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Abstract  Exchanging information electronically in a secure way become very important in the age of computers. Over 
fifty years of research and implementation were devoted to developing methods and systems for such a secure 
communicat ion. These systems are commonly known as cryptosystems. Among the cryptosystems currently in use, the 
public key cryptosystems have a special place. These are cryptosystems which allow any user, completely unaware of the 
methods of encryption and decryption, i.e. of the intricate details of the system, to use them for variety of purposes in their 
daily life. The most common examples of this are digital signatures and electronic banking transactions. Here we provide an 
overview of different cryptosystems, including but not limited to an examination and comparison of five different influential 
public key cryptosystems. This examinat ion includes an in-depth look at: the RSA algorithm, the Diffie-Hellman  key 
exchange protocol, the elliptic curve cryptosystems, the ElGamal encryption method and the knapsack approach. We provide 
the necessary mathemat ical and number theoretic preliminaries. Further, we introduce each cryptosystem starting with the 
relevant definitions, theorems and properties. We discuss the encryption and the decryption process, the creation and 
exchange of the keys, present plenty of examples, as well as discussion of the implementation issues and the known strengths 
and weaknesses of each cryptosystem against cryptanalytic attacks. 
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1. Introductory Mathematics 
Cryptography is the practise of creating techniques that 

allow the secure communication among two parties in the 
presence of eavesdroppers. Cryptography is a very old 
science dating back hundreds of years where its orig ins 
began with the very basic transposition ciphers, which would 
rearrange letters in words to form something else. Today it 
has become much more scientific with the design of 
cryptographic algorithms designed to be infeasible for an 
attacker to decipher. The purpose of the paper is to discuss 
the use of public key cryptosystems, describe and compare 
five major types of these systems. The five systems that will 
be discussed include: the RSA Cryptosystem, the 
Diffie-Hellman Key Exchange Protocol, the ElGamal 
Encryption Method, the Knapsack approach and the use of 
Elliptic Curves in Cryptosystems. Before these methods are 
discussed in detail, some introductory mathematics must first 
be established. 

1.1. Greatest Common Divisor  

The first fundamentals o f number theory that  will be 
discussed are the concepts o f greatest common d iv isor, 
d iv ides  and  relat ively  p rime. Cons ider the fo llowing  
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definit ions: 
Definition 1.1.1 : Let a and b be two integers. We say that 

a divides b if there exists an integer k  such that 𝑏𝑏 =  𝑎𝑎𝑎𝑎 . We 
denote a divides b as: 𝑎𝑎|𝑏𝑏 

Definition 1.1.2 :  
Let a and b be two integers. The greatest common div isor 

(gcd) of a and b, denoted by (a,b), satisfies the following two 
properties: 
• (𝑎𝑎, 𝑏𝑏) | 𝑎𝑎 and (𝑎𝑎, 𝑏𝑏) | 𝑏𝑏 
• If 𝑑𝑑 | 𝑎𝑎 and 𝑑𝑑 | 𝑏𝑏  then 𝑑𝑑 | (𝑎𝑎, 𝑏𝑏) 
The concepts of divisibility and gcd are of the utmost 

importance when working with cryptosystems, specifically 
the ones mentioned in this paper.  

Definition 1.1.3: Let a  and b be two integers. a and b are 
said to be relatively prime if and only if the only positive 
integer that divides both is 1, that is the gcd(a, b) = 1  

1.2. Congruence Modulo n 

The idea of d ivision with remainders is one of the key 
components of most public key cryptosystems. Consider the 
following definit ion: 

Definition 1.2.1 : Let a and b be two integers. We say that 
there is a remainder after division if there exist integers k  and 
r such that 𝑏𝑏 =  𝑎𝑎𝑎𝑎  +  𝑟𝑟 , 0 ≤ 𝑟𝑟 < 𝑎𝑎 when r is the 
remainder.  

This definit ion ties perfectly into the idea of congruence 
modulo n, as defined by the following defin ition. 

Definition 1.2.2: Let a and b be two integers. a and b are 
said to be congruent modulo n. written: 𝑎𝑎 ≡ 𝑏𝑏 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑛𝑛),  
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if they leave the same remainder on div ision by n. 
Equivalently, a is congruent to b, mod n if n d ivides a – b. 

It can also be said that a and b belong to the same 
congruence class, mod n.  

Example 1.2.1: Find three integers that are congruent to 5 
(mod 13). 

Solution: 
By defin ition of congruence we need to find three integers 

a, b, c that are all congruent to 5 (mod 13). 
That is: 

𝑎𝑎 ≡ 5 (𝑚𝑚𝑚𝑚𝑑𝑑  13) 
𝑏𝑏 ≡ 5 (𝑚𝑚𝑚𝑚𝑑𝑑  13) 
𝑐𝑐  ≡ 5 (𝑚𝑚𝑚𝑚𝑑𝑑 13) 

By defin ition of congruence mod n, 13 |(a – 5), Thus we 
can notice we have: 13𝑎𝑎  =  𝑎𝑎 –  5, thus 𝑎𝑎 =  13𝑎𝑎  –  5. 

Set 𝑎𝑎 =  0, 1, 2 . We get 𝑎𝑎 =  5, 𝑏𝑏 =  18, 𝑐𝑐  =  31 . 
Thus we have, 

5 (𝑚𝑚𝑚𝑚𝑑𝑑 13) ≡ 18 (𝑚𝑚𝑚𝑚𝑑𝑑  13) ≡ 31 (𝑚𝑚𝑚𝑚𝑑𝑑 13) 
All these values belong to the same congruence class 

mod 13. 

1.3. Extended Euclidean Algorithm 

Using Definition 1.2.2 Euclid developed an algorithm to 
find the greatest common div isor by repeatedly subtracting 
the smaller number from the larger number. More precisely, 
his algorithm goes as follows: 

Suppose that 𝑎𝑎 >  𝑏𝑏  and let 𝑎𝑎1 = 𝑎𝑎,𝑏𝑏1 = 𝑏𝑏. 
Then for each pair (𝑎𝑎𝑖𝑖  , 𝑏𝑏𝑖𝑖) we form the pair (𝑎𝑎𝑖𝑖+1, 𝑏𝑏𝑖𝑖+1), 

where 𝑎𝑎𝑖𝑖+1 = 𝑚𝑚𝑎𝑎𝑚𝑚(𝑏𝑏𝑖𝑖  ,𝑎𝑎𝑖𝑖 – 𝑏𝑏𝑖𝑖), 𝑏𝑏𝑖𝑖+1 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑏𝑏𝑖𝑖  ,𝑎𝑎𝑖𝑖 – 𝑏𝑏𝑖𝑖). 
Since this algorithm produces smaller and smaller pairs, 

eventually it must end and we notice that we will get: 
𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑎𝑎  in which the case we conclude that 𝑔𝑔𝑐𝑐𝑑𝑑(𝑎𝑎, 𝑏𝑏)  =
 𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑎𝑎 . 

Arguably the most important consequence of the 
Euclidean algorithm is that we have the following 
proposition 

Proposition 1.3.1: Let a and b be integer values we can 
see from the Euclidean Algorithm that we have: 
𝑔𝑔𝑐𝑐𝑑𝑑(𝑎𝑎, 𝑏𝑏)  =  𝑚𝑚𝑎𝑎  +  𝑛𝑛𝑏𝑏 for some integers m and n. 
Example 1.3.1 : Find the 𝑔𝑔𝑐𝑐𝑑𝑑(34, 19)  =  𝑔𝑔𝑐𝑐𝑑𝑑 (𝑎𝑎, 𝑏𝑏) in  

the form 𝑚𝑚𝑎𝑎  +  𝑛𝑛𝑏𝑏. 
Solution: We must begin by using division with 

remainder, subtracting the appropriate mult iple of the 
second number from the first to get the remainder at each 
step. We have: 

(34, 19)  =  (𝑎𝑎, 𝑏𝑏) 
(19, 15)  =  (𝑏𝑏 , 𝑎𝑎 –  𝑏𝑏) 

(15, 4)  = (𝑎𝑎– 𝑏𝑏 , 𝑏𝑏 – (𝑎𝑎 – 𝑏𝑏))  =  (𝑎𝑎– 𝑏𝑏 ,−𝑎𝑎 + 2𝑏𝑏) 
(4, 3) = �−𝑎𝑎 + 2𝑏𝑏 , 𝑎𝑎– 𝑏𝑏– 3(−𝑎𝑎 + 2𝑏𝑏)�

= (−𝑎𝑎 + 2𝑏𝑏 , 4𝑎𝑎– 7𝑏𝑏) 
(3, 1)  =  (4𝑎𝑎  –  7𝑏𝑏 ,−𝑎𝑎 +  2𝑏𝑏  – (4𝑎𝑎 –  7𝑏𝑏))  

=  (4𝑎𝑎 –  7𝑏𝑏 ,−5𝑎𝑎 +  9𝑏𝑏) 
We can see that we now have, 1 =  −5𝑎𝑎 +  9𝑏𝑏. 
We can try this out by substituting in our original values 

for a and b, we have 1 = −5(34)  +  9 (19)  =  1 
The Euclidean algorithm is ext remely important in  

practice and theory. It is useful in practice because it is 
unusually fast, you can get the gcd of a k-digit number in 
around k  steps, which  is much faster than any known 
algorithm for finding div isors of a k-digit number. 

1.4. Fast Exponentiation 

The next fundamental mathematical algorithm we must 
discuss is the process of computing large powers in  a 
monoid G. This algorithm and its variants are central 
ingredients of many cryptographic protocols. We must 
begin by letting 𝑔𝑔  ∈  𝐺𝐺 and e be a positive integer. Let  

𝑒𝑒 =  �𝑒𝑒𝑖𝑖2𝑖𝑖
𝑎𝑎

𝑖𝑖=1

 

Be the binary expansion of e. Observe that the 
coefficients ei are either 0 or 1. Therefore,  

𝑔𝑔𝑒𝑒 = 𝑔𝑔� 𝑒𝑒𝑖𝑖2𝑖𝑖
𝑎𝑎

𝑖𝑖=0
= �(𝑔𝑔2𝑖𝑖 )𝑒𝑒𝑖𝑖

𝑎𝑎

𝑖𝑖=1

= � 𝑔𝑔2𝑖𝑖

0≤𝑖𝑖≤𝑎𝑎,𝑒𝑒𝑖𝑖=1

 

From th is formula, we obtain the following idea for 
computing 𝑔𝑔𝑒𝑒 : 

1. Compute the successive squares 𝑔𝑔2𝑖𝑖 ,0 ≤  𝑖𝑖  ≤  𝑎𝑎. 
2. Determine 𝑔𝑔𝑒𝑒  as the product of those 𝑔𝑔2𝑖𝑖  for which 

𝑒𝑒𝑖𝑖 = 1. 
Observe that 𝑔𝑔2𝑖𝑖+1 = (𝑔𝑔2𝑖𝑖 )2 . 
Therefore, 𝑔𝑔2𝑖𝑖+1  can be computed from 𝑔𝑔2𝑖𝑖  by 

squaring only once. Here is an example of a situation where 
this method is very useful. 

