance, the inhibition of both mRNA and their protein 

expression of gastric AQP3 and AQP4 by exposure to 

mercury, as well as protein expression of AQP3 and AQP7 

in the in the small and large intestines of rats, led to the 

accumulation of intestinal fluids and, finally, causes 

diarrhoea [31,47]. 

3. The AQP’s Alteration and Their 
Involvement in the Diarrhoea 
Pathology  

Diarrhoea, is identified with recurrent and watery bowel 

movements, generally resulted by GI infections (see in 

Figure 4), diet changes or other illnesses (See in Figure 5). 

Studies indicated changes in the expression or interrupted 

function of AQP’s influence the transportation of water 

(See in Figure 3). And the interaction between dysregulated 

AQP’s and diarrhoea has also been related in many 

diarrhoea diseases. 

3.1. Physiologic Role of AQP’s in Pathogenesis of 

Diarrhoea Induced by Bacterial Infections  

Infectious bacterial diarrhoea is always correlated with the 

rapid deprivation of intestinal fluids and electrolytes 

characterized with either a sharp rise in intestinal secretion 

and/or a decline in intestinal absorption [49]. In multiple 

diarrhoea model, infections causes changes in AQP’s 

distribution thus play important role in etiopathogenesis of 

diarrhoea. 

Figure 2.  The AQP’s Cellular Localization along The Human Large Intestine 

Gastro 

Intestinal Part 
Cell Type AQP’s Isoform Physiologic Role Reference 

Large 

intestines 

Human colonic vascular 

endothelium. 

 

AQP 1 

Maintain fluid reabsorption 

between colonic vascular 

endothelium and intestinal cells. 

[44] 

 
Absorptive epithelial, colon 

mucosa. 
AQP2 Fluid reabsorption. [43] 

 
Apical membrane of colonic 

villus epithelial cells. 
AQP2 and AQP3 

Maintain the control of water 

absorption. 
[34, 48] 

 
Basal and lateral part of the 

surface of colonic cells. 

AQP4 

 

Maintain the osmotic water 

movements. 
[19] 

 
Basolateral epithelia in the 

villi and crypt. 
AQP7 

Secretion or absorption of water at 

these sites. 
[36] 

 
Apical sides of the villus 

and crypt epithelial cells. 
AQP8 

Secretion or absorption of water at 

these sites. 
[31, 36] 
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Figure 3.  Different Diarrhoea Models Depicting the Pathologic Mechanisms Involving AQP’s Alteration / Regulation 

For example, the mechanism which enterotoxigenic 

Escherichia coli (ETEC) induced diarrhoea is through, their 

localization action to the small intestine and release of 

enterotoxin to the intestinal cells, which further drives the 

secretion of intestinal fluid. The first report to demonstrates 

ETEC induced diarrhoea is involved with defects in water 

reabsorption within the jejunum of the small intestines   

was connected to reduction of AQP3 water channel [50]. 

While diarrhoea infection caused by Enterohemorrhagic 

Escherichia coli (EHEC) and ETEC, reduced both AQP3 

and AQP 2 in the colony of mice [51]. Moreover, Zhang Di 

[52] showed possible mechanisms of diarrhoea which is 

correlated with the rapid decrease in both protein level and 

mRNA expression of AQP4 in the ileum followed by 

Enteropathogenic Escherichia coli (EPEC) infection, and 

pathogenic infections of E. coli O1 also reduced expression 

of AQP3 [53]. Additionally, up regulation of AQP3, AQP 4, 

and AQP 8 from diarrhoea infection caused by E. coli 

(liposaccharide (LPS)), suggesting an α-ketoglutarate 

(AKG), can likely be equally used as an emerging therapy 

for diarrhoea treatment through regulatory mechanisms of 

AMP-activated protein kinase (AMPK) pathway marked 

with the reduction of nuclear factor kappa B pathway 

(NF-κB) [54]. On the other hand, nisin influence increases 

the expression of AQP 3 in the jejunum, colon, and 

duodenum, specifically in the jejunum. AQP3 functions in 

the inhibition of diarrhoea influence rapid recovery of 

intestinal fluid [55]. 

