
Algorithms Research 2013, 2(2): 29-42
DOI: 10.5923/j.algorithms.20130202.01

Solving Multi Criteria Decision Aiding (MCDA) Problems
Using Spreadsheets

T. Ganesh*, PRS Reddy

Department of Statistics, S.V. University, Tirupati, India

Abstract In Managerial Decision making, the problem environment will be encircled by a set of alternatives for set of
criteria. The main objective is to choose the best alternative under each criterion. In this contest, the Decision Maker (DM)
plays an important role in solving the hard/complex p roblems. This type of scenario gives raise to the concept of MCDA. In
this paper, we made an attempt to provide some algorithms which are user-friendly. In this paper, we have provided some
algorithms which supports in computing the concordance and discordance indices.

Keywords Multi Criteria, Concordance, Discordance, Outranking Index

1. Introduction
In any environment, the main objective is to provide a set

of best alternatives for g iven criteria. The decision maker
provides some necessary and basic informat ion about each
criterion and the alternatives that helps in identifying the
relation between them. The problems of this kind can be
dealt with Multi Criteria Decision Making or Multi Criteria
Decision Aid (MCDA) techniques.

The main aim of MCDA is to account for several views
and provide some tools for the Decision Maker (DM) in
solving complex decision problems. The trade-off between
the criteria and DM’s preferences lies in providing
compromise solutions. In each and every problem or
situation, the DM, Stakeholder and Analyst play an
important role.

DM is a person, who has a great impact in evaluating the
situation, expressing preferences, considering solutions and
approving the final result. Stakeholders are members
involved in decision situation and interested in finding a
solution for the problem. For the situation considered, the
Analyst is responsible in recognizing the consequences and
selecting an appropriate decision aiding method/tool for the
construction of decision models.

In every MCDA problem environment, each criterion will
be embedded with a set of alternat ives out of which one
alternative will act as the best for that particular criterion.
These set of alternatives will be fin ite if a proper defin ition
about all the members is g iven, otherwise infin ite. If the
number and content of alternatives are fixed and cannot be

* Corresponding author:
ganimsc2007@gmail.com (T. Ganesh)
Published online at http://journal.sapub.org/algorithms
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

varied during the decision aiding process, then this nature is
said to be stable otherwise volatile. At the final stage of the
decision aiding process, if we come across a single best
alternative which excludes the possibility of choosing any
other alternative, it is referred as Comprehensive and if we
opt for a combination of alternatives, it is fragmented. . In
brief, the alternatives are estimated on a set of criteria. The
criterion defines the feature and some properties of the set of
alternatives.
Notations

xi : ith alternative (i=1,…,m)
X : Set o f alternatives
gj : jth criterion (j=1,…,n)
G : set of criteria
Qj : jth Indifference thresholds
Pj : jth Preference thresholds
Wj : jth Weights
Vj : jth Veto thresholds
λ : Cutting level
bq : qth boundary alternative (q = 1,…,s)
B : set of boundary alternatives (b1, b2, …, bq)
lq : qth boundary class
Cj (xi, bq) and Dj (xi, bq) : partial concordance and partial

discordance of the xi and bq
Cj (bq, xi) and Dj (bq, xi) : partial concordance and partial

discordance of the bq and xi
C (xi, bq) and C (bq, xi) : overall concordance indices
Sj (xi, bq): outranking index for xi and bq
Sj (bq, xi): outranking index for bq and xi
Cq : qth category
P : strict preference
Q : weak p reference
I : indifference
J : incomparability
The entire MCDA problem will be expressed in terms of

30 T. Ganesh et al.: Solving Multi Criteria Decision Aiding (MCDA) Problems using Spreadsheets

relations existing between the alternatives and criteria. We
brief out each and every relation and the nomenclature for it.

1.1. Relations

• The indifference relation between two alternatives xi and
xr, denoted as xiIxr, means that the two alternatives xi and xr
are equally preferab le or equally important to the DM. This
relation is reflexive and symmetric.
• The strict preference is a relation of xi over xr, denoted as

xiPxr, which gives the meaning that xi is better than the xr for
the DM. It is asymmetric and non-reflexive.
• The weak preference is a relation which hesitates to

make a specific judgment about the preference or
indifference between xi and xr, denoted by xiQxr. It is also
asymmetric and non-reflexive.
• If xi is not in any of the above mentioned relations with xr,

then it is referred to as incomparability relation, denoted by
xiJxr. This relation is symmetric and non-reflexive.
• The outranking relation is denoted as xiSxr. It defines the

situation in which the preference (strong- xiPxr or weak-
xiQxr) or indifference relat ion (xiIxr) is true or not.

In order to observe a specific type of relat ion between
alternative and criterion, there is a need to compute some
indices such as partial concordance, discordance and
outranking indices. over the years, many methodologies
were developed of which the most familiar method is the
Outranking Methodology. In outranking methodology, we
have considered ELECTRE TRI method and for this we have
developed spreadsheet algorithms, which support the analyst
to analyze and to p rovide a better decision making. First we
review some literature confin ing to ELECTRE TRI method
and then a detailed algorithmic approach is given along with
the results.

2. Outranking Methodology
In MCDA, the outranking methodology comes under the

framework of classification problems. Basing on the same
criterion, the methodology allows comparing the pairs of
alternatives by considering indifference, preference and veto
thresholds. This helps in determin ing the indifference,
preference to one over the other and incomparable relation
between alternatives. The seminal work on this methodology
was proposed by B. Roy (1965). He developed some
mathematical structures about the ELECTRE family which
help in choosing the best alternative from the set of
alternatives. In recent years, many state of art surveys were
conducted and reported on the development of the MCDA
methodologies by M.Bruen and L. Maystre (2000), B.Roy
and J. Figueira (2002), J. Martel and B. Matarezzo (2005), J.
Figueira, V. Mousseau and B.Roy (2005).

B. Roy (1977, 1981) proposed the Trichotomic
segmentation outranking based classification method for
sorting problems with three classes. Later, this method was
extended to an arbitrary number of classes in N-TOMIC by R.
Massagliaet (1991) and few ELECTRE methods by V.

Mousseau et al (1998) and W. Yu (1992).

2.1. ELECTRE TRI Method

ELECTRE method helps to identify the outranking
relations between pairs of alternatives for each criterion. In
classification problems, a given set of alternatives X with a
set of criteria G are to be assigned into a set of ordered
classes L by the predefined set of boundary alternatives B.
Each class is considered by two (upper and lower) boundary
alternatives. The upper bound bq of the class lq-1 is the lower
bound of the class lq (q=1,…,s). Changing the least one
criterion moves the boundary alternative to the neighbouring
class.