Example 1.4.1: Determine the value of 673 (mod 100). 
Solution: Consider 

61 (𝑚𝑚𝑚𝑚𝑑𝑑  100)  ≡  6 (𝑚𝑚𝑚𝑚𝑑𝑑  100) 
62 (𝑚𝑚𝑚𝑚𝑑𝑑 100)  ≡  36 (𝑚𝑚𝑚𝑚𝑑𝑑  100) 

64  (𝑚𝑚𝑚𝑚𝑑𝑑 100 )  ≡  362  (𝑚𝑚𝑚𝑚𝑑𝑑 100)  ≡  96 (𝑚𝑚𝑚𝑚𝑑𝑑 100 ) 
68  (𝑚𝑚𝑚𝑚𝑑𝑑 100 )  ≡  962  (𝑚𝑚𝑚𝑚𝑑𝑑 100)  ≡  16 (𝑚𝑚𝑚𝑚𝑑𝑑 100 ) 
616 (𝑚𝑚𝑚𝑚𝑑𝑑 100)  ≡  162  (𝑚𝑚𝑚𝑚𝑑𝑑  100)  ≡  56 (𝑚𝑚𝑚𝑚𝑑𝑑 100) 
632 (𝑚𝑚𝑚𝑚𝑑𝑑 100)  ≡  562  (𝑚𝑚𝑚𝑚𝑑𝑑  100)  ≡  36 (𝑚𝑚𝑚𝑚𝑑𝑑 100) 
664 (𝑚𝑚𝑚𝑚𝑑𝑑 100)  ≡  362  (𝑚𝑚𝑚𝑚𝑑𝑑  100)  ≡  96 (𝑚𝑚𝑚𝑚𝑑𝑑 100) 

61 ∗ 68 ∗ 664  (𝑚𝑚𝑚𝑚𝑑𝑑  100)  ≡ 6 ∗ 16 ∗ 96 ( 𝑚𝑚𝑚𝑚𝑑𝑑 100)  
≡  962 (𝑚𝑚𝑚𝑚𝑑𝑑 100)  ≡  16 (𝑚𝑚𝑚𝑚𝑑𝑑  100) 

Note that using fast exponentiation only 6 squares were 
calculated and then the product of three integers (mod 100), 
compared to computing 6 ∗ 6 ∗ 6 ∗ … ∗ 6  (with 73 
calculations) then taking  the modulus 100 of that value, this 
is a much easier computation. 

2. RSA Cryptosystem 

The first public key cryptosystem invented was developed 
and named after its creators Ron Rivest, Adi Shamir and Len 
Adleman[9]. The RSA cryptosystem is a relat ively strong 
security, and what makes it rather impressive is that since the 
system has been implemented in 1978 it  still, to this day has 
not been broken[11]. To  break the system a user must be ab le 
to factor a very large composite number which is the product 
of two large prime numbers. 
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The RSA system is built on basic number theory, more 
specifically on (+, *) arithmet ic modulo n, and on Fermat’s 
litt le theorem as generalized  by Euler. The whole system 
works due to three simple p roperties of integers, well known 
by theoreticians: 
• It is difficult for a  computer to factor a large number 
• It is easy for a computer to construct large prime 

numbers 
• It is easy for a computer to decide whether a given large 

number is prime 

2.1. Generation of the Public Key 

To generate the public key we must begin with a few 
simple ru les. Let us generate p, and q to be two large distinct 
prime numbers. Now we must find the product of p and q, 
and let n be this product, that is: 𝑛𝑛 =  𝑝𝑝𝑝𝑝 

Now determine an integer e such that, 
1 <  𝑒𝑒 <  𝜑𝜑(𝑛𝑛)  =  (𝑝𝑝 − 1)(𝑝𝑝 − 1) 

Where e is relatively prime to  𝜑𝜑(𝑛𝑛), that is 𝑔𝑔𝑐𝑐𝑑𝑑 (𝑒𝑒, (𝑝𝑝 −
1)(𝑝𝑝 − 1))  =  1. It can be noted that e will always be odd, 
since 𝜑𝜑(𝑛𝑛) is always even, and if e was even then by 
definit ion of greatest common div isor, 𝑔𝑔𝑐𝑐𝑑𝑑(𝑒𝑒,𝜑𝜑(𝑛𝑛))  ≠  1. 
We must now compute an integer d, such that: 1 <  𝑑𝑑 <
 𝜑𝜑(𝑛𝑛) where 𝑑𝑑𝑒𝑒 ≡ 1 (𝑚𝑚𝑚𝑚𝑑𝑑 ((𝑝𝑝 − 1)(𝑝𝑝 − 1))). 

The existence of this integer d is known from the simple 
fact that 𝑔𝑔𝑐𝑐𝑑𝑑 (𝑒𝑒, (𝑝𝑝 − 1)(𝑝𝑝 − 1))  =  1 . Using the 
extended Euclidean algorithm we can determine a value d 
for every public key (𝑛𝑛, 𝑒𝑒) if the primes p and q are known. 
We call the value e the encryption exponent and our value d 
the decryption exponent. 

Example 2.1.1: Develop values p, q and use them to 
calculate the value n, and find encryption and decryption 
exponents that work with these values. 

Solution: Let  our p rime numbers be 𝑝𝑝 = 13, 𝑝𝑝 = 17. We 
can easily compute that 𝑛𝑛 =  𝑝𝑝𝑝𝑝 =  (13)(17)  =  221. 

It can easily be noticed that our 𝜑𝜑(𝑛𝑛) =  𝜑𝜑(221) =
(13 − 1)(17 − 1) = 192.  

Next we must determine an integer e such that 
1 <  𝑒𝑒 <  𝜑𝜑(𝑛𝑛)  =  192, and e is relatively prime to 𝜑𝜑(𝑛𝑛). 
We can use 𝑒𝑒 =  7 for this. It can easily be seen that 
𝑔𝑔𝑐𝑐𝑑𝑑 (𝑒𝑒,𝜑𝜑(𝑛𝑛)) =  1 (which is the definition of relat ively  
prime), and now we can use Euclid’s algorithm to find d: 

192 =  7 ∗ 27 +  3 
7 =  3 ∗ 2 +  1 

Working backwards, we can see that we have:  
1 =  7 –  3 ∗ 2 =  7 –  (192 –  7 ∗ 27) ∗ 2 

=  7 ∗ 55 –  192 ∗ 2 =  1  
It can be noticed from this that we have: 7 ∗ 55 ≡

 1 (𝑚𝑚𝑚𝑚𝑑𝑑 192), thus giving us 𝑑𝑑 =  55. 

2.2. Encrypting a Message Using the Public Key 

The encrypting of an integer is very simple using the RSA 
cryptosystem. Let our message that we wish to encrypt be 
called m, note that any 𝑚𝑚 ∈ {0, 1, 2, … , 𝑛𝑛 − 1} where m is 
relatively prime to n. To encode m using our public key 
(𝑛𝑛, 𝑒𝑒), we must compute:  𝑐𝑐 ≡ 𝑚𝑚𝑒𝑒  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛), where c  is our 

desired ciphertext .   
We are now able to safely send our encoded value c to 

the receiver who has access to the decryption key d. For 
smaller values of 𝑐𝑐 ≡  𝑚𝑚𝑒𝑒  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑛𝑛) we can use the method 
discussed in Section 1.4 for fast exponentiation. 

Example 2.2.1: Encrypt the simple integer 𝑚𝑚  =  126 
using the values computed in Example 2.1.1 so the message 
m is secure and cannot be decrypted without access to the 
decryption key d. 

Solution: We know from Example 2.1.1, we have the 
following values: 𝑝𝑝 =  13, 𝑝𝑝 =  17, 𝑛𝑛 =  221 , where 
𝜑𝜑(𝑛𝑛) =  𝜑𝜑(221) = (13 − 1)(17 − 1) = 192 . We chose 
our value 𝑒𝑒 =  7 and calculated 𝑑𝑑 =  55. 

Using the given integer 𝑚𝑚 = 126 , we must use the 
public key  (221, 7) to calculate: 

𝑐𝑐 ≡  𝑚𝑚𝑒𝑒  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑛𝑛) = 1267  (𝑚𝑚𝑚𝑚𝑑𝑑  221) 
It can easily be seen that:  

1262  =  15876  (𝑚𝑚𝑚𝑚𝑑𝑑 221)  ≡  185 (𝑚𝑚𝑚𝑚𝑑𝑑  221) 
1264 =  (15876 )2 ≡  1852  (𝑚𝑚𝑚𝑚𝑑𝑑 221 )  

≡   191 (𝑚𝑚𝑚𝑚𝑑𝑑 221) 
It can be seen that 1267 = 1264 ∗ 1262 ∗ 1261 ≡ 191 ∗

185 ∗ 126 (𝑚𝑚𝑚𝑚𝑑𝑑  221) ≡ 165 (𝑚𝑚𝑚𝑚𝑑𝑑  221). It can be noted 
that our value for 𝑐𝑐 =  165. 

2.3. Decrypting a Message Using the Decryption Key 

The decryption of RSA is based on the following 
theorem: 

Theorem 2.3.1: Let (𝑛𝑛, 𝑒𝑒) be a Public RSA key and d the 
corresponding private RSA key. 

Then: (𝑚𝑚𝑒𝑒 )𝑑𝑑  𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛 =  𝑚𝑚  for any integer m with 
0 ≤  𝑚𝑚 <  𝑛𝑛. 