The Gram-negative bacteria Vibrio cholerae are the main 

causes of cholera which is associated with serious watery 

diarrhoea. The main virulence factor of V. cholerae is 

Cholera toxin (CT), consisting of an enzymatic (A) subunit 

and 5 binding (B) subunits. Cholera toxin acts by the 

following mechanism: First, the binding of its B subunit to 

GM1 ganglioside receptors located in the apical membrane 

of intestinal epithelial cells (IEC), CT is internalized and the 

CT A subunit is released into the cytosol, where it induces 

intracellular cyclic Adenosine Monophosphate (cAMP) 

generation, enabling cAMP-mediated intestinal fluid 

secretion [56-58]. Former evidence demonstrated a changes 

in water permeability happened with downregulation of 

AQP3 followed by CT [58]. While, observations in the rat 

intestine also verified the down-regulation of AQP8 [59], 

and AQP10 in human cholera patients [60]. The altered 

AQP’s regulation in CT induced diarrhoea has been linked to 

increased intracellular cAMP concentration. The possibility 

that these AQP’s are responsible molecules for causing acute 

secretory diarrhoea as in cholera was considered, with an 

adenylyl cyclase (AC) accelerator forskolin showing similar 

effects as CT. However, further investigation is needed to 

identify what mechanism lays between the increase of cAMP 

concentration and the changes of water permeability of 

AQP’s.  

Like wise S. Typhimurium downregulate the AQP8 

expression in the colon of rats and caecum of chicken 

[61,62]. However, mechanisms of regulation and 

information regarding other isomers of AQP's and their 

direct involvement with S. enterica serovars are still to be 

researched, perhaps new research could disclose a new 

scope in understanding cellular susceptibility to pathologies 

caused by Salmonella enteritidis serovars. Meanwhile,  

diets supplemented with prebiotics such as 
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fructo-oligosaccharides (FOS), lactulose, and inulin 

consistently increased intestinal Salmonella translocation in 

rats and they have been associated with the increase in AQP3 

[63].  

Figure 4.  The Dynamic Regulation of AQP’s Expression in Infectious Diarrheal 
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Figure 5.  The Dynamic Regulation of AQP’s Expression in IBD, Chemotherapy treatments (5-FU) and Laxative effects of MgSO4 and Senna products in 
their contribution of Diarrhoea 

Assay mode Regulation of AQP’s 
Available 

therapy 
Molecular Target Reference 

UC Human AQP7 and AQP8. 
Deletion of 

AQP4. 

TNFα, IFNγ 

ERK /MEK 

NF-kb. 

[118, 

119] 

UC and AC Mice 

AQP 4, AQP7 and AQP 8. 

 

AQP3 and AQP8. 

 

  

[88] 

 

[93] 

CD 
Human 

 

AQP1 and AQP3. 

 

 

  [83, 92] 

MVID Mice AQP7. n/A. CFTR. [101] 

(Food allergies) 

Ovalbumin 

 

Mice AQP4 and AQP8.   [104] 

β‐CG Piglet 
AQP3 and AQP4. 

 
NAC. LC3II/ LC3I. [105] 

MgSO4 HT-29 
AQP 2 and AQP 3. 

 
RTE. PKA/p-CREB. [106] 

5-FU 
Rat and 

Mice 
AQP 4 and AQP 8. 

CXCR2 

antagonist 

And 

RT. 

TNF-α,IL 6,IL 1β,IFNγ, 

IL 22, and IL17 

CXCL3, CXCL2, and 

CXCL1. 

 

[112, 

113] 

Senna Rat 

AQP3, AQP 4, AQP 5, 

AQP 6, AQP 7, and AQP 

8. 

n/A. 