For solving the classification problem the method
estimates the outranking relat ion for each alternative xi ϵ X
(i=1,…,m) which is to be classified and each boundary
alternative bq between classes lq-1 and lq by calculating the
outranking index. If lq is preferred to the lower boundary
alternative lq-1 of the class, we assign the alternative xi to the
class lq and the upper boundary alternative bq of the class is
preferred to this alternative.

For calculating the outranking index, the DM should give
the information about

(i) the set of alternatives to be classified
(ii) the set of criteria on which alternatives are evaluated

with a scale of quantitative values for each criterion.
(iii) the number of classes as well as their order according

to preference.
(iv) the upper and lower boundary alternatives for each

class lq
For each criterion gj (j=1,…,n), the ELECTRE TRI

method requires to define the preference pj(.), indifference
qj(.), veto vj(.) thresholds as well as weights wj and cutting
level λ (should lie between 0.5 and 1).

(a) the preference pj(.) threshold indicates the smallest
difference between two alternatives on the criterion gj, that is
one alternative is preferred to the other.

(b) the indifference qj(.) threshold indicates the largest
difference between two alternatives on the criterion gj.

(c) the veto vj(.) threshold indicates the smallest difference
between the alternatives on the criterion gj, that says
incomparab ility of these two alternatives.

(d) A ll the above three thresholds should satisfy the
constraint, vj (.) > pj (.) > qj (.)

(e) the weight wj indicates the relative importance of
criterion when compare to the other criterion in terms of
votes.

(f) the cutting level λ shows the smallest value of the
outranking index, which is sufficient for considering an
outranking situation between two alternatives.

The outranking relation is verified by two conditions;
concordance and discordance, with respect to the thresholds,
weights and cutting level λ. Concordance requires preference
of the alternative xi over the boundary alternative bq on the
majority of criteria. Discordance demands the absence of
strong opposition to the first condition in the majority of

 Algorithms Research 2013, 2(2): 29-42 31

criteria. We need to compute two part ial indices fo r each
criterion, that is partial concordance Cj (xi, bq) and Cj (bq, xi)
and partial discordance Dj (xi, bq) and Dj (bq, xi). The above
partial indices help in computing the outranking indices Sj (xi,
bq) and Sj (bq, xi). Using a specific cutting level λ, a
comparison of outranking indices is possible and turns to two
types of assignment procedures namely pessimistic and
optimistic.

The pessimistic p rocedure starts with the comparison of an
alternative to the lower bound of the highest class and the
optimistic procedure starts with the comparison of an
alternative to the upper bound to the lowest class. In section
3, we describe the mathemat ical structures of outranking
indices and assignment procedures.

3. Algorithm of the ELECTRE TRI
Method

The ELECTRE TRI method has been divided into two
parts; part I is to compute the outranking indices and to
identify the relations between the alternatives and criteria
and in part II, using the obtained outranking relation and
cutting level λ, we provide the fina l result for the MCDA
problem.

Part I: To construct the outranking relation xi S bq for each
alternative xi to be classified and each boundary alternative
bq.

1. Calculate the partial concordance indices Cj (xi, bq) and
Cj (bq, xi) for each criteria gj according to the increasing
direction of preferences. The partial concordance index Cj (xi,
bq) is as follows

0, () () ()

(,) 1, () () ()

() () ()
, () () () () ()

() ()

j q j i j q

j i q j q j i j q

j q j q j i
j q j q j i j q j q

j q j q

if g b g x p b
C x b if g b g x q b

p b g b g x
if g b p b g x g b q b

p b q b

− ≥
= − <
 − + − < ≤ −
 −

The partial concordance index Cj (bq, xi) is as follows

−≤<−
−

+−

<−

≥−

=

)()()()()(,
)()(

)()()(

)()()(,1

)()()(,0

),(

ijijqjijij
ijij

qjijij

ijqjij

ijqjij

iqj

xqxgbgxpxgif
xqxp

bgxgxp
xqbgxgif
xpbgxgif

xbC

2. To find the overall concordance indices C (xi, bq) and C (bq, xi) as an aggregation of partial concordance indices.

1

1

(,)
(,)

n

j j i q
j

i q n

j
j

W C x b
C x b

W

=

=

=
∑

∑

1

1

(,)
(,)

n

j j q i
j

j q i n

j
j

W C b x
C b x

W

=

=

=
∑

∑

3. Calcu late partial discordance indices Dj (xi, bq) and Dj (bq, xi) for each criteria gj. We compute the partial discordance
index Dj (xi, bq) according to the increasing direction of preference.

32 T. Ganesh et al.: Solving Multi Criteria Decision Aiding (MCDA) Problems using Spreadsheets

−≤<−
−

−−

≥−

<−

=

)()()()()(,
)()(

)()()(

)()()(,1

)()()(,0

),(

qjqjijqjqj
qjqj

qjijqj

qjijqj

qjijqj

qij

bpbgxgbvbgif
bpbv

bpxgbg
bvxgbgif
bpxgbgif

bxD

The partial d iscordance index Dj (xi, bq) is as follows

−≤<−
−

−−

≥−

<−

=

)()()()()(,
)()(

)()()(
)()()(,1
)()()(,0

),(

ijijqjijij
ijij

ijqjij

ijqjij

ijqjij

iqj

xpxgbgxvxgif
xpxv

xpbgxg
xqbgxgif
xpbgxgif

xbD

4. Calculate the outranking indices S(xi, bq) and S(bq, xi), that shows outranking creditability. The creditability index o f xi

over bq assuming S(xi, bq) ϵ[0,1] as fo llows

1

1 (,)
(,) , (,) (,)

1 (,)(,)
(,) ,

n
j i q

i q j i q i q
i qjq i

i q

D x b
C x b if D x b C x b

C x bS b x
C x b Otherwise

=

−
> −=

∏

1

1 (,)
(,) , (,) (,)

1 (,)(,)
(,) ,

n
j q i

q i j q i q i
q ijq i

q i

D b x
C b x if D b x C b x

C b xS b x
C b x Otherwise

=

−
> −=

∏

5. The value of outranking indices is compared to the
cutting level 𝜆𝜆, which is defined by the DM and lies in the
interval[0.5, 1].
• If S(xi, bq) ≥ 𝜆𝜆 and S(bq, xi) ≥ 𝜆𝜆 xiIbq, then the

alternative xi and bq are indifferent.
• If S(xi, bq) ≥ 𝜆𝜆 and S(bq, xi) < 𝜆𝜆 xiPbq or xiQbq, then

the alternative xi is strongly or weakly preferred to the
boundary alternative bq.
• If S(xi, bq) < 𝜆𝜆 and S(bq, xi) ≥ 𝜆𝜆 bqPxi or bqQxi, then

the boundary alternative bq is strongly or weakly to xi.
• If S(xi, bq) < 𝜆𝜆 and S(bq, xi) < 𝜆𝜆 xiJbq, then the

alternative xi and bq are incomparab le.
Part II:
On using the computed outranking indices in Part I, the

DM has an option to choose either an optimistic procedure or
a pessimistic procedure or both. After choosing an
alternative procedure, the comparison of outranking indices
for each pair of alternative xi will be classified using each
boundary alternative to the cutting level 𝜆𝜆.