Proof: We know that 𝑒𝑒𝑑𝑑  ≡  1 𝑚𝑚𝑚𝑚𝑑𝑑 (𝑝𝑝 − 1)(𝑝𝑝 − 1) by 
the definition of d, thus there must exist an integer t such 
that 𝑒𝑒𝑑𝑑 =  1 + (𝑡𝑡(𝑝𝑝 − 1)(𝑝𝑝 − 1)). 

Therefore 
(𝑚𝑚𝑒𝑒)𝑑𝑑 = 𝑚𝑚𝑒𝑒𝑑𝑑 = 𝑚𝑚1 +𝑡𝑡(𝑝𝑝−1)(𝑝𝑝−1) = 𝑚𝑚(𝑚𝑚(𝑝𝑝−1)(𝑝𝑝−1) )𝑡𝑡  

It follows that: (𝑚𝑚𝑒𝑒)𝑑𝑑 = 𝑚𝑚(𝑚𝑚(𝑝𝑝−1) )(𝑝𝑝−1)𝑡𝑡 ≡ 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) 
If p is not a divisor of m, then this congruence follows 

from Fermat’s little theorem (If 𝑔𝑔𝑐𝑐𝑑𝑑 (𝑎𝑎,𝑚𝑚) = 1 , then 
𝑎𝑎𝜑𝜑 (𝑚𝑚 ) ≡ 1 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑚𝑚) ). Otherwise, the assertion is trivial 
because both sides of the congruence are 0 (mod p). 
Analogously, we see that (𝑚𝑚𝑒𝑒 )𝑑𝑑 ≡ 𝑚𝑚  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) 

Because p and q are distinct prime numbers, we obtain 
(𝑚𝑚𝑒𝑒)𝑑𝑑 ≡ 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛) 

The assertion follows from the fact that 0 ≤  𝑚𝑚 <  𝑛𝑛. 
This concludes the proof. 

Corollary 2.3.2: When the message m is encrypted by 
using 𝑐𝑐 ≡ 𝑚𝑚𝑒𝑒  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛) where (𝑛𝑛, 𝑒𝑒) is the public key, it  
follows that the ciphertext c can be decrypted by the 
following equation: 𝑚𝑚 ≡ 𝑐𝑐𝑑𝑑  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑛𝑛) 

Thus using Corollary  2.3.2 we can now decrypt our 
ciphertext to find the original message m. 

Example 2.3.1: Decrypt the cipher text calculated in  
Example 2.2.1 using the values computed in Example 2.1.1 
so the message m is recovered properly. 

Solution: We know from Examples 2.1.1 and 2.2.1 we 
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have the following values: 𝑝𝑝 =  13, 𝑝𝑝  =  17, 𝑛𝑛 =  221 
where 𝜑𝜑(𝑛𝑛) = 𝜑𝜑(221) = (13 − 1)(17 − 1) = 192 . We 
chose our value 𝑒𝑒 =  7 and calculated 𝑑𝑑 =  55, 𝑐𝑐 =  165. 

Using Coro llary 2.3.2, we can now decrypt our ciphertext  
𝑐𝑐 = 165. We have: 𝑚𝑚 ≡ 𝑐𝑐𝑑𝑑 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛) ≡ 16555 (𝑚𝑚𝑚𝑚𝑑𝑑 221). 

Using the fast exponentiation as described in Section 1.4, 
we can see that: 

1652 ≡ 27225  (𝑚𝑚𝑚𝑚𝑑𝑑  221) ≡ 42 (𝑚𝑚𝑚𝑚𝑑𝑑 221) 
1654 ≡ (42)2 (𝑚𝑚𝑚𝑚𝑑𝑑 221 ) ≡ 217  (𝑚𝑚𝑚𝑚𝑑𝑑 221 ) 
1658 ≡ (217)2 (𝑚𝑚𝑚𝑚𝑑𝑑  221) ≡ 16 (𝑚𝑚𝑚𝑚𝑑𝑑 221 ) 
16516 ≡ (16)2 (𝑚𝑚𝑚𝑚𝑑𝑑  221) ≡ 35 (𝑚𝑚𝑚𝑚𝑑𝑑 221) 

16532 ≡ (35)2 (𝑚𝑚𝑚𝑚𝑑𝑑 221) ≡ 120 (𝑚𝑚𝑚𝑚𝑑𝑑 221) 
It can be noted that 
16555 = 16532 ∗ 16516 ∗ 1654 ∗ 1652 ∗ 1651 ≡ 120 ∗

35 ∗ 217 ∗ 42 ∗ 165 (𝑚𝑚𝑚𝑚𝑑𝑑  221) ≡
 217 ∗ 42 ∗ 165 (𝑚𝑚𝑚𝑚𝑑𝑑  221) ≡ 53 ∗ 165 (𝑚𝑚𝑚𝑚𝑑𝑑  221)  ≡
 126 (𝑚𝑚𝑚𝑚𝑑𝑑 221). 

Thus we have decrypted our original message and found 
the desired result of 𝑚𝑚 = 126. 

2.4. Security of the RSA Cryptosystem 

The RSA cryptosystem is a public key system, thus to 
consider this a legit imate cryptosystem we must first 
consider the security of the system itself. More specifically 
we must consider the security of the secret key d.  

It can be noticed that for an attacker to compute the 
secret key directly, they will need to know the prime 
factorization of n, which gives them p and q. They use p 
and q with the public key to generate the value of d  (by 
solving the congruence: 𝑑𝑑𝑒𝑒 ≡ 1 𝑚𝑚𝑚𝑚𝑑𝑑  ((𝑝𝑝 − 1)(𝑝𝑝 − 1)) ), 
and decrypt any stolen message. The converse of this 
statement is also true, that it  is possible to compute the 
values of p and q from the public key and the secret key. To 
show this, we must state the following lemma and theorems. 
First, we let 
𝑆𝑆 = 𝑚𝑚𝑎𝑎𝑚𝑚  { 𝑡𝑡 ∈ 𝑵𝑵 ∶ 2𝑡𝑡|(𝑒𝑒𝑑𝑑  –  1)} and 𝑎𝑎 = (𝑒𝑒𝑑𝑑 –  1)/2𝑠𝑠 . 
Theorem 2.4.1 : Let  𝑔𝑔 ∈ 𝐺𝐺 and 𝑒𝑒 ∈ 𝒁𝒁. Then 𝑔𝑔𝑒𝑒 = 1 if 

and only if e is divisib le by the order of g in G. 
Proof: Let 𝑛𝑛 =  |𝑔𝑔| (the order of g). If 𝑒𝑒 =  𝑎𝑎𝑛𝑛, then: 

𝑔𝑔𝑒𝑒 = 𝑔𝑔𝑎𝑎𝑛𝑛 = (𝑔𝑔𝑛𝑛 )𝑎𝑎 = 1𝑎𝑎 = 1 
Conversely, let 𝑔𝑔𝑒𝑒 = 1  and 𝑒𝑒 =  𝑝𝑝𝑛𝑛 +  𝑟𝑟  with 

0 ≤  𝑟𝑟 <  𝑛𝑛. Then: 𝑔𝑔𝑟𝑟 = 𝑔𝑔𝑒𝑒−𝑝𝑝𝑛𝑛 = 𝑔𝑔𝑒𝑒(𝑔𝑔𝑛𝑛 )−𝑝𝑝 = 1 
Because n is the least positive integer with 𝑔𝑔𝑛𝑛 = 1, and 

since 0 ≤  𝑟𝑟 <  𝑛𝑛 , we have 𝑟𝑟 =  0  and therefore 
𝑒𝑒 =  𝑝𝑝𝑛𝑛 . Hence, n is a div isor of e , as asserted. This 
concludes the proof. 

Lemma 2.4.2: For all integers a that are relatively prime 
to n, the order of the residue class 𝑎𝑎𝑎𝑎  +  𝑛𝑛𝒁𝒁 in the group 
(𝒁𝒁/𝑛𝑛𝒁𝒁)∗ is in {2𝑖𝑖 ∶ 0 ≤ 𝑖𝑖 ≤ 𝑠𝑠}. 

Proof: Let a be an integer that is relatively prime to n. 
By Euler’s theorem we have 𝑎𝑎𝑒𝑒𝑑𝑑 −1 ≡ 1 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛). Since 
𝑒𝑒𝑑𝑑  –  1 = 𝑎𝑎2𝑠𝑠 , this implies (𝑎𝑎𝑎𝑎 )2𝑠𝑠 ≡ 1 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛).  Hence, 
by Lagrange’s theorem the order of 𝑎𝑎𝑎𝑎  +  𝑛𝑛𝒁𝒁 is a d ivisor 
of 2𝑠𝑠 . This concludes the proof. 

Theorem 2.4.3: Let  a be an  integer that is relatively  
prime to n. If the orders of the residue class 𝑎𝑎𝑎𝑎 + 𝑝𝑝𝒁𝒁 in 
(𝒁𝒁/𝑝𝑝𝒁𝒁)∗ and for 𝑎𝑎𝑎𝑎 + 𝑝𝑝𝒁𝒁 in (𝒁𝒁/𝑝𝑝𝒁𝒁)∗ are d ifferent, then 

1 <  𝑔𝑔𝑐𝑐𝑑𝑑 (𝑎𝑎2𝑡𝑡 𝑎𝑎  –  1,𝑛𝑛)  <  𝑛𝑛  for some 
𝑡𝑡 ∈ {0, 1, 2,… . , 𝑠𝑠 − 1}. 

Proof: By Lemma 2.4.2, the order of 𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) and 
𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝)  is in {2𝑖𝑖 ∶ 0 ≤ 𝑖𝑖 ≤ 𝑠𝑠} . W ithout loss of 
generality, the order of 𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) is greater than the 
order of 𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝). Let the order of 𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) be 2𝑡𝑡 . 
Then 𝑡𝑡 < 𝑠𝑠, 𝑎𝑎2𝑡𝑡 𝑎𝑎 ≡ 1 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝)  but 𝑎𝑎2𝑡𝑡 𝑎𝑎 ≠  1 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) . 
Therefore, 𝑔𝑔𝑐𝑐𝑑𝑑 (𝑎𝑎2𝑡𝑡 𝑎𝑎 − 1,𝑛𝑛)  =  𝑝𝑝 . This concludes the 
proof. 