Eleveted cytokines 

including 

IL6, IL1  

and 

PGE2. 

[115, 

117] 

Down regulated   ; Neutrophils prominent chemokine receptor, CXCR2; The Chemoattractant for several immune cells especially 

neutrophils, CXCL. Abbreviations: Ulcerative colitis, UC; Crohn’s diseases, CD;5-fluorouracil,5-FU; Rhubarb tannin extract, RTE; 

Rhubarb tannin, RT; Tumor necrosis factor α, TNFα; Interferon gamma, IFNγ; Interleukin, IL; Nuclear factor kappa B, NF-kb; 

Extracellular signal-regulated kinase, ERK; Mitogen-activated protein kinase, MAPK; Protein Kinase Activation, PKA; cAMP 

Response Element Binding Protein, CREB; prostaglandin E2, PGE2; β‐Conglycinin, β‐CG; N‐acetylcysteine, NAC; Cystic 

fibrosis transmembrane conductance regulator,CFTR; Microvillus inclusion disease MVID. 

3.2. Physiologic Role of AQP’s in Pathogenesis of 

Diarrhoeas Induced by Viral Infection’s 

Viruses are the most common etiologic agents, which is 

the most frequent pathogens associated with diarrhoea. 

Pathogenic virus example Rotavirus (RV) is a worldwide 

main cause of infantile diarrhoea and gastroenteritis. 

Clinical studies have showed, RV infection is actively 

related to symptoms, such as abdominal pain, fever, 

vomiting, acute gastroenteritis, dehydration, and diarrhoea 

[64]. RV diarrhoea has been connected to several distinct 

mechanisms, including a virus-encoded toxin, malabsorption 

secondary to enterocyte destruction, villus ischemia, and 

stimulation of the enteric nervous system (ENS) [65,66]. 

Over the past decades, diverse studies has conveyed the 

mechanisms of diarrhoea initiation at the tissue and cellular 

levels, and new knowledge is beginning to emerge. The 

diarrhoea is regarded to be secondary malabsorptive to 

enterocyte destruction [66,67]. In a way that the secretion of 

excess fluid largely resulted from active chloride emanation 

to the intestinal lumen, which causes minor movement of 

water and sodium. During this process, it is supposed that 

RV secreted a viral enterotoxins named nonstructural protein 

(NSP4), stimulate calcium-activated chloride channel(s) 

(CaCCs) while block sodium ion (Na+) or glucose 

cotransporter (SGLT1) across the enterocytes luminal 

membrane [68,69]. At present, several Na+ and chloride ion 

(Cl-)channels have been identified in RV cause secretory 

diarrhoea: sodium potassium chloride cotransporter 

(NKCC1), epithelial Na+ channel (ENaC) and TMEM16A. 

However, the expression and pathophysiological role of 

water channel AQP’s in RV infection has yet to be fully 

established [70-72]. Literatures suggested RV NSP4 might 

increase the cAMP concentration by attaching to specified 

receptors within intestinal cells, resulting in the secretion of 

Cl- and further reducing the absorption of sodium and water 

[73,74]. In the same way, activity of AQP’s is notably 

increased with protein kinase A (PKA) activators such as 

cAMP and forskolin [75,76]. Meaning that, a cAMP/PKA/ 

cAMP- Response Element Binding Protein(CREB) are 
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possible signalling molecules linking the AQP’s and RV 

diarrhoea pathology, as genistein provided new anti-RV 

strategy by inhibiting rotavirus replication and  

upregulating AQP4 expression via the cAMP/PKA/CREB 

signaling pathway [71]. These findings suggest the 

pathophysiological mechanism of RV infection involves 

decreased expression of AQP’s.  