3.1. The Pessimistic Procedure

In this procedure the comparison will start from
alternative xi to the lower bound bq-1 of the highest class lq
(q=s,…,1) and continues in decreasing order until, a lower
bound bq-1 is found, that is xiSbq-1, and for estimating the
outranking relation we calculate S(xi , bq-1). Once the

outranking relat ion is obtained, we calcu late outranking
index between xi and bq. We assign the alternative xi to the lq
if S(xi, bq-1) ≥ 𝜆𝜆 and S(xi, bq) < 𝜆𝜆.

1. Compare xi successively to bq for q= s,s-1,…,0
2. bq being the first bound such that xiSbq, assign xi to

category Cq+1 (xi →Cq+1)
In other words, the above procedure can also be expressed

as follows; bq-1 and bq are upper and lower bound of category
Cq, the pessimistic procedure assigns alternative xi to the
highest category Cq such that xiSbq-1. When using this
procedure with λ =1, an alternative xi can be assign to
category Cq only if gj(xi) equals or exceeds gj(bq-1) for each
criterion. When λ decreases the pessimistic characters of this
rule is weakened.

3.2. The Optimistic Procedure

Here, we begin to compare the alternative xi to the upper
bound bq of the lowest class lq (q=1,…,s) and proceed in
increasing order until we find such a upper bound bq that has
strict preferences over the alternatives xi, then we calculate
S(xi, bq-1) and assign that alternative to the class lq if S(xi, bq-1)
≥ 𝜆𝜆 and S(xi, bq) < 𝜆𝜆.

1. Compare xi successively to bq for q=1,…,s.
2. bq being the first bound such that bqPxi, assign xi to Cq

(xi →Cq)
The optimistic procedure assign to xi to the lowest

 Algorithms Research 2013, 2(2): 29-42 33

category Cq for which the upper bound bq is preferred to xi.
When using this procedure with λ = 1, an alternative xi can be
assigned to category Cq when gj(bq) exceeds gj(xi) at least for
one criterion. When λ decreases the optimistic character of
this rule is weakened.

3.3. Comparison of Two Assignment Procedures

Let us suppose that an alternative xi is assigned to Cq and
Cr by the pessimistic and optimistic procedures, if the
following conditions holds good
• Cq is lower or equal to Cr (q ≤ r)
• Cq > Cr, when xiJbF for every F, r ≤ F < q.
More specifically when the evaluation of an alternative are

between the two boundary alternatives of a category on each
criterion, then both procedures assign this alternative to this
criterion. xi d ivergence exists among the results of the two
assignment procedures only when an alternative is
incomparab le to one or several bq, in such case the
pessimistic ru le assigns the alternative to lower category than
the optimistic.

Here, we demonstrate a spreadsheet algorithm for the
ELECTRE TRI method using a numerical illustration. We
have programmed two algorithms, of which the first one
helps in finding the values of partial concordance and
discordance along with the outranking index between xi and
bq and the second algorithm provides solution for bq and xi.

Algorithm 3.1
Step 1: Enter the criteria values along with alternatives in

‘mxn’ design.
Step 2: Enter threshold values in a separate row below to

the mxn design.
Step 3: To compute the partial concordance between ith

criteria and jth alternative Cj(xi, bq) the following ‘NES TED
IF ()’ condition has been used

=IF ((B6-B10)>=B2, 0, IF ((B6-B9)<B2,1,
((B2-B6+B10)/(B10-B9))))

Step 4: Repeat Step 3 fo r finding the left out concordance
values.

Step 5: The overall concordance of two alternatives C(xi,
bq) can be obtained using

‘SUMPRODUCT()’function =SUMPRODUCT
(H2:L2,B11:F11)/SUM(B11:F11)

Step 6: To compute the partial d iscordance between ith

criteria and jth alternative Dj(xi, bq), the following ‘NES TED
IF ()’ condition has been used

=IF((B20-B24)<B16,0,IF((B20-B26)>=B16,1,((B20-B16
-B24)/(B26-B24))))

Step 7: To compute the out ranking index between ith
criteria and jth alternative S(xi, bq) the following ‘IF ()’
condition has been used

=IF(H16>S2,(S2*(1-H16)/(1-S2)),S2)
Algorithm 3.2
Step 1: Enter the criteria values along with alternatives in

‘mxn’ design.
Step 2: Enter threshold values in a separate row below to

the mxn design.

Step 3: To compute the partial concordance between ith
criteria and jth alternative Cj(bq , xi) the following ‘NES TED
IF ()’ condition has been used

=IF((B6+B10)<=B2,0,IF((B6+B9)>B2,1,((B6-B2+B10)/(
B10-B9))))

Step 4: Repeat Step 3 fo r finding the left out concordance
values.

Step 5: The overall concordance of two alternatives
C(bq , xi) can be obtained using

‘SUMPRODUCT()’function
=SUMPRODUCT(N2:R2,B11:F11)/SUM(B11:F11))

Step 6: To compute the partial d iscordance between ith

criteria and jth alternative Dj(bq , xi), the following ‘NES TED
IF ()’ condition has been used

=IF((B16-B20)<B24,0,IF((B16-B20)>=B26,1,((B16-B20
-B24)/(B26-B24))))

Step 7: To compute the out ranking index between ith
criteria and jth alternative S(bq , xi) the following ‘IF ()’
condition has been used

=IF(H16>T2,(T2*(1-H16)/(1-T2)),T2)

4. Numerical Illustrations
Let us consider an MCDA problem which has five criteria

and three alternatives for each criterion. The table below
gives the boundary alternatives b1 and b2 and various
thresholds given by the decision maker (DM).