Thus we can finally factor n, proceeding with the 
following algorithm: 

1. Choose at random an  integer a in the set {1, 2, . . . , 𝑛𝑛 −
1} 

2. Compute 𝑔𝑔  =  𝑔𝑔𝑐𝑐𝑑𝑑(𝑎𝑎, 𝑛𝑛) 
3. If 𝑔𝑔 = 1 , then compute 𝑔𝑔 =  𝑔𝑔𝑐𝑐𝑑𝑑(𝑎𝑎2𝑡𝑡 𝑎𝑎  −

1 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛), 𝑛𝑛) for 𝑡𝑡 =  𝑠𝑠 –  1, 𝑠𝑠  − 2, …  until g > 1 or t = 
0. 

4. If 𝑔𝑔  >  1 , then 𝑔𝑔 =  𝑝𝑝  or 𝑔𝑔  =  𝑝𝑝 . Hence, the 
factorization of n is found and the algorithm terminates. 
Otherwise, the algorithm was unsuccessful with the chosen 
base. 

If the algorithm is not successful with the chosen a, then 
we run it again, therefore choosing a different base and 
starting over. 

Example 2.4.1: Let’s consider the following case:  
Let our prime numbers be 𝑝𝑝 =  11, 𝑝𝑝 =  23. We can  

easily compute that 𝑛𝑛 =  𝑝𝑝𝑝𝑝 =  (11)(23)  =  253. 
It can easily be noticed that our 𝜑𝜑(𝑛𝑛) =  𝜑𝜑(253) =

(11 − 1)(23 − 1) = 220.  
Next we must determine an integer e such that 

1 <  𝑒𝑒 <  𝜑𝜑(𝑛𝑛)  =  220, and e is relatively prime to 𝜑𝜑(𝑛𝑛). 
We can use 𝑒𝑒 = 3  for th is. It can  easily be seen that 
𝑔𝑔𝑐𝑐𝑑𝑑 (𝑒𝑒,𝜑𝜑(𝑛𝑛)) =  1 (which is the definition of relat ively  
prime). We can use Euclid’s algorithm to find d:  

220 =  3 ∗ 73 +  1 
3 =  3 ∗ 1 +  0 

Working backwards, we can see that we have:  
1 = 220– 3 ∗ 73 = 3 ∗ 147–220 ∗ 2 

It can be noticed from this that we have: 3 ∗ 147 ≡
 1 (𝑚𝑚𝑚𝑚𝑑𝑑 220), thus giving us 𝑑𝑑 = 147. 

Consider a situation where an attacker would like to 
factor n to find the primes p and q. They must know 
𝑛𝑛 =  253, 𝑒𝑒 = 3 and 𝑑𝑑 = 147. 

Solution: It can be easily noted that 𝑒𝑒𝑑𝑑 = 441 – 1 =
440. For the purpose of the algorithm we must select a base 
a in the set {1, … . ,𝑛𝑛 − 1}. For simplicity reasons, let us use 
𝑎𝑎 =  2 . We now can compute 𝑔𝑔 = 𝑔𝑔𝑐𝑐𝑑𝑑  (𝑎𝑎, 𝑛𝑛) =
𝑔𝑔𝑐𝑐𝑑𝑑 (2, 253) = 1. Since our 𝑔𝑔 =  1, we can move on to 
step 3, we must calculate 𝑔𝑔 = 𝑔𝑔𝑐𝑐𝑑𝑑  (𝑎𝑎2𝑡𝑡𝑎𝑎 − 1 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛), 𝑛𝑛) 
for 𝑡𝑡  =  𝑠𝑠 − 1, 𝑠𝑠 − 2,... until 𝑔𝑔 >  1 or 𝑡𝑡 = 0. 

Thus we have: 𝑡𝑡 = 𝑠𝑠 − 1, this implies that 

2𝑡𝑡𝑎𝑎 =
(𝑒𝑒𝑑𝑑 − 1) ∗ 2𝑡𝑡

2𝑠𝑠
=
𝑒𝑒𝑑𝑑 − 1

2
=

440
2

= 220 . 

But 𝑔𝑔𝑐𝑐𝑑𝑑  (2220 – 1, 253) = 253. 
So we try : 𝑡𝑡 = 𝑠𝑠 − 2, this implies that 

  2𝑡𝑡 𝑎𝑎 = (𝑒𝑒𝑑𝑑−1)∗2𝑡𝑡

2𝑠𝑠
= 𝑒𝑒𝑑𝑑 −1

4
= 440

4
= 110.  
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But 𝑔𝑔𝑐𝑐𝑑𝑑  (2110 – 1, 253) = 253. 
So we try : 𝑡𝑡 = 𝑠𝑠 − 3, this implies that 

 2𝑡𝑡𝑎𝑎 = (𝑒𝑒𝑑𝑑−1)∗2𝑡𝑡

2𝑠𝑠
= 𝑒𝑒𝑑𝑑−1

8
= 440

8
= 55. 

But 𝑔𝑔𝑐𝑐𝑑𝑑  (255 – 1, 253) = 23. 
Taking 253/23 = 11, thus the attacker has found our 

𝑝𝑝 =  11 and 𝑝𝑝  =  23. 
Now that we have considered theoretical uses to the RSA 

Cryptosystem, we will consider a more practical use for the 
system. 

Example 2.4.2: A company approaches you to create a 
secure online ordering system. Your task is to create a 
system to securely transfer customer’s credit card 
informat ion. 

Solution: It can be noted that every credit card number is 
16 d igits long, with 4 digits describing its exp iry date, giving 
us 20 dig its in total. 

For the purpose of this example we will use prime 
numbers of greater than 25 digits, yielding 𝑛𝑛 =  𝑝𝑝𝑝𝑝  of 
roughly 50 digits in length. Let : 

𝑝𝑝 =  12345679801994567990089459  
and 

𝑝𝑝  =  8369567977777368712343087  
This gives 
𝑛𝑛 =  𝑝𝑝𝑝𝑝 =  103328006334666582188478564  

0073336248556222630219933  
And 

𝜑𝜑(𝑛𝑛) = (𝑝𝑝 − 1)(𝑝𝑝 − 1)
=  10332800633466658218847854329208  

5845083685927787388  
Next  we must determine an integer e  such that 1 <  𝑒𝑒 <

 𝜑𝜑(𝑛𝑛) , and e is relat ively prime to 𝜑𝜑(𝑛𝑛) . We can use 
𝑒𝑒 =  115670849  for this. It can be seen that 
𝑔𝑔𝑐𝑐𝑑𝑑 (𝑒𝑒,𝜑𝜑(𝑛𝑛)) =  1  (which is the definition of relatively 
prime). 

We now must determine an integer d such that 
1 <  𝑑𝑑 <  𝜑𝜑(𝑛𝑛)  such that  𝑑𝑑𝑒𝑒 ≡ 1 (𝑚𝑚𝑚𝑚𝑑𝑑  ((𝑝𝑝 − 1)(𝑝𝑝 −
1)). Our values are much too large to use the Euclidean 
Algorithm or any sort of t rial an error method, although it can 
be calculated that our d would be: 

𝑑𝑑 =  3411393174391092578448356106544  
2183977516731202177  

This cryptosystem is constrained to only send messages m 
that are relatively prime to n. Although, the only div isors of n 
are at least 25 digits long, and as mentioned above credit  card 
numbers will only be of length 16 digits + 4 digits for the 
expiry date. 

Consider a customer with a credit card number o f 4540 
3204 4567 8231 1002 with an exp iry date of 10/02. This 
gives us an m of: 

𝑚𝑚 = 454032044567823110021002  
Thus we can calculate (encrypt) the message as follows: 

𝑚𝑚𝑒𝑒   ≡  𝑎𝑎 
𝑎𝑎 ≡ 49329085221791275793017511397  

395566847998886183308  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛) 
We can see that this message has been safely transmitted 

without the worry of being broken  (unless someone knows 

the secret key, d) 
Upon receiv ing the encrypted message, we can easily  

calculate the original message using the following 
equivalency: 

𝑎𝑎𝑑𝑑  ≡  𝑚𝑚 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛)  
≡   454032044567823110021002  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛) 

Note: Although the values of p and q were seemingly very 
large, it  should be considered that a computer could easily 
factor n of only roughly 50 dig its. Thus leaving the encrypted 
message unprotected. 

3. Diffie-Hellman Key Exchange 
The Diffie-Hellman key exchange was first established in 

1976 during a collaboration between its creators Whitfield 
Diffie and Martin  Hellman[12]. It was the first practical 
method for establishing a shared secret over an unprotected 
communicat ions channel. It was considered the first major 
milestone in public key cryptography[13]. Before we can 
begin exploring the Diffie-Hellman  key exchange we must 
first look at discrete logarithms: 

3.1. Discrete Logarithms 

Definition 3.1.1: Let p  be a prime number, we know that 
the group (𝒁𝒁/𝑝𝑝𝒁𝒁)∗  is cyclic of order 𝑝𝑝 − 1 . Let g be 
primitive root 𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝. (g is a generator of the mult iplicative 
group of residues (𝒁𝒁/𝑝𝑝𝒁𝒁)∗). That is:  

Let A be the set 𝐴𝐴 =  {1, 2, … , 𝑝𝑝 − 1}. We know that for 
all 𝑎𝑎 ∈ {0,1,2, … , 𝑝𝑝 − 2} with 𝐴𝐴 ≡ 𝑔𝑔𝑎𝑎  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝). 

The exponent a is referred to as the discrete logarithm of A  
to the base g. It can be written as: 𝑎𝑎 = 𝑙𝑙𝑚𝑚𝑔𝑔𝑔𝑔 𝐴𝐴 . Since the 
computation of discrete logarithms is considered to be 
difficult  no efficient algorithm for solving the problem is 
known. 

Example 3.1.1: Choose a prime number and show one of 
its primitive roots.   

Solution: Let 𝑝𝑝 =  13. A primitive root modulo 13 is 6. 
Below we will show that 6 is primit ive root of 13 by 
computing the discrete logarithms of all integers in 
𝐴𝐴 =  {1, 2, … , 13}. 

We can see that we have: 

Table 3.1.1.  Discrete logarithms base 6 in (𝒁𝒁/13𝒁𝒁)∗ 

A 1 2 3 4 5 6 7 8 9 10 11 12 
log6A 0 5 8 10 9 1 7 3 4 2 11 6 

It can be noticed that discrete logarithms can be defined 
in arb itrary cyclic  groups. If we let G be a cyclic  group of 
order n with generator g, and let A be a group element. Then 
there is an exponent 𝑎𝑎 ∈ {0,1,2, … , 𝑛𝑛 − 1} with 𝐴𝐴 = 𝑔𝑔𝑎𝑎 . 