In line with what have been said above, Cao and his 

colleagues [70] observed gradually decreased of protein 

expression levels AQP 1 in the ileum, and AQP1, AQP4, 

and AQP8 in the colon followed by RV infection’s. Chen H, 

et al. [77] reported infection by RV-SA-11 decreased AQP1 

mRNA in a mouse model of diarrhoea, and the treatment 

with antidiarrheal oral liquid traditional Chinese medicine, 

in turn upregulated AQP1 mRNA while ameliorating the 

effects of diarrhoea. AQP1 are said to be localized at 

colonic vascular endothelium cells [41,42], this further 

suggesting the decrease in AQP1 inhibited water transfer 

from the intestinal tract to the vascular side and causes 

diarrhoea.Furthermore, AQP4 and AQP8 are an important 

modulators of intestinal fluid movement in the colon.    

As previously suggested, deletion of AQP4 gene in a mice 

demonstrates higher water content of defecated stool 

[70,78], and small interfering RNA notable reduce 

absorption of water in rat colon through direct inhibition 

AQP8 [79]. On the contrary, protein expression of AQP3 in 

the colon was drastically increased in a mice infected RV 

[70], suggested was the balancing mechanism toward 

avoiding severe diarrhea and further dehydration.  

3.3. The Roles of AQP’s in Inflammatory Bowel Disease, 

Diarrhoea, Pathological Mechanism 

Crohn’s disease (CD) and ulcerative colitis (UC) are two 

forms of IBD that are related to reduced fluid intake with 

impaired secretion, causing a defect in barrier function 

marked with the involvement of diarrhoea [81]. The 

pathogenesis of IBD is still uncertain, although different 

attributes of GI immune system take part in IBD etiology 

[82]. Ricanek et al. [83] showed the mRNA expressions of 

AQP 7 and AQP 8 were downregulated in the early stage of 

patients with UC, with significant decrease in both, AQP1 

and AQP3 mRNA levels were in the ileum of patients with 

CD. The AQP1 protein was downregulated in HIMECs 

after coculture with C. difficile with related IBD symptoms, 

suggesting C. difficile influenced the occurrence and 

progression of diarrhoea by suppressing AQP1 protein 

expression and inhibiting intestinal cell permeability [84]. 

Furthermore, depicted loss of AQP1, AQP3 and AQP 8 in 

the intestinal cell in CD patients and distinct apical 

localization (migration) has been witnessed in several 

studies. The loss of apical polarization, and reduction of, 

AQP1 and AQP3 mRNA levels were observed in ileum of 

patients with CD [83], and reduction of AQP8 mRNA in the 

apical area of colonic surface in CD [36]. The reduction’s 

and cellular migration serve as an indicator for disturbance 

in epithelial polarity, resulting in GI barrier injury and 

malfunction [85,86]. 

The description on the potential functions of AQP’s in all 

forms of IBDs (CD and UC) showed distinctive distribution 

pattern in the GI and the interaction between GI 

inflammation and the physiologic in water and ions 

trafficking and adjustment has also been established [87]. 

Former study highlighted the change in AQP’s, suggesting 

dextran sodium sulfate (DSS) caused colonic injury through 

downregulation of AQP’s; the model demonstrated that 

colitis disease is linked with Th1 immune response same as 

in human UC. In the acute phase, tumor necrosis factor α 

(TNFα), interferon gamma (IFNγ), Interleukin 1 (IL 1), and 

IL 12 all upregulated, followed by reduction of AQP 4, 

AQP 7, AQP 8 mRNA levels [88]. Ifnγ behaves in various 

ways to influence inflammation, for example, increasing the 

secretion of a proinflammatory arbitrators by activating, 

manipulating the cellular trafficking process by controlling 

the characteristics of the adhesion molecules, and changes 

in the intestinal epithelial barrier permeability [89,90].    