4.1. EXAMPLE 1

Alternatives Criteria
g1 g2 g3 g4 g5

x1 75 67 85 82 90
x2 28 35 70 90 95
x3 45 60 55 68 60

Boundary
Alternatives

b1 50 48 55 55 60
b2 70 75 80 75 85

Thresholds
Q (Indifference) 5 5 5 5 10
P (Preference) 10 10 10 10 10
W (Weights) 1 1 1 1 1

V (Veto) 30 30 30 30 30

Now, using the algorithm 3.1 and 3.2, the following values
are computed. Along with the partial concordance and
discordance, the overall concordance is also reported in the
tables 1, 2, 3 and 4.

Table 1. Partial concordance of Cj(xi, bq)

Partial Concordance of Cj(xi, bq)

 g1 g2 g3 g4 g5
Cj(x1,b1) 1 1 1 1 1
Cj(x2,b1) 0 0 1 1 1
Cj(x3,b1) 1 1 1 1 1
Cj(x1,b2) 1 0.4 1 1 1
Cj(x2,b2) 0 0 0 1 1
Cj(x3,b2) 0 0 0 0.6 0

34 T. Ganesh et al.: Solving Multi Criteria Decision Aiding (MCDA) Problems using Spreadsheets

Table 2. Partial concordance and overall concordance

Partial Concordance for Cj(bq, xi) Overall Concordance
 g1 g2 g3 g4 g5 C(xi,b) C(b,xi)

Cj(b1,x1) 0 0 0 0 0 1 0
Cj(b1,x1) 1 1 0 0 0 0.6 0.4
Cj(b1,x3) 1 0 1 0 1 1 0.6
Cj(b2,x1) 1 1 1 0.6 1 0.88 0.92
Cj(b2,x1) 1 1 1 0 0 0.4 0.6
Cj(b2,x3) 1 1 1 1 1 0.12 1

Table 3. Partial discordance for Dj(bq, xi)

Partial discordance for Dj(bq, xi)
 g1 g2 g3 g4 g5

Dj(b1,x1) 0.75 0.45 1 0.85 1
Dj(b1,x2) 0 0 0.25 1 1
Dj(b1,x3) 0 0.1 0 0.15 0
Dj(b2,x1) 0 0 0 0 0
Dj(b2,x2) 0 0 0 0.25 0
Dj(b2,x3) 0 0 0 0 0

Table 4. Partial discordance for Dj(xi, bq)

Partial discordance for Dj(xi, bq)

 g1 g2 g3 g4 g5
Dj(x1,b1) 0 0 0 0 0
Dj(x2,b1) 0.6 0.15 0 0 0
Dj(x3,b1) 0 0 0 0 0
Dj(x1,b2) 0 0 0 0 0
Dj(x2,b2) 1 1 0 0 0
Dj(x3,b2) 0.75 0.25 0.75 0 0.75

On the basis of the above four tables, we have calculated
the outranking indices for both S(bq, xi) and S(xi, bq)

Table 5. Outranking indices for S(xi, bq)

Outranking indices for S(xi, bq)

 g1 g2 g3 g4 g5
S(x1, b1) 0 0 0 0 0
S(x2, b1) 0.267 0.4 0.4 0.4 0.4
S(x3, b1) 0.6 0.6 0.6 0.6 0.6
S(x1, b2) 0.92 0.92 0.92 0.92 0.92
S(x2, b2) 0 0 0.6 0.6 0.6
S(x3, b2) 1 1 1 1 1

Table 6. Outranking indices for S(xi, bq)

Outranking indices for S(bq, xi)

 g1 g2 g3 g4 g5
S(b1, x1) 1 1 1 1 1
S(b1, x2) 0.6 0.6 0.6 0.6 0.6
S(b1, x3) 1 1 1 1 1
S(b2, x1) 0.88 0.88 0.88 0.88 0.88
S(b2, x2) 0 0 0.4 0.4 0.4
S(b2, x3) 0.034 0.102 0.034 0.12 0.034

The table 7 gives a picture about the outranking relat ion
between the criteria and alternatives.

 Algorithms Research 2013, 2(2): 29-42 35

Table 7. Outranking relation

Alternatives
g1 g2 g3 g4 g5

b1 b2 b1 b2 b1 b2 b1 b2 b1 b2

x1 P I P I P I P I P I

x2 J J J J J J J J J J

x3 P Q P Q P Q P Q P Q

After obtaining the Outranking indices, the decision
maker will decide the cutting level λ. Using this, the
comparison will be done between the alternatives and criteria.
Here, the cutting level λ is taken as 0.75. In this problem, we
have defined two boundary alternatives that is b1 and b2. First
let us consider the boundary alternative b1 with three
alternatives for g1. The values of the indices S (x1, b1) and S
(b1, x1) hold the relat ion P (strictly preference), since S (x1,
b1) > λ and S (b1, x1) < λ. In similar fashion, if we compare S
(x2, b1) and S (b1, x2) with λ, an Indifference relation (I) is
noticed since these two relations are less than λ. Finally, on
comparing S (x3, b1) and S (b1, x3) with λ, it is observed that
S (x3, b1) < λ and S (b1, x3) > λ, which means that the
outranking relat ion is of weak preference (Q). So here, we
made an attempt to demonstrate all sorts of relat ions between
the criteria and boundary alternatives using an MCDA
problem. Further, let us consider another boundary
alternative b2 for three alternatives to explain and observe
what sort of relations exists between them. It is observed that
S (x1, b2) and S (b2, x1) > λ, then the outranking relation is
Incomparable (I). Similarly, if we compare S (x2, b2) and S
(b2, x2) with λ, the two relations are less than λ indicating that
outranking relation is Indifference (I). Again on comparing
S (x3, b2) and S (b2, x3) with λ, it is observed that S (x3, b2) <
λ and S (b2, x3) > λ, the outranking relat ion is weak
preference (Q). Once the outranking relat ions are identified,
the DM will choose any one of the assignment procedures.
Here, we have briefly discussed both the procedures for the
same problem.

Results of ELECTRE TRI Pessimistic procedure:
• x1 is assigned to C3 because x1Sb3 does not hold but x1Sb2

holds
• x2 is assigned to C1 because x2Sb3, x2Sb2 and x2Sb2 do not

hold but x2Sb0 holds.
• x3 is assigned to C1 because x3Sb3 and x3Sb2 does not

hold but x3Sb1 holds.
Results of ELECTRE TRI Optimistic procedure:
• x1 is assigned to C3 because b0Px1, b1Px1 and b2Px1 do

not holds but b3Px1 holds
• x2 is assigned to C3 because b0Px2, b1Px2 and b2Px2 do

not holds but b3Px2 holds.
• x3 is assigned to C2 because boPx3, b1Px3 does not holds

but b2Px2 holds.
It is observed that x2 is assigned to C3 by the optimistic

procedure and C1 by the pessimistic procedure. Th is shows

that, x2 is incomparab le to both the boundary alternatives b1
and b2 which in turn gives the meaning that in spite of
different priorit ies, x2 a lternative is the preferable one in each
and every criterion. Similar kind of interpretation can be
given for the remaining criteria.g2, g3, g4 and g5.