3.2. The Diffie Hellman Key Exchange 

The Diffie-Hellman key exchange is used for a specific  
reason, two people let’s say Alice and Bob would like to 
agree on a secret key, but their only  means of communication 
is over an unsecured channel. 
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The first step is for Alice and Bob to agree on a large 
prime number p and an integer g with 2 ≤  𝑔𝑔 ≤  𝑝𝑝 –  2 
such that the order of 𝑔𝑔 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) is sufficiently large. The 
prime p and the primit ive root g can be publicly known. Thus 
using the unsecured channel won’t be a problem for Alice 
and Bob. 

The next step of the Diffie-Hellman Key exchange, A lice 
choose an integer 𝑎𝑎 ∈ {0,1, … , 𝑝𝑝 − 2} and computes: 

𝐴𝐴 = 𝑔𝑔𝑎𝑎  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) 
This result A is sent to Bob, but Alice keeps the exponent 

a secret.  
Bob follows the same step choosing an integer 

𝑏𝑏 ∈ {0,1, … , 𝑝𝑝 − 2} and computes: 
𝐵𝐵 = 𝑔𝑔𝑏𝑏  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) 

This result B is sent to Alice, keep ing his exponent b 
secret. For both to obtain the secret key they compute the 
following: 

Alice: 𝐵𝐵𝑎𝑎  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) = 𝑔𝑔𝑎𝑎𝑏𝑏  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) 
Bob: 𝐴𝐴𝑏𝑏  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) = 𝑔𝑔𝑎𝑎𝑏𝑏  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) 
Thus, the secret key is known by both parties, but no one 

listening on the unsecured network can compute what Bob 
and Alice chose for their secret key. 

Secret key : 𝐾𝐾 = 𝑔𝑔𝑎𝑎𝑏𝑏  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) 

3.3. The Selection of p and q 

It can be noted that the selection of p and g should be 
chosen so that the computation of the integer g  has an order 
(mod p) that is sufficiently high. That is:  

By defin ition of order, let n be the smallest positive 
integer such that 𝑔𝑔𝑛𝑛 = 𝑒𝑒 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝), where e is the identity 
element. We want the integer n to be sufficiently large, so 
an attacker cannot easily compute it.  

As mentioned above, one possibility is to choose g as a 
primitive root (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝). However to compute a primit ive 
root of p, you must find the prime factorization of p-1. 
Since p should be a large prime number, finding this prime 
factorization should be very difficult. Which leads to the 
fact that selecting a primitive root of a large prime p, is also 
in fact very d ifficu lt. Selecting a prime p of a special form 
that is a prime p where (𝑝𝑝 − 1) / 2 is also a prime number. 
This makes it easier to find a primit ive root g of p. 

Example 3.3.1: Show how two people can exchange a 
secret key K over an unsecured channel. 

Solution: Consider Alice and Bob want to share a 
message over an open channel, they agree on a prime 
number, say 𝑝𝑝 = 13 and a primitive root (or base) say 
𝑔𝑔 = 6. (For the purpose of this example we will use small 
values for p and g.) 

Alice chooses 𝑎𝑎 = 5 to be her exponent and computes 
𝐴𝐴 = 𝑔𝑔𝑎𝑎  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) = 65  (𝑚𝑚𝑚𝑚𝑑𝑑  13) = 7776  (𝑚𝑚𝑚𝑚𝑑𝑑  13) =
2 (𝑚𝑚𝑚𝑚𝑑𝑑 13). Alice then sends this value 𝐴𝐴 = 2 to Bob. 

Bob chooses 𝑏𝑏 = 3 to be h is exponent and computes 
𝐵𝐵 = 𝑔𝑔𝑏𝑏  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) = 63 (𝑚𝑚𝑚𝑚𝑑𝑑  13) = 216  (𝑚𝑚𝑚𝑚𝑑𝑑 13) =
8 (𝑚𝑚𝑚𝑚𝑑𝑑 13). Bob then sends this value 𝐵𝐵 = 8 to Alice. 

Once both parties receive their values, they compute their 
secret key: 

Alice: 
𝐵𝐵𝑎𝑎  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) = 85 (𝑚𝑚𝑚𝑚𝑑𝑑 13) =  32768  (𝑚𝑚𝑚𝑚𝑑𝑑  13) =
8 (𝑚𝑚𝑚𝑚𝑑𝑑 13) 

Bob: 𝐴𝐴𝑏𝑏  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) = 23 (𝑚𝑚𝑚𝑚𝑑𝑑 13) = 8 (𝑚𝑚𝑚𝑚𝑑𝑑 13) 
Thus the secret key is 8. 

3.4. The Diffie Hellman Problem and the Discrete 
Logarithm Problem 

Definition 3.4.1: Let G be a finite cyclic  group generated 
by an element g. The problem of computing 𝑔𝑔𝑎𝑎𝑏𝑏  from 𝑔𝑔𝑎𝑎  
and 𝑔𝑔𝑏𝑏  where a and b are the secret values Alice/Bob 
choose. This is called the Diffie–Hellman Problem (DH 
problem) with respect to g. 

Definition 3.4.2: Let  G be a finite cyclic  group generated 
by an element g. The problem of computing from 𝑎𝑎 ∈ 𝐺𝐺 a  
number s such that 𝑔𝑔𝑠𝑠 = 𝑎𝑎 is called the discrete logarithm 
problem (DL prob lem) with respect to g. 

It can be noticed that if someone can solve the discrete 
logarithm problem for p they can immediately solve the 
Diffie–Hellman problem. The converse is not known. That 
is, it is thought to be possible (highly unlikely) that 
someone could invent a way to solve the Diffie–Hellman 
problem without being able to find discrete logarithms. 

To use the discrete logarithm problem to solve the DH 
problem, the attacked can  determine the discrete logarithm 
b of B to the base g and compute the key 𝐾𝐾 = 𝐴𝐴𝑏𝑏 . 
Definition 3.4.3: A Diffie–Hellman oracle (DH oracle for 

short) for a group G with respect to a given generator g 
takes as inputs two elements 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 (where 𝑎𝑎 = 𝑔𝑔𝑢𝑢  and 
𝑏𝑏 = 𝑔𝑔𝑣𝑣 ) and returns (without computational cost) the 
element 𝑔𝑔𝑢𝑢𝑣𝑣. 

It can be shown that under a plausible but unproven 
number theoretic assumption, for every finite cyclic group 
whose order is not divided by a mult iple large prime factor 
there exists a polynomial-t ime algorithm for computing 
discrete logarithms and that makes calls to a DH oracle for 
this group. 

Definition 3.4.4: For 𝜀𝜀 > 0 , an 𝜀𝜀 -DH-oracle is a  
probabilistic o racle which returns for an  input (𝑔𝑔𝑢𝑢 ,𝑔𝑔𝑣𝑣) the 
correct answer 𝑔𝑔𝑢𝑢𝑣𝑣 with probability at least 𝜀𝜀 if the input 
is uniformly distributed over 𝐺𝐺 × 𝐺𝐺 . The offset of the 
oracle’s answer is 𝑔𝑔𝑢𝑢𝑣𝑣+𝑡𝑡 to the input (𝑔𝑔𝑢𝑢 ,𝑔𝑔𝑣𝑣) is defined 
as 𝑡𝑡 (𝑚𝑚𝑚𝑚𝑑𝑑 |𝐺𝐺|). A translation – invariant 𝜀𝜀-DH-oracle is  
an 𝜀𝜀-DH-oracle whose offset distribution is the same for 
every (𝑔𝑔𝑢𝑢 ,𝑔𝑔𝑣𝑣). 

4. Elliptic Curve Cryptosystems  
The use of elliptic curves in cryptography was first 

proposed by Neal Koblitz[17] and Victor Miller[18] in 1985. 
Elliptic  curves can be defined over any  field, but for the 
purpose of cryptography only finite fields are of interest. The 
size of the elliptic  curve determines the difficulty of an 
attacker discovering the user’s secret key.   

Advantages of using an elliptic  curve public key 
cryptosystem compared to another public key system, such 
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as the RSA Algorithm, is that elliptic  curves are much more 
efficient then RSA that is the calculations are much 
smaller[19]. The idea that RSA may one day become 
insecure, or at least the key sizes needed to safely secure a 
message become too large, it is believed that the ellipt ic 
curve cryptosystem may prove to be a very good alternative. 
Although there are disadvantages to using an elliptic  curve 
cryptosystem, mainly group operations on elliptic curves are 
more complicated than group operations in prime fields. 

4.1. Elliptic Curves 

An introduction to elliptic curves is necessary before the 
discussion of elliptic curves use in public key cryptosystems. 
There is extensive literature on elliptic curves as they arise 
naturally in many branches of mathemat ics and are closely 
linked with the theory of elliptic functions, where of course 
they get their name. Consider the following defin itions: 

Definition 4.1.1: A ring R  is a set with two binary  
operations, addition (denoted by 𝑎𝑎 +  𝑏𝑏) and mult iplication 
(denoted by 𝑎𝑎𝑏𝑏), such that for all 𝑎𝑎, 𝑏𝑏 ,𝑐𝑐  in R: 

1. 𝑎𝑎 +  𝑏𝑏  =  𝑏𝑏 +  𝑎𝑎 
2. (𝑎𝑎 + 𝑏𝑏)  +  𝑐𝑐 =  𝑎𝑎 +  (𝑏𝑏  +  𝑐𝑐) 
3. There is an additive identity 0. That is, there is an 

element 0 in R  such that 𝑎𝑎 +  0 =  𝑎𝑎 for all a in R. 
4. There is an  element – 𝑎𝑎 in  R  such that 𝑎𝑎 + (−𝑎𝑎)  =  0. 
5. 𝑎𝑎(𝑏𝑏𝑐𝑐)  =  (𝑎𝑎𝑏𝑏)𝑐𝑐  
6. 𝑎𝑎(𝑏𝑏 + 𝑐𝑐)  =  𝑎𝑎𝑏𝑏 +  𝑎𝑎𝑐𝑐  and (𝑏𝑏 + 𝑐𝑐)𝑎𝑎 =  𝑏𝑏𝑎𝑎 +  𝑐𝑐𝑎𝑎. 
A ring is an Abelian group under addition, also having 

associative multiplication that is left and right distributive 
over addition. When multiplication is commutative we say 
that the ring is commutative. When a ring has an identity 
under multip lication we say that the ring has unity. Unity is a 
nonzero element that is an identity under multip licat ion. 