In the same way, TNF-α are considered as a pleiotropic 

cytokine which evokes a broad spectrum pathogenic as well 

as physiologic process [91]. Its cause effect in many 

pathological disease conditions and control the expression 

AQP’s, for example, TNF-α upregulated in the feces and 

serum of patients with CD, consequently downregulates 

AQP1 and AQP 3 mRNA in the ileum [83,92]. Although, in 

the trinitrobenzene sulfonic acid (TNBS) model of colitis, 

TNFα may also causes an unevenness in regulatory 

cytokines, which finally resulting in a remarkable reduction 

of both AQP 3 and AQP 8 protein and mRNA expression 

[93]. However, scholars indicated the mechanisms that both 

IFNγ and TNFα synergized to induce intestinal epithelial 

barrier dysfunction. Recent work showed that IFNγ and 

TNFα are capable of downregulation AQP's [81]. IFNγ 

downregulates AQP3 mRNA, and these activities are 

depending on an activator of transcription (STAT 1) and 

signal transducer [64,78]. In contrast, Peplowski [94-96] 

demonstrated in HT-29 human colon cancer cells line, TNF 

α down-regulate AQP3 expression with increasing activity 

of transcription specificity protein (Sp3). However, this 

action might be interrupted with inhibition of NF-kb and 

extracellular signal-regulated kinase/ mitogen activated 

extracellular signal-regulated kinase (ERK /MEK) pathway. 

Since the NF-κB has been reported to be involved in 

different kinds of diarrhea, NF-κB activation has been 

important to the downregulation of the AQP3. Additional 

studies confirmed, the effective blocking AQP4 may 

represent a novel therapeutic approach for UC since 

knockdown AQP4−/− mice showed higher IL-10 level and 

lower levels of TNFα and IL-6, and lesser inflammatory 

cell infiltration also, NF-κB p65 as well as nuclear levels of 

p65 and phosphorylated p65 [97]. These findings imply that 

inflammatory cytokines regulate missing localization and 

downregulation of AQP, and their effects impair the ion's 

channels and lead to the pathogenesis of IBD [92]. 

Therefore, the fluid metabolic anomalies and alteration in 
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GI permeability would be the performance of IBD by 

downregulating AQP 3, AQP 4, AQP 7, and AQP8.  

3.4. AQP’s Physiologic Roles in Pathogenesis of 

Diarrhoea Associated with Microvillus Inclusion 

Disease (MVID)  

Microvillus inclusion disease (MVID) is a rare congenital 

disorder characterized by blunted or absent microvilli with 

accumulation of secretory granules and inclusion bodies in 

enterocytes [98]. A typical clinical presentation of this 

disease is chronic secretory diarrhea, nutrient malabsorption 

and death in infants. Emerging evidence revealed mutations 

in MYO5B as a cause for MVID, and has paved a new way 

to understand the pathogenesis of this disease [98,99]. Weis 

et al. [100] described the deletion of the MYO5B gene in 

mice and its close phenotypic similarity to the human disease 

with evident microvillus inclusions and loss of apical 

transporters in the duodenum. However, it is a controversy 

whether knockout of MYO5B resemble the presence of    

a mutated MYO5B protein since these mice did not show  

an intestinal barrier defect [101], compared with MVID 

patient [98,102]. MYO5B regulate trafficking of many  

apical transporters. However, trafficking the of Cystic 

fibrosis transmembrane conductance regulator (CFTR) is 

largely independent of MYO5B. And tamoxifen-inducible 

VilCreERT2; MYO5Bflox/flox model demonstrated decreased in 

expression of several apical transporters including AQP 7, 

with preservation CFTR. Although the decreased in apical 

localization AQP7 and other transporters thought to induce 

dysfunctional water absorption in enterocytes of patients 

with MVID. Maintaining CFTR exacerbate water loss by 

active secretion of chloride into the intestinal lumen [101].  

3.5. AQP’s Physiologic Roles in Pathogenesis of 

Diarrhoea Associated with Diarrhoea Induced by 

Food allergies 

Food allergies have become increasingly prevalent during 

the past few decades, affecting up to 6% of young children 

and up to 4% of adults [103,104]. Diarrhoea is one of the 

most frequent intestinal symptoms caused by food allergens. 