4.2. EXAMPLE 2

Alternatives Criteria

 g1 g2 g3 g4 g5
x1 75 67 85 82 90
x2 28 35 70 90 95
x3 45 60 55 68 60

Boundary
Alternative (b) 70 75 80 75 85

Thresholds
Q (Indifference) 5 5 5 5 10
P (Preference) 10 10 10 10 10
W (Weights) 1 1 1 1 1

V (Veto) 30 30 30 30 30

Partial Concordance of Cj(xi, bq)

 g1 g2 g3 g4 g5

Cj(a1,b) 1 0.4 1 1 1

Cj(a2,b) 0 0 0 1 1

Cj(a3,b) 0 0 0 0.6 0

Partial Concordance for Cj(bq, xi)
Overall

Concordance

 g1 g2 g3 g4 g5 C(xi,b) C(b,xi)

Cj(b,x1) 1 1 1 0.6 1 0.88 0.92

Cj(b,x1) 1 1 1 0 0 0.4 0.6

Cj(b,x3) 1 1 1 1 1 0.12 1

Partial discordance for Dj(xi, bq)

 g1 g2 g3 g4 g5
Dj(a1,b) 0 0 0 0 0
Dj(a2,b) 1 1 0 0 0
Dj(a3,b) 0.75 0.25 0.75 0 0.75

Partial discordance for Dj(bq, xi)
 g1 g2 g3 g4 g5

Dj(b,a1) 0 0 0 0 0
Dj(b,a2) 0 0 0 0.25 0
Dj(b,a3) 0 0 0 0 0

Outranking indices for S(xi, bq)
 g1 g2 g3 g4 g5

S(x1, b) 0.88 0.88 0.88 0.88 0.88
S(x2, b) 0 0 0.4 0.4 0.4
S(x3, b) 0.034 0.102 0.034 0.12 0.034

Outranking indices for S(bq, xi)
 g1 g2 g3 g4 g5

S(b, x1) 0.92 0.92 0.92 0.92 0.92
S(b, x2) 0 0 0.6 0.6 0.6
S(b, x3) 1 1 1 1 1

36 T. Ganesh et al.: Solving Multi Criteria Decision Aiding (MCDA) Problems using Spreadsheets

5. Conclusions
In MCDA problem, the outranking methodology of

ELECTRE TRI method provides a compromise solution. In
this paper, we have focused on the usage of spreadsheet
procedures for the MCDA problem with ELECTRE TRI
method. Further, we have considered two boundary
alternatives and highlighted the importance of them. Finally,
with the help of the outranking indices and relations, we have
interpreted that the alternative x2 is considered to be the best
among three alternatives for every criterion. We have
considered an MCDA problem which exp lains all sorts of
outranking relat ions between the boundary alternatives and
criteria. The algorithms are user friendly and flexib le in
handling the MCDA problem with ‘n’ boundary alternatives.
The algorithm proposed is a user friendly one and allows
user to handle the complex dimensioned MCDA problems
very simply using the defined macro. Even though, separate
software exists for ELECTRE TRI method, but it is not that
easy to access and understand. However, this macro allow
user to define the preferences, weights and thresholds. This
macro is so handy and with a limited nested – if functions
one can easily understand the anatomy of the ELECTRE TRI
method.

ACKNOWLEDGEMENTS
The first author would like to acknowledge UGC-BSR for

their financial support.

Macro Used for Solving MCDA
problems

Ganesh()
'
' Ganesh Macro
'
' Keyboard Shortcut: Ctrl+Shift+G
'
 Range("H2").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[4]C[-6]-R[8]C[-6])>=RC[-6],0,IF((R[4]C[-6]-R[7]
C[-6])<RC[-6],1,((RC[-6]-R[4]C[-6]+R[8]C[-6])/(R[8]C[-6
]-R[7]C[-6]))))"

 Range("H2").Select
 Select ion.AutoFill Destination:=Range("H2:L2"),

Type:=xlFillDefault
 Range("H2:L2").Select
 Range("H3").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[3]C[-6]-R[7]C[-6])>=RC[-6],0,IF((R[3]C[-6]-R[6]
C[-6])<RC[-6],1,((RC[-6]-R[3]C[-6]+R[7]C[-6])/(R[7]C[-6
]-R[6]C[-6]))))"

 Range("H3").Select

 Algorithms Research 2013, 2(2): 29-42 37

 Select ion.AutoFill Destination:=Range("H3:L3"),
Type:=xlFillDefault

 Range("H3:L3").Select
 Range("H4").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[2]C[-6]-R[6]C[-6])>=RC[-6],0,IF((R[2]C[-6]-R[5]
C[-6])<RC[-6],1,((RC[-6]-R[2]C[-6]+R[6]C[-6])/(R[6]C[-6
]-R[5]C[-6]))))"

 Range("H4").Select
 Select ion.AutoFill Destination:=Range("H4:L4"),

Type:=xlFillDefault
 Range("H4:L4").Select
 Range("H5").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[2]C[-6]-R[5]C[-6])>=R[-3]C[-6],0,IF((R[2]C[-6]-
R[4]C[-6])<R[-3]C[-6],1,((R[-3]C[-6]-R[2]C[-6]+R[5]C[-6]
)/(R[5]C[-6]-R[4]C[-6]))))"

 Range("H5").Select
 Select ion.AutoFill Destination:=Range("H5:L5"),

Type:=xlFillDefault
 Range("H5:L5").Select
 Range("H6").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[1]C[-6]-R[4]C[-6])>=R[-3]C[-6],0,IF(R[1]C[-6]-R
[3]C[-6]<R[-3]C[-6],1,((R[-3]C[-6]-R[1]C[-6]+R[4]C[-6])/(
R[4]C[-6]-R[3]C[-6]))))"

 Range("H6").Select
 Select ion.AutoFill Destination:=Range("H6:L6"),

Type:=xlFillDefault
 Range("H6:L6").Select
 Range("H7").Select
 ActiveCell.FormulaR1C1 = _

"=IF((RC[-6]-R[3]C[-6])>=R[-3]C[-6],0,IF((RC[-6]-R[2]C[
-6])<R[-3]C[-6],1,((R[-3]C[-6]-RC[-6]+R[3]C[-6])/(R[3]C[
-6]-R[2]C[-6]))))"