Definition 4.1.2: A field F is a commutative ring with 
unity in which every nonzero element is a unit. A unit of a 
ring is a nonzero element that has a multiplicative inverse. 

Definition 4.1.3: Let E  be an elliptic curve over a field F, 
E is a curve that is given by an equation of the form: 
𝑌𝑌2 + 𝑎𝑎1𝑋𝑋𝑌𝑌+ 𝑎𝑎3𝑌𝑌 = 𝑋𝑋3 + 𝑎𝑎2𝑋𝑋2 + 𝑎𝑎4𝑋𝑋+ 𝑎𝑎6,𝑎𝑎𝑖𝑖 ∈ 𝑭𝑭. 

We let 𝐸𝐸(𝑭𝑭) denote the set of points (𝑚𝑚 , 𝑦𝑦) ∈ 𝑭𝑭2  that 
satisfy this equation, along with a point of infinity, denoted 
by O. For the purpose of this paper, only elliptic curves 
over prime fields will be considered. 

Definition 4.1.4: Let p  be a prime number, 𝑝𝑝 >  3 and 
let 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺𝐺𝐺(𝑝𝑝). Consider the equation: 

𝑦𝑦2𝑧𝑧 = 𝑚𝑚3 + 𝑎𝑎𝑚𝑚𝑧𝑧2 + 𝑏𝑏𝑧𝑧3 
Its discriminant is: 

∆ =  −16 (4𝑎𝑎3  +  27𝑏𝑏2) 
It can be assumed that the discriminant is non-zero.  
If (𝑚𝑚 , 𝑦𝑦, 𝑧𝑧) ∈ 𝐺𝐺𝐺𝐺(𝑝𝑝)3  is a  solution of this equation, then 

for any 𝑐𝑐 ∈ 𝐺𝐺𝐺𝐺(𝑝𝑝), 𝑐𝑐(𝑚𝑚, 𝑦𝑦, 𝑧𝑧)  is also a solution. Two 
solutions (𝑚𝑚 ,𝑦𝑦, 𝑧𝑧)  and (𝑚𝑚’, 𝑦𝑦’, 𝑧𝑧’)  are called equivalent if 
there is a non-zero 𝑐𝑐 ∈ 𝐺𝐺𝐺𝐺 (𝑝𝑝)  with (𝑚𝑚 , 𝑦𝑦, 𝑧𝑧) =
𝑐𝑐(𝑚𝑚’, 𝑦𝑦’ ,𝑧𝑧’).The equivalence class of (𝑚𝑚 , 𝑦𝑦, 𝑧𝑧) is denoted by 
(𝑚𝑚: 𝑦𝑦: 𝑧𝑧) . The elliptic  curve 𝐸𝐸(𝑝𝑝; 𝑎𝑎, 𝑏𝑏)  is the set of all  
equivalence classes of solution of 𝑦𝑦2𝑧𝑧 = 𝑚𝑚3 + 𝑎𝑎𝑚𝑚𝑧𝑧2 + 𝑏𝑏𝑧𝑧3 . 
Each point of the curve is an element of this set. 

Example 4.1.1 : Consider the field  𝐺𝐺𝐺𝐺(11) . Over this 
field, consider the equation 𝑦𝑦2 = 𝑚𝑚3 + 𝑚𝑚 + 6. Find the set of 
all solutions of this curve. 

Solution: We can see that we have 𝑎𝑎 = 1, 𝑏𝑏 = 6 and 
𝑧𝑧 = 1 . The discriminant is ∆= −16(4𝑎𝑎3 + 27𝑏𝑏2 ) =
 −16 (4 + (27 ∗ 62)) = 4. Thus we can see that 𝑦𝑦2 = 𝑚𝑚3 +
𝑚𝑚 + 6 defines an elliptic  curve over 𝐺𝐺𝐺𝐺(11). It is: 

𝐸𝐸(11;  1, 6) = {𝑂𝑂, (2,4), (2,7), (3,5), (3,6), 
(5,2), (5,9), (7,2), (7,9), (8,3), (8,8),(10,2), (10,9)}. 

4.2. Elliptic Curves in Cryptography 

Elliptic Curve Diffie-Hellman (ECDH) is a key agreement 
protocol that allows two part ies, each having an elliptic  curve 
public-private key pair, to establish a shared secret over 
insecure channel. This shared secret key may be directly 
used as a key, o r better yet, to derive another key which can 
be used to encrypt a message using a symmetric  key cipher.  

4.3. Key Establishment Protocol  

Suppose Alice wants to establish a shared key with Bob, 
but the only channel available fo r them may be unsecure. 
Initially, the domain parameters (that is, (𝑝𝑝, 𝑎𝑎, 𝑏𝑏,𝐺𝐺 , 𝑛𝑛, ℎ) in 
the prime case or (𝑚𝑚 , 𝑓𝑓(𝑚𝑚), 𝑎𝑎, 𝑏𝑏,𝐺𝐺 , 𝑛𝑛, ℎ) in the binary case) 
must be agreed upon. Also, each party  must have a key  pair 
suitable for elliptic  curve cryptography, consisting of a 
private key d (a randomly  selected integer in the 
interval[1, 𝑛𝑛− 1]) and a public key Q (where 𝑄𝑄 = 𝑑𝑑𝐺𝐺). Let  
Alice's key pair be (𝑑𝑑𝐴𝐴 ,𝑄𝑄𝐴𝐴) and Bob's key pair be (𝑑𝑑𝐵𝐵 ,𝑄𝑄𝐵𝐵). 
Each party must have the other party's public key (an 
exchange must occur). 

Alice computes 
 (𝑚𝑚𝑎𝑎 , 𝑦𝑦𝑎𝑎 ) = 𝑑𝑑𝐴𝐴𝑄𝑄𝐵𝐵  

Bob computes  
(𝑚𝑚𝑎𝑎 , 𝑦𝑦𝑎𝑎 ) = 𝑑𝑑𝐵𝐵𝑄𝑄𝐴𝐴  

The shared key is 𝑚𝑚𝑎𝑎 (the x coordinate of the point). The 
number calculated by both parties is equal, because  

𝑑𝑑𝐴𝐴𝑄𝑄𝐵𝐵 = 𝑑𝑑𝐴𝐴𝑑𝑑𝐵𝐵𝐺𝐺 = 𝑑𝑑𝐴𝐴𝑑𝑑𝐵𝐵𝐺𝐺 = 𝑑𝑑𝐵𝐵𝑄𝑄𝐴𝐴 
The protocol is secure because nothing is disclosed 

(except for the public keys, which are not secret), and no 
party can derive the private key of the other unless it can 
solve the Elliptic  Curve discrete logarithm Problem. 

4.4. Message Transmission 

It is not hard to modify the Elliptic  Curve Diffie-Hellman  
key agreement protocol for the purpose of message 
transmission by using the ElGamal encryption method. 
Suppose that the set of message unit has been imbedded in E 
in some agreed upon way and Bob wants to send Alice a 
message 𝑀𝑀 ∈ 𝐸𝐸.  

Using the above method to exchange keys, 𝑑𝑑𝐴𝐴𝑄𝑄𝐵𝐵 , 𝑑𝑑𝐵𝐵𝑄𝑄𝐴𝐴 
have already been exchanged. Bob now chooses another 
secret random integer, call this l, and sends Alice the pair of 
points (𝑙𝑙𝑄𝑄𝐵𝐵 ,𝑀𝑀 +  𝑙𝑙(𝑑𝑑𝐴𝐴𝑄𝑄𝐵𝐵)). This is the encryption method, 
to decrypt this message Alice mult iplies the first point in the 
pair by her secret key 𝑑𝑑𝐴𝐴  and then subtracts the result from 
the second point in the pair. 
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4.5. The Elliptic Curve Discrete Logarithm Problem 

Referring to Definition 3.4.2  the discrete logarithm 
problem is the problem of computing from 𝑎𝑎 ∈ 𝐺𝐺 , a  
number s such that 𝑔𝑔𝑠𝑠 = 𝑎𝑎 with respect to g provided that 
such an integer exists. This in the case of 𝐺𝐺 = 𝐸𝐸, the 
elliptic curve discrete logarithm problem to the base 𝑄𝑄 ∈ 𝐸𝐸 
is the problem. Given 𝑃𝑃 ∈ 𝐸𝐸, of finding an integer x such 
that 𝑃𝑃 = 𝑚𝑚𝑄𝑄, if such x exists.  

The belief is that in practice it takes about the same 
amount of t ime to factor a well-chosen finite field  as the 
factorization of an  integer of approximately the same size. 
However, as in the case of factorization of an integer, there 
are many subexponential time algorithms to factor a 
well-chosen fin ite field. In the case of elliptic  curves 
(except for supersingular ones,) the only methods available 
for finding discrete logs on 𝐸𝐸/𝑭𝑭𝑝𝑝  are the methods that 
apply to arbitrary groups. All of the algorithms have 
running time of the form 𝑒𝑒𝑚𝑚𝑝𝑝(𝑂𝑂(𝑙𝑙𝑛𝑛 𝑝𝑝)), provided that E is 
divisible by a large prime (a prime with an order of 
magnitude not much less than q) 

That is: 
Let E  be elliptic curve over finite field 𝑭𝑭𝑝𝑝  
1) Take point 𝑃𝑃 ∈ 𝐸𝐸(𝑭𝑭𝑝𝑝)\{𝑂𝑂} and compute 𝑄𝑄 = 𝑑𝑑 ∗ 𝑃𝑃 
2) Elliptic Curve Discrete Logarithm Problem: given P  

and Q, compute d 
Much work has been put into the solutions of both the 

DLP and the ECDLP. There are different attempts at solving 
both, but none have been conclusively shown to solve all 
cases of these problems. It is a field of mathematics with 
extensive work being covered[7]. Recently, 
technology-based attacks against smart  cards raised concerns 
about the general security of this method[20]. One aspect of 
the elliptic curve encryption that revived the interest in it is 
that elliptic  curve based cryptography is suitable for 
implementation on a quantum computer[21]. 