Despite the scarce study focusing on AQP’s association and 

food allergies. Existing literature pointed allergic diarrhoea 

is connected with downregulation of AQP4 and AQP8 

mRNA levels in the proximal colon mice [104]. Make it 

possible to suggest that, these reductions resulted in the 

dysfunction on the water absorption in the proximal colon 

and then caused diarrhoea to wash out the food allergen. 

Furthermore, an anti-nutritional factor β-Conglycinin (β-CG) 

activate autophagy and induce intestinal dysfunction and 

diarrhoea via downregulation of AQP3, AQP4. Meanwhile, 

pre-treating the β-CG challenge piglet with N-acetylcysteine 

(NAC) decreased Atg5 protein abundance and the LC3II/ 

LC3I ratio (an indicator of autophagy) improved intestinal 

function through upregulations of intestinal transporter 

protein including AQP3, AQP4 and attenuated intestinal 

autophagy in β-CG- challenged piglets [105]. 

3.6. Physiologic Roles of AQP’s in Pathogenesis of 

Diarrhoea Induced by Magnesium Sulphate  

Magnesium sulphate (MgSO4), as an osmotic acting 

laxative, introduced to induce diarrhoea by rising intestinal 

contents along with the inhibition of water reabsorption. 

The laxative effects of MgSO4 upregulates expression of 

AQP3 in HT-29 cells through the PKA/p-CREB signal 

pathway [106]. As in HT-29 cells, natriuretic peptide and 

vasoactive intestinal polypeptides are associated with 

triggering the stimulation of PKA, which is connected with 

increased AQP3 expression [107,108]. Similar to that, 

Rhubarb tannin extract (RTE), which is a traditional 

antidiarrheal Chinese herbal medicine, significantly 

attenuated MgSO4 induced diarrhoea in a dose dependent 

manner in HT-29 cells, suggested by the RTE inhibitory 

effect on AQP 2 and AQP 3 is partly done by the 

downregulation PKA/p-CREB signal pathway [106]. 

3.7. Physiologic Roles of AQP’s in Pathogenesis of 

Diarrhoea Induced by 5 - Fluorouracil 

The chemotherapy drugs, 5-fluorouracil (5-FU) are most 

useful in treating various cancers, including breast cancers 

and colorectal cancer [109]. Diarrhoea commonly happen as 

side effect encountered with cancer patients going through 

clinical chemotherapy, essentially with 5-FU. The 

enterocytes apoptosis showed a dose of 5-FU induced direct 

toxic effects such as; blocking of the synthesis of 

deoxyribose nucleic acid (DNA) and inhibition of the 

production of subsequent oxidative stress (OS) with 

reactive oxygen species (ROS) and induction of 

inflammatory response. Both TNFα and OS are said to 

induce tissue inflammatory response, TNFα also activates 

the up-regulation of NF-κB and its translocation into the 

nucleus [110-112]. TNF-α, IL 6, IL 1β, IFNγ, IL 22, and 

IL17 have been involved in 5-FU induce diarrhoea. 

However, it was not clear whether 5-FU induces 

inflammation cause changes in AQP’s, Sakai [113] reported 

the treatment with 5-FU significant increased inflammatory 

cytokines, on the contrary, the genes for AQP 4 and AQP 8 

were remarkably decreased. Assumed with AQP 4, 

downregulation happened as a result specific to either 

enterocytes damaged and/or inflammatory response induced 

by chemotherapy [112], with TNF-α overexpression 

reported with no effect on impaired AQP’s however it 

dramatically influences several inflammatory cytokines 

[113]. On the other hand, significant increased expression 

levels of CXCL3, CXCL2, and CXCL1 with the neutrophil 

markers Elane and Myeloperoxidase (MPO), correlated 

with the decreased expression levels of AQP 4 and AQP 8 

in the colon [114]. While the use of CXCR2 antagonist 

SB225002 or preadministration of either the neutrophil 

elastase inhibitor sivelestat sodium decreased neutrophil 

release induced 5-FU in the colon and increases the 

expression of AQP 4 and AQP 8 pointing a potential 

therapeutic target. Moreover, Rhubarb (Rh), provided the 

alternative therapy, dose dependent efficacy of RE 
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described with the capability to decrease severe ileal 

mucositis through downregulation of matrix 

metalloproteinase 9 (MMP-9), TNF-α, NF-κB and 

upregulation AQP4 [112]. 