 Range("H7").Select
 Select ion.AutoFill Destination:=Range("H7:L7"),

Type:=xlFillDefault
 Range("H7:L7").Select
 Range("N2").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[4]C[-12]+R[8]C[-12])<=RC[-12],0,IF((R[4]C[-12]
+R[7]C[-12])>RC[-12],1,((R[4]C[-12]-RC[-12]+R[8]C[-12
])/(R[8]C[-12]-R[7]C[-12]))))"

 Range("N3").Select
 ActiveWindow.SmallScro ll ToRight:=4
 Range("N2").Select
 Select ion.AutoFill Destination:=Range("N2:R2"),

Type:=xlFillDefault
 Range("N2:R2").Select
 Range("N3").Select
 ActiveWindow.ScrollColumn = 4

 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((R[3]C[-12]+R[7]C[-12])<=RC[-12],0,IF((R[3]C[-12]
+R[6]C[-12])>RC[-12],1,((R[3]C[-12]-RC[-12]+R[7]C[-12
])/(R[7]C[-12]-R[6]C[-12]))))"

 Range("N4").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 10
 Range("N3").Select
 Select ion.AutoFill Destination:=Range("N3:R3"),

Type:=xlFillDefault
 Range("N3:R3").Select
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 Range("N4").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[2]C[-12]+R[6]C[-12])<=RC[-12],0,IF((R[2]C[-12]
+R[5]C[-12])>RC[-12],1,((R[2]C[-12]-RC[-12]+R[6]C[-12
])/(R[6]C[-12]-R[5]C[-12]))))"

 Range("N5").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 9
 Range("N4").Select
 Select ion.AutoFill Destination:=Range("N4:R4"),

Type:=xlFillDefault
 Range("N4:R4").Select
 Range("N5").Select
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3

38 T. Ganesh et al.: Solving Multi Criteria Decision Aiding (MCDA) Problems using Spreadsheets

 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((R[2]C[-12]+R[5]C[-12])<=R[-3]C[-12],0,IF((R[2]C[-
12]+R[4]C[-12])>R[-3]C[-12],1,((R[2]C[-12]-R[-3]C[-12]+
R[5]C[-12])/ (R[5]C[-12]-R[4]C[-12]))))"

 Range("N5").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 10
 Select ion.AutoFill Destination:=Range("N5:R5"),

Type:=xlFillDefault
 Range("N5:R5").Select
 Range("N6").Select
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((R[1]C[-12]+R[4]C[-12])<=R[-3]C[-12],0,IF((R[1]C[-
12]+R[3]C[-12])>R[-3]C[-12],1,((R[1]C[-12]-R[-3]C[-12]+
R[4]C[-12])/ (R[4]C[-12]-R[3]C[-12]))))"

 Range("N7").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 8
 Range("N6").Select
 Select ion.AutoFill Destination:=Range("N6:R6"),

Type:=xlFillDefault
 Range("N6:R6").Select
 Range("N7").Select
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((RC[-12]+R[3]C[-12])<=R[-3]C[-12],0,IF((RC[-12]+
R[2]C[-12])>R[-3]C[-12],1,((RC[-12]-R[-3]C[-12]+R[3]C[-
12])/(R[3]C[-12]-R[2]C[-12]))))"

 Range("N8").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 Range("N7").Select
 Select ion.AutoFill Destination:=Range("N7:R7"),

Type:=xlFillDefault
 Range("N7:R7").Select
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 Range("H16").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[4]C[-6]-R[8]C[-6])<RC[-6],0,IF((R[4]C[-6]-R[10]
C[-6])>=RC[-6],1,((R[4]C[-6]-RC[-6]-R[8]C[-6])/(R[10]C[
-6]-R[8]C[-6]))))"

 Range("H16").Select
 Select ion.AutoFill Destination:=Range("H16:L16"),

Type:=xlFillDefault
 Range("H16:L16").Select
 Range("H17").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[3]C[-6]-R[7]C[-6])<RC[-6],0,IF((R[3]C[-6]-R[9]C
[-6])>=RC[-6],1,((R[3]C[-6]-RC[-6]-R[7]C[-6])/(R[9]C[-6]
-R[7]C[-6]))))"

 Range("H17").Select
 Select ion.AutoFill Destination:=Range("H17:L17"),

Type:=xlFillDefault
 Range("H17:L17").Select
 Range("H18").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[2]C[-6]-R[6]C[-6])<RC[-6],0,IF((R[2]C[-6]-R[8]C
[-6])>=RC[-6],1,((R[2]C[-6]-RC[-6]-R[6]C[-6])/(R[8]C[-6]
-R[6]C[-6]))))"

 Range("H18").Select
 Select ion.AutoFill Destination:=Range("H18:L18"),

Type:=xlFillDefault
 Range("H18:L18").Select
 Range("H19").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[2]C[-6]-R[5]C[-6])<R[-3]C[-6],0,IF((R[2]C[-6]-R[
7]C[-6])>=R[-3]C[-6],1,((R[2]C[-6]-R[-3]C[-6]-R[5]C[-6])/
(R[7]C[-6]-R[5]C[-6]))))"

 Algorithms Research 2013, 2(2): 29-42 39

 Range("H19").Select
 Select ion.AutoFill Destination:=Range("H19:L19"),

Type:=xlFillDefault
 Range("H19:L19").Select
 Range("H20").Select
 ActiveCell.FormulaR1C1 = _

"=IF((R[1]C[-6]-R[4]C[-6])<R[-3]C[-6],0,IF((R[1]C[-6]-R[
6]C[-6])>=R[-3]C[-6],1,((R[1]C[-6]-R[-3]C[-6]-R[4]C[-6])/
(R[6]C[-6]-R[4]C[-6]))))"

 Range("H20").Select
 Select ion.AutoFill Destination:=Range("H20:L20"),

Type:=xlFillDefault
 Range("H20:L20").Select
 Range("H21").Select
 ActiveCell.FormulaR1C1 = _

"=IF((RC[-6]-R[3]C[-6])<R[-3]C[-6],0,IF((RC[-6]-R[5]C[-
6])>=R[-3]C[-6],1,((RC[-6]-R[-3]C[-6]-R[3]C[-6])/(R[5]C[
-6]-R[3]C[-6]))))"

 Range("H21").Select
 Select ion.AutoFill Destination:=Range("H21:L21"),

Type:=xlFillDefault
 Range("H21:L21").Select
 Range("N16").Select
 ActiveCell.FormulaR1C1 = "="
 ChDir "C:\Users\NEW\Desktop"
 Range("N16").Select
 Select ion.ClearContents
 ActiveCell.FormulaR1C1 = _

"=IF((RC[-12]-R[4]C[-12])<R[8]C[-12],0,IF((RC[-12]-R[4]
C[-12])>=R[10]C[-12],1,((RC[-12]-R[4]C[-12]-R[8]C[-12])
/(R[10]C[-12]-R[8]C[-12]))))"

 Range("N17").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 8
 Range("N16").Select
 Select ion.AutoFill Destination:=Range("N16:R16"),

Type:=xlFillDefault
 Range("N16:R16").Select
 Range("N17").Select
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((RC[-12]-R[3]C[-12])<R[7]C[-12]:R[7]C[-12],0,IF((R

C[-12]-R[3]C[-12])>=R[9]C[-12],1,((RC[-12]-R[3]C[-12]-
R[7]C[-12])/ (R[9]C[-12]-R[7]C[-12]))))"

 Range("N18").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 Range("N17").Select
 Select ion.AutoFill Destination:=Range("N17:R17"),

Type:=xlFillDefault
 Range("N17:R17").Select
 Range("N18").Select
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((RC[-12]-R[2]C[-12])<R[6]C[-12],0,IF((RC[-12]-R[2]
C[-12])>=R[8]C[-12],1,((RC[-12]-R[2]C[-12]-R[6]C[-12])/
(R[8]C[-12]-R[6]C[-12]))))"

 Range("N19").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 10
 ActiveWindow.ScrollColumn = 11
 Range("N18").Select
 Select ion.AutoFill Destination:=Range("N18:R18"),

Type:=xlFillDefault
 Range("N18:R18").Select
 Range("N19").Select
 ActiveWindow.ScrollColumn = 10
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((R[-3]C[-12]-R[2]C[-12])<R[5]C[-12],0,IF((R[-3]C[-1
2]-R[2]C[-12])>=R[7]C[-12],1,((R[-3]C[-12]-R[2]C[-12]-R
[5]C[-12]))))"

 Range("N20").Select
 ActiveWindow.ScrollColumn = 2

40 T. Ganesh et al.: Solving Multi Criteria Decision Aiding (MCDA) Problems using Spreadsheets

 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 Range("N19").Select
 Select ion.AutoFill Destination:=Range("N19:R19"),

Type:=xlFillDefault
 Range("N19:R19").Select
 Range("N20").Select
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((R[-3]C[-12]-R[1]C[-12])<R[4]C[-12],0,IF((R[-3]C[-1
2]-R[1]C[-12])>=R[6]C[-12],1,((R[-3]C[-12]-R[1]C[-12]-R
[4]C[-12])/(R[6]C[-12]-R[4]C[-12]))))"

 Range("N21").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 8
 Range("N20").Select
 Select ion.AutoFill Destination:=Range("N20:R20"),

Type:=xlFillDefault
 Range("N20:R20").Select
 Range("N21").Select
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 1
 ActiveCell.FormulaR1C1 = _

"=IF((R[-3]C[-12]-RC[-12])<R[3]C[-12],0,IF((R[-3]C[-12]-
RC[-12])>=R[5]C[-12],1,((R[-3]C[-12]-RC[-12]-R[3]C[-12
])/(R[5]C[-12]-R[3]C[-12]))))"

 Range("N22").Select
 ActiveWindow.ScrollColumn = 2
 ActiveWindow.ScrollColumn = 3
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 10
 ActiveWindow.ScrollColumn = 11
 Range("N21").Select
 Select ion.AutoFill Destination:=Range("N21:R21"),

Type:=xlFillDefault
 Range("N21:R21").Select

 ActiveWindow.SmallScro ll Down:=-15
 Range("S2").Select
 ActiveWindow.ScrollColumn = 10
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveCell.FormulaR1C1 = _

"=SUMPRODUCT(RC[-11]:RC[-7],R11C2:R11C6)/SUM(
R11C2:R11C6)"

 Range("S2").Select
 Select ion.AutoFill Destination:=Range("S2:S7"),

Type:=xlFillDefault
 Range("S2:S7").Select
 Range("T2").Select
 ActiveCell.FormulaR1C1 = _

"=SUMPRODUCT(RC[-6]:RC[-2],R11C2:R11C6)/SUM(R
11C2:R11C6)"

 Range("T2").Select
 Select ion.AutoFill Destination:=Range("T2:T7")
 Range("T2:T7").Select
 Range("T16").Select
 ActiveCell.FormulaR1C1 = "if("
 Range("T16").Select
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-12]>R2C19,(R2C19*(1-RC[-12])/(1-R2C19)),R2
C19)"

 Range("T17").Select
 ActiveWindow.SmallScro ll ToRight:=3
 Range("T16").Select
 Select ion.AutoFill Destination:=Range("T16:X16"),

Type:=xlFillDefault
 Range("T16:X16").Select
 Range("T17").Select
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-12]>R3C19,(R3C19*(1-RC[-12])/(1-R3C19)),R3
C19)"

 Range("T18").Select
 ActiveWindow.SmallScro ll ToRight:=4
 Range("T17").Select
 Select ion.AutoFill Destination:=Range("T17:X17"),

Type:=xlFillDefault
 Range("T17:X17").Select
 Range("T18").Select
 ActiveWindow.ScrollColumn = 10
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveCell.FormulaR1C1 = _

 Algorithms Research 2013, 2(2): 29-42 41

"=IF(RC[-12]>R4C19,(R4C19*(1-RC[-12])/(1-R4C19)),R4
C19)"

 Range("T19").Select
 ActiveWindow.SmallScro ll ToRight:=5
 Range("T18").Select
 Select ion.AutoFill Destination:=Range("T18:X18"),

Type:=xlFillDefault
 Range("T18:X18").Select
 Range("T19").Select
 ActiveWindow.ScrollColumn = 10
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 7
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 4
 ActiveWindow.ScrollColumn = 5
 ActiveWindow.ScrollColumn = 6
 ActiveWindow.ScrollColumn = 7
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-12]>R5C19,(R5C19*(1-RC[-12])/(1-R5C19)),R5
C19)"

 Range("T20").Select
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 10
 ActiveWindow.ScrollColumn = 11
 Range("T19").Select
 Select ion.AutoFill Destination:=Range("T19:X19"),

Type:=xlFillDefault
 Range("T19:X19").Select
 Range("T20").Select
 ActiveWindow.ScrollColumn = 10
 ActiveWindow.ScrollColumn = 9
 ActiveWindow.ScrollColumn = 8
 ActiveWindow.ScrollColumn = 7
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-12]>R6C19,(R6C19*(1-RC[-12])/(1-R6C19)),R6
C19)"

 Range("T21").Select
 ActiveWindow.SmallScro ll ToRight:=3
 Range("T20").Select
 Select ion.AutoFill Destination:=Range("T20:X20"),

Type:=xlFillDefault
 Range("T20:X20").Select
 Range("T21").Select
 ActiveWindow.SmallScro ll ToRight:=-2
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-12]>R7C19,(R7C19*(1-RC[-12])/(1-R7C19)),R7
C19)"

 Range("T22").Select
 ActiveWindow.SmallScro ll ToRight:=2
 Range("T21").Select

 Select ion.AutoFill Destination:=Range("T21:X21"),
Type:=xlFillDefault

 Range("T21:X21").Select
 ActiveWindow.SmallScro ll ToRight:=6
 Range("Z16").Select
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-18]>R2C20,(R2C20*(1-RC[-18])/(1-R2C20)),R2
C20)"

 Range("Z16").Select
 Select ion.AutoFill Destination:=Range("Z16:AD16"),

Type:=xlFillDefault
 Range("Z16:AD16").Select
 Range("Z17").Select
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-18]>R3C20,(R3C20*(1-RC[-18])/(1-R3C20)),R3
C20)"

 Range("Z17").Select
 Select ion.AutoFill Destination:=Range("Z17:AD17"),

Type:=xlFillDefault
 Range("Z17:AD17").Select
 Range("Z18").Select
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-18]>R4C20,(R4C20*(1-RC[-18])/(1-R4C20)),R4
C20)"

 Range("Z18").Select
 Select ion.AutoFill Destination:=Range("Z18:AD18"),

Type:=xlFillDefault
 Range("Z18:AD18").Select
 Range("Z19").Select
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-18]>R5C20,(R5C20*(1-RC[-18])/(1-R5C20)),R5
C20)"

 Range("Z19").Select
 Select ion.AutoFill Destination:=Range("Z19:AD19"),

Type:=xlFillDefault
 Range("Z19:AD19").Select
 Range("Z20").Select
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-18]>R6C20,(R6C20*(1-RC[-18])/(1-R6C20)),R6
C20)"

 Range("Z20").Select
 Select ion.AutoFill Destination:=Range("Z20:AD20"),

Type:=xlFillDefault
 Range("Z20:AD20").Select
 Range("Z21").Select
 ActiveCell.FormulaR1C1 = _

"=IF(RC[-18]>R7C20,(R7C20*(1-RC[-18])/(1-R7C20)),R7
C20)"

 Range("Z21").Select
 Select ion.AutoFill Destination:=Range("Z21:AD21"),

Type:=xlFillDefault

42 T. Ganesh et al.: Solving Multi Criteria Decision Aiding (MCDA) Problems using Spreadsheets

 Range("Z21:AD21").Select
End Sub

REFERENCES
[1] I. Brans and B. Mareschal, (2005) “PROMITHEE methods.”

In Multiple Criteria Decision Analysis: State of the Art
Surveys, J. Figueria, S. Greco, and M. Ehrgott, Eds. Boston:
Springer-Verlag, pp.163-196.

[2] Y. Chen, Multiple Criteria Decision Analysis: Classification
Problems and solutions,” (2006) Ph.D. dissertation,
University of Waterloo, Waterloo, Ontario, Canada.

[3] Doumpos, M. and C. Zopounidis (2003), “A multicriteria
classification approach based on pair wise comparisons,
European Journal of Operations l Research, vol. 158, no 2,
378-389.

[4] J. Figueira, V. Mousseau and B. Roy, (2005), “Electre
methods,” in Multiple Criteria Decision Analysis: State of the
Art Surveys, J. Figueria, S. Greco, and M. Ehrgott, Eds.
Boston: Springer-Verlag, , pp.133-162.

[5] V. Mousseau R. Slowinski (1999), “ ELECTRE TRI 2.0a:
Methodological guide and user’s documentation,” Universite
de Paris-Dauphine, Document du LAMSADE 111.

[6] A. Nago The and V. Mousseau, (2002), “ Using Assignment
examples to infer category limits for the ELECTRE TRI
method,” Journal of Multicriteria Decision Analysis,” vol. 11,
no.1, pp.29-43.

[7] B.Roy, (1981) “A Multicriteria Analysis for trichotomic
segmentation problems,” Multiple Criteria Analysis:

Operational Methods, P. Nijkamp and J. Spronk, Eds.
Farnborough: Gower Press, pp. 245-257.

[8] C. Zopounidis, (2002), “MCDA methodologies for
classification and sorting,” European Journal of Operations l
Research, vol. 138, no 2, 227-228.

[9] A.Jaszkiewicz and A.B. Ferhat, (1990) “Solving multiple
criteria choice problems by interactive trichotomy
segmentation,” European Journal of Operations l Research,
vol. 113, no 2, 271-280.

[10] M. Rogers, M.Bruen and L. Maystre (2000), “ Electri and
Decision Support”, Dordrecht: Kluwer Academic Publishers.

[11] J. Figueira, V. Mousseau and B. Roy (2005), “ELECTRI
Methods in Multi Criteria Decision Analysis: State of the Art
Surveys” Boston Springer – verlag, pp 133-162.

[12] V. Mousseau, J. Figueira, J.-Ph. Naux, (2001), “Using
assignment examples to infer weights for ELECTRE TRI
method: Some experimental results”, European Journal of
Operational Research 130, 263-275.

[13] J. Martel and B. Metarazzo (2005), “Outranking Approaches,
in Multiple Criteria Decision Analysis: State of the Art
Surveys”, Boston Springer – verlag, pp 197-264

[14] Iryna Yevseyeva (2007), “Solving Classification Problems
with Multi Criteria Decision Aiding approaches”, Jyvaskyla
University Printing house.

[15] Mousseau R. Slowinski (1998), “Inferring an ELECTRE TRI
model from Assignment problems”, Journal of Global
Optimization, vol.12, No. 2, pp. 157-174.

[16] V. Mousseau, R. Slowinski, P. Zielniewicz (2000), “A
user-oriented implementation of the ELECTRE-TRI method
integrating preference elicitation support” Computers &
Operations Research 27, pp. 757-777.

	1. Introduction
	2. Outranking Methodology
	3. Algorithm of the ELECTRE TRI Method
	4. Numerical Illustrations
	5. Conclusions
	ACKNOWLEDGEMENTS
	Macro Used for Solving MCDA problems