5. The ElGamal Encryption Method  
The ElGamal encryption method[14] is closely connected 

to the Diffie Hellman key exchange protocol because the 
users can exchange a private key over an unsecured channel 
and then use this key to encrypt a message and send to the 
other. The security of this cryptosystem is based solely on 
the difficulty of solving the Diffie-Hellman problem[6].  

5.1. Encrypting a Message Using the ElGamal 
Encryption Method 

The plaintext  space is the set {0,1, … , 𝑝𝑝 − 1}. To  encrypt a 
plaintext m, Bob gets the authentic public key (𝑝𝑝,𝑔𝑔,𝐴𝐴) of 
Alice. He chooses a random integer 𝑏𝑏 ∈ {1, … , 𝑝𝑝 − 2} and 
computes: 

𝐵𝐵 = 𝑔𝑔𝑏𝑏  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) 
The number B  is Bob’s key  part from the Diffie-Hellman  

system. Bob determines: 
𝑐𝑐 = 𝐴𝐴𝑏𝑏𝑚𝑚  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) 

In other words, Bob encrypts the message m by 
multip lying it by the Diffie-Hellman key. The complete 
ElGamal ciphertext is the pair (𝐵𝐵 ,𝑐𝑐). 

5.2. Decrypting a Message using the ElGamal Encryption 
Method 

Alice has obtained the ciphertext (𝐵𝐵, 𝑐𝑐). She knows her 
secret key a. To obtain the plaintext m, she divides c by the 
Diffie-Hellman key 𝐵𝐵𝑎𝑎  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) . In order to avoid 
inversions (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) , she determines the exponent 𝑚𝑚 =
𝑝𝑝– 1– 𝑎𝑎. Since 1 ≤ 𝑎𝑎 ≤ 𝑝𝑝– 2. We have 1 ≤ 𝑚𝑚 ≤ 𝑝𝑝– 2. Then 
she computes 𝑚𝑚 = 𝐵𝐵𝑚𝑚𝑐𝑐  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) . That is, in fact, the 
original plaintext, as the following computation shows: 

 𝐵𝐵𝑚𝑚𝑐𝑐 ≡ 𝑔𝑔𝑏𝑏 (𝑝𝑝−1−𝑎𝑎)𝐴𝐴𝑏𝑏𝑚𝑚 ≡ (𝑔𝑔𝑝𝑝−1)𝑏𝑏(𝑔𝑔𝑎𝑎 )−𝑏𝑏𝐴𝐴𝑏𝑏𝑚𝑚 ≡
𝐴𝐴−𝑏𝑏𝐴𝐴𝑏𝑏𝑚𝑚 ≡ 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) 

Example 3.5.1: Show how a use can encrypt a message 
and send it over an unsecured channel using the ElGamal 
encryption method. 

Solution: Alice chooses 𝑝𝑝 = 23,𝑔𝑔 = 7, and 𝑎𝑎 = 3 and 
computes 𝐴𝐴 = 𝑔𝑔𝑎𝑎 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) = 21 . Her public key is 
(𝑝𝑝 = 23,𝑔𝑔 = 7,𝐴𝐴 = 21). Her secret key is 𝑎𝑎 = 3.  

Bob encrypts 𝑚𝑚 = 7. He chooses 𝑏𝑏 = 6 and computes 
𝐵𝐵 = 𝑔𝑔𝑏𝑏 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) = 4  and 𝑐𝑐 = 𝐴𝐴𝑏𝑏𝑚𝑚 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) = 14 . The 
ciphertext is (𝐵𝐵 ,𝑐𝑐) = (4, 14).  

Alice recovers m by computing 𝐵𝐵𝑝𝑝−1−3𝑐𝑐 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) = 7 =
𝑚𝑚. 

Example 3.5.2: Show how a use can encrypt a message 
and send it over an unsecured channel using the ElGamal 
encryption method 

Solution: As in Example 3.5.1, the public key of Alice is 
(𝑝𝑝 = 23,𝑔𝑔 = 7,𝐴𝐴 = 21). Her secret key is 𝑎𝑎 = 3.  

As a precomputation, Bob chooses 𝑏𝑏 = 6 and computes 
𝐵𝐵 = 𝑔𝑔𝑏𝑏 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) = 21 and 𝐾𝐾 = 𝐴𝐴𝑏𝑏 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝) = 18. Then he 
simply computes 𝑐𝑐 = 𝐾𝐾 ∗𝑚𝑚(𝑚𝑚𝑚𝑚𝑑𝑑 23) = 11 . The cipher 
text is (𝐵𝐵, 𝑐𝑐) = (4,14). Again Alice recovers the plaintext 
by computing 𝐵𝐵𝑝𝑝−1−3𝑐𝑐 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑝𝑝) = 7 = 𝑚𝑚. 

The ciphertext is twice as long as the plaintext. Th is is 
called message expansion and is a disadvantage of this 
cryptosystem. On the other hand, the ElGamal system is a 
randomized cryptosystem, which can be regarded as an 
advantage. 

6. The Knapsack Approach 
In this section the idea of cryptosystems based on the 

knapsack problem will be discussed. It was introduced by 
Merkle and Hellman in 1978[15]. The knapsack problem is a 
very interesting problem found in combinatorial 
optimization. It has various uses from the perspective of 
computer science. Studies have been done into the 
pseudo-polynomial t ime algorithm using dynamic 
programming, fully po lynomial-time approximation scheme 
and of course in public key cryptosystems. This section will 
begin with a comprehensive introduction to the problem 
itself, and then a d iscussion of attempts at public key systems 
using this approach. 
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6.1. The Knaps ack Problem 

Given a set of items, each with a weight and a value, 
determine the count of each item to include in a collection so 
that the total weight is less than or equal to the given limit 
and the total value is as large as possible. In other words, you 
are given a set of positive integers 𝑎𝑎1, 𝑎𝑎2, . . . . , 𝑎𝑎𝑛𝑛  and an 
integer S, the knapsack problem asks which  of these integers, 
if any, add together to give S. That is, consider the set of 
values 𝑚𝑚1,𝑚𝑚2, . . . . , 𝑚𝑚𝑛𝑛, each either 0 or 1, such that: 

𝑆𝑆 = 𝑎𝑎1𝑚𝑚1 + 𝑎𝑎2𝑚𝑚2+ . . . +𝑎𝑎𝑛𝑛 𝑚𝑚𝑛𝑛. 
Considering the following example will give a better idea 

of how this works. 
Example 6.1.1: Show all the subsets of the set 

(𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4 , 𝑎𝑎5, 𝑎𝑎6, 𝑎𝑎7 , 𝑎𝑎8) = (2, 5, 6, 9, 12, 13, 17, 18)  
that add up to 𝑆𝑆 = 23. 

Solution: By inspection we can see that there are four 
subsets that add up to 23. They can be seen as: 

23 =  6 +  17 
23 =  5 +  18 

23 =  2 +  9 +  12 
23 =  5 +  6 +  12 

Equivalently, there are exact ly four solutions to the 
equation 2𝑚𝑚1 + 5𝑚𝑚2 + 6𝑚𝑚3 + 9𝑚𝑚4 + 12𝑚𝑚5 + 13𝑚𝑚6 +
17𝑚𝑚7 + 18𝑚𝑚8 = 23  with 𝑚𝑚𝑖𝑖 = 0 or  1  for 
𝑖𝑖 = {1, 2, 3, 4, 5, 6, 7, 8}. These solutions are: 

𝑚𝑚3 = 𝑚𝑚7 = 1, 𝑚𝑚1 = 𝑚𝑚2 = 𝑚𝑚4 = 𝑚𝑚5 = 𝑚𝑚6 = 𝑚𝑚8 = 0, 
𝑚𝑚2 = 𝑚𝑚8 = 1, 𝑚𝑚1 = 𝑚𝑚3 = 𝑚𝑚4 = 𝑚𝑚5 = 𝑚𝑚6 = 𝑚𝑚7 = 0 
𝑚𝑚1 = 𝑚𝑚4 = 𝑚𝑚5 = 1, 𝑚𝑚2 = 𝑚𝑚3 = 𝑚𝑚6 = 𝑚𝑚7 = 𝑚𝑚8 = 0 
𝑚𝑚2 = 𝑚𝑚3 = 𝑚𝑚5 = 1, 𝑚𝑚1 = 𝑚𝑚4 = 𝑚𝑚6 = 𝑚𝑚7 = 𝑚𝑚8 = 0 

We can see that to verify that the equation 𝑆𝑆 = 𝑎𝑎1𝑚𝑚1 +
𝑎𝑎2𝑚𝑚2+ . . . +𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛 holds when 𝑚𝑚𝑖𝑖 = 0 or 1 it  takes at most n 
additions, which is much less then to search for solutions by 
trial and error which could take up to 2𝑛𝑛  attempts.  

Definition 6.1.1: If a  sequence of integers 𝑎𝑎1, 𝑎𝑎2, . . . . , 𝑎𝑎𝑛𝑛  
is such that the sum of the first 𝑗𝑗– 1 of these integers is 
always less than the jth integer, that is: 

�  𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗 , 𝑗𝑗 = 2, 3, . . . , 𝑛𝑛

𝑗𝑗 −1

𝑖𝑖 =1

 

This sequence is called super-increasing. 
Example 6.1.2: Is the sequence 2,4,9,17,35,71 

super-increasing? 
Solution: We can see that: 

4 >  2 
9 >  4 +  2 =  6 

17 >  9 +  4 +  2 =  15 
35 >  17 +  9 +  4 +  2 =  32 

71 >  35 +  17 +  9 +  4 +  2 =  67  
Thus, this sequence is super-increasing, as we wanted to 

show. 
Working with super-increasing sequences makes the 

knapsack problem much easier to solve, considering the 
following example will show this. 

Example 6.1.3: Is it possible to get a sum of 48, using 
the above super-increasing sequence: 2,4,9,17,35,71.  

Solution: Notice that we have 71 > 48, so we cannot 
include 71 in  any of our sums. Also notice that the elements 

which are less than 35, have a sum less than 35 when all 
added together: 

35 >  17 +  9 +  4 +  2  
Thus 35 must be used in our sum; we can notice that we 

now have: 
48 – 35 = 13  

Again 17 > 13, which means it cannot be in our sum, we 
can easily notice among the final three integers that if we 
choose 9 + 4, we get the required sum. That is: 

48 = 35 + 9 + 4 
This is what we wanted to show. 
It can be noticed that in  general to solve the knapsack 

problem of a super-increasing sequence 𝑎𝑎1, 𝑎𝑎2 , . . . . , 𝑎𝑎𝑛𝑛 , that 
is to find the values of 𝑚𝑚1,𝑚𝑚2, . . . . , 𝑚𝑚𝑛𝑛  with 𝑆𝑆 = 𝑎𝑎1𝑚𝑚1 +
𝑎𝑎2𝑚𝑚2+ . . . +𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛  and 𝑚𝑚𝑖𝑖 = 0  or 1 for 𝑖𝑖 = {1, 2, . . . , 𝑛𝑛} 
when S is given, we use the following algorithm.  

First we find 𝑚𝑚𝑛𝑛 by noting that: 

𝑚𝑚𝑛𝑛 = �1    𝑖𝑖𝑓𝑓 𝑆𝑆 ≥  𝑎𝑎𝑛𝑛
0     𝑖𝑖𝑓𝑓 𝑆𝑆 ≥  𝑎𝑎𝑛𝑛

� 

Then we find 𝑚𝑚𝑛𝑛−1,𝑚𝑚𝑛𝑛−2, . . . , 𝑚𝑚1, in succession, using the 
equations 

𝑚𝑚𝑗𝑗 =

⎩
⎨

⎧1    𝑖𝑖𝑓𝑓 𝑆𝑆 −  � 𝑚𝑚𝑖𝑖𝑎𝑎𝑖𝑖 ≥ 𝑎𝑎𝑗𝑗
𝑛𝑛

𝑖𝑖=𝑗𝑗+1

0   𝑖𝑖𝑓𝑓 𝑆𝑆 −  � 𝑚𝑚𝑖𝑖𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗
𝑛𝑛

𝑖𝑖 =𝑗𝑗+1

� 

for 𝑗𝑗 = 𝑛𝑛 –  1, 𝑛𝑛 –  2, . . . ,1. 
Using this algorithm, knapsack problems based on super 

increasing sequences can be solved extremely quickly. The 
next section will discuss a cryptosystems based on this 
observation. 

6.2. Cryptosystems Based on the Knapsack Problem 

The idea of using the knapsack problem as a cryptosystem 
was first thought up by Merkle and Hellman, and we initially 
considered a good choice for a public key  cryptosystem. This 
idea has since then been broken[16], and the knapsack 
approach is now considered to be an infeasible method. The 
ciphers we will d iscuss in this section will be based on 
transformed super-increasing sequences.  

To be specific, let 𝑎𝑎1, 𝑎𝑎2 , . . . . , 𝑎𝑎𝑛𝑛  be super-increasing and 
let m be a positive integer with 𝑚𝑚 > 2𝑎𝑎𝑛𝑛 . Let  w be an integer 
relatively prime to m with inverse 𝑤𝑤� modulo m. We can 
now form the sequence 𝑏𝑏1,𝑏𝑏2, . . . . , 𝑏𝑏𝑛𝑛  where 𝑏𝑏𝑗𝑗 ≡
𝑤𝑤𝑎𝑎𝑗𝑗 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑚𝑚)  and 0 ≤  𝑏𝑏𝑗𝑗 < 𝑚𝑚 . We cannot use this 
special technique to solve a knapsack problem of the type 
= ∑ 𝑏𝑏𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛

𝑖𝑖=1  , where S  is a  positive integer, because the 
sequence 𝑏𝑏1,𝑏𝑏2, . . . . , 𝑏𝑏𝑛𝑛  is not super-increasing in general. 
However, when 𝑤𝑤� is known, we can find: 

𝑤𝑤�𝑆𝑆 =  ∑ 𝑤𝑤�𝑏𝑏𝑖𝑖𝑚𝑚𝑖𝑖 𝑛𝑛
𝑖𝑖=1 ≡ ∑ 𝑎𝑎𝑖𝑖 𝑚𝑚𝑖𝑖  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚)𝑛𝑛

𝑖𝑖=1   
Because 𝑤𝑤�𝑏𝑏𝑗𝑗 ≡ 𝑎𝑎𝑗𝑗  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚) we see that:  

𝑆𝑆0 = �𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖 =1

 

Where 𝑆𝑆0 is the least positive reside of 𝑤𝑤𝑆𝑆���� modulo  m. 
We can easily solve the equation because 𝑎𝑎1, 𝑎𝑎2 , . . . . ,𝑎𝑎𝑛𝑛  is 
super-increasing. This solves the knapsack problem: 
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𝑆𝑆 =  �𝑏𝑏𝑖𝑖𝑚𝑚𝑖𝑖 

𝑛𝑛

𝑖𝑖 =1

 

Because 𝑏𝑏𝑗𝑗 ≡ 𝑤𝑤𝑎𝑎𝑗𝑗  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚)  and 0 ≤  𝑏𝑏𝑗𝑗 < 𝑚𝑚 . Th is 
procedure can be shown with an example. 

Example 6.2.1 : Use the above method to show the 
super-increasing sequence 

(𝑎𝑎1, 𝑎𝑎2 , 𝑎𝑎3, 𝑎𝑎4, 𝑎𝑎5 ) = (2, 7, 11, 23, 46) 
can be transformed using 𝑏𝑏𝑗𝑗  ≡ 53𝑎𝑎𝑗𝑗  (𝑚𝑚𝑚𝑚𝑑𝑑  77),  for  

𝑗𝑗 = 1, 2, 3, 4, 5. When 
2𝑚𝑚1 + 7𝑚𝑚2 + 11𝑚𝑚3 + 23𝑚𝑚4 + 46𝑚𝑚5 = 76 

Solution: We can form the sequence 
bj ≡ 53aj  (mod 77) , for 𝑗𝑗 = 1, 2, 3, 4, 5. That is 

(𝑏𝑏1, 𝑏𝑏2,𝑏𝑏3, 𝑏𝑏4, 𝑏𝑏5) = (53 ∗ 2(𝑚𝑚𝑚𝑚𝑑𝑑 77), 53 ∗ 7 (𝑚𝑚𝑚𝑚𝑑𝑑  77), 
 53 ∗ 11 (𝑚𝑚𝑚𝑚𝑑𝑑  77), 53 ∗ 23 (𝑚𝑚𝑚𝑚𝑑𝑑  77), 53 ∗ 46 (𝑚𝑚𝑚𝑚𝑑𝑑  77))

= (29, 63, 44, 64, 51) 
That is,  
29𝑚𝑚1 + 63𝑚𝑚2 + 44𝑚𝑚3 + 64𝑚𝑚4 + 51𝑚𝑚5 = 24(𝑚𝑚𝑚𝑚𝑑𝑑 77) 

We can check to see if this transformation was successful 
by solving the original sequence, which is  

2𝑚𝑚1 + 7𝑚𝑚2 + 11𝑚𝑚3 + 23𝑚𝑚4 + 46𝑚𝑚5 = 76 
This sequence is super increasing which means we can 

follow the above procedure in Example 6.1.3.  
76– 46 = 30 
30– 23 = 7 

7– 7 = 0 
Thus, we have a solution of 𝑚𝑚5 = 𝑚𝑚4 = 𝑚𝑚2 = 1  and 

𝑚𝑚3 = 𝑚𝑚1 = 0. We can check this solution with our above 
transformed sequence (𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4,𝑏𝑏5). We have 

29𝑚𝑚1 + 63𝑚𝑚2 + 44𝑚𝑚3 + 64𝑚𝑚4 + 51𝑚𝑚5 = 24(𝑚𝑚𝑚𝑚𝑑𝑑 77) 
51 + 64 + 63 = 178(𝑚𝑚𝑚𝑚𝑑𝑑 77) ≡ 24(𝑚𝑚𝑚𝑚𝑑𝑑  77)  

Which is what we wanted to show, thus our 
transformation was successful in making a super-increasing 
sequence into a sequence that is not super-increasing. 

The cryptosystem based on the knapsack problem 
invented by Merkle and Hellman works as follows: 

Each individual chooses a super-increasing sequence of 
positive integers of a specified length, say, N (for example, 
𝑎𝑎1, 𝑎𝑎2, . . . . , 𝑎𝑎𝑁𝑁 ) as well as a modulus m with 𝑚𝑚 > 2𝑎𝑎𝑁𝑁  and a 
multip lier w with (𝑚𝑚,𝑤𝑤) = 1. The transformed sequence 
𝑏𝑏1,𝑏𝑏2, . . . . , 𝑏𝑏𝑁𝑁 is made public. 

To send a message P to an individual, the message is first 
translated into a string of zeros and ones using the binary 
equivalents of letters given in Table 6.2.1 below. This string 
of zeros and ones is split into segments of length N; if N does 
not divide the length, simply fill out the last block with ones. 

For each o f the b locks we have, a sum is computed using 
the sequence 𝑏𝑏1,𝑏𝑏2, . . . . , 𝑏𝑏𝑁𝑁, for example, when we have the 
block 𝑚𝑚1𝑚𝑚2 … 𝑚𝑚𝑁𝑁: 

𝑆𝑆 = 𝑏𝑏1𝑚𝑚1 + 𝑏𝑏2𝑚𝑚2+ .. . +𝑏𝑏𝑁𝑁𝑚𝑚𝑁𝑁 
The sum generated by each b lock form a ciphertext  

message. Since 𝑏𝑏1,𝑏𝑏2, . . . . , 𝑏𝑏𝑁𝑁  is not a super-increasing 
sequence, it is much harder to solve the knapsack cipher, 
without knowledge of m and w . When someone knows m and 
w, the knapsack problem can  be transformed into a 
super-increasing sequence, which makes fo r a much easier 

knapsack problem. For someone with knowledge of m and w, 
we get: 

𝑤𝑤�𝑆𝑆 =  𝑤𝑤�𝑏𝑏1𝑚𝑚1 +  𝑤𝑤�𝑏𝑏2𝑚𝑚2+ .  .  .+ 𝑤𝑤�𝑏𝑏𝑁𝑁𝑚𝑚𝑁𝑁  ≡  𝑎𝑎1𝑚𝑚1 +
 𝑎𝑎2𝑚𝑚2+ .  .  .+ 𝑎𝑎𝑁𝑁𝑚𝑚𝑁𝑁  (𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚)  

where 𝑤𝑤�𝑏𝑏𝑗𝑗  ≡  𝑎𝑎𝑗𝑗  (𝑚𝑚𝑚𝑚𝑑𝑑  𝑚𝑚), where 𝑤𝑤