3.8. Physiologic Roles of AQP’s in Pathogenesis of 

Diarrheal Induced by Senna, Sennosides, and 

Sennoside A 

Senna which is known as Cassia angustifolia Vahl or 

Cassis acutifolia Delile and its main ingredients sennosides 

linked with anthranoid glycosides that contains a different 

anthraquinone derivatives such as sennoside A, B, C, and 

D.They are commonly used as potential laxative drugs in 

the treatment of intestinal constipation. Senna has been 

connected with regulatory functions of water transport in 

the colon through AQP’s. Being a laxative drug, senna 

products are said to stimulate the increases in fecal water 

content, motility of feces, and peristalsis over the colon. 

Consequences has been demonstrated by the former studies 

with the suggestion that diarrhoea might be generated even 

with small administration of sennosides. The Sennoside 

administration confirmed with regulation on numerous 

expressions of AQP’s water channel, substantial down 

regulation was found on water specific AQP’s including 

AQP 4, AQP 5, AQP 6, AQP 7, and AQP 8 [115]. 

Meanwhile, the laxative effects of sennoside were also 

connected with a decrease expression of AQP3, which is 

thought to be induced by inflammatory responses via 

activated macrophages [92,94,116]. However, this response 

was attenuated with the long-term administration, of Kanzo 

ingredient known as glycyrrhiza, with the combination of 

sennoside A. In addition to that, gut microbiota homeostasis 

might be involved in regulating AQP3 expression [116], 

Kon [117] reported both Sennoside A and B, are 

metabolized by intestinal bacteria into active metabolite 

rheinanthrone. Rheinanthrone role is to increase expression 

of cyclooxegenase 2 (COX2) within the macrophage 

resulting in dramatic increase in prostaglandin E2 (PGE2) 

expression, raises in PGE2 followed with downregulation  

in expression of AQP3. A suggestion that PGE2 might be 

involved in the drastic and immediate decrease in AQP3 in 

the mucosal epithelial cells in the colon that was induced  

by sennoside A. Pre-treatment with indomethacin COX 

inhibitor decreased PGE2, on the other hand, neither 

decreased the AQP3 expression nor induced diarrhea, 

reduction of AQP3 expression alone likely thought to 

produces the laxative effect by restricting water 

reabsorption by the large intestine thereby increasing fecal 

water content. 

4. Conclusions 

The recognition of AQP’s evoked many researches on 

their expression and functions. In this review, we analyse 

AQP’s expression and their association and diarrhoea, and 

we examine AQP’s role in pathological condition’s related 

to diarrhoea disease. The interaction between AQP's, 

inflammation and diarrhoea, suggested AQP’s may be used 

as promising therapeutic target in treatment and prevention 

of diarrhoea in both humans and animals. The existed 

information is able to tell us AQP are regulated in different 

diarrhoea models. Analyzing the patterns and mechanisms 

of regulation will perhaps provide further ideas to research 

and disclose a new scope in understanding cellular 

susceptibility to pathologies of enteric diarrhoea. Future 

research should focus on clarifying mechanisms that cause 

alterations in AQP’s expression during diarrhoea 

pathogenesis, investigating the process and moderator 

causing the AQP’s regulation, and what changes body 

homeostasis is needed in order to effective design an 

appropriate therapeutic target. However, some existing 

studies suggest that AQP’s stabilization through 

transcriptional gene regulation and the use of probiotics 

present research significance and could have been an 

effective therapeutic approaches in the treatment of 

diarrhoea. 
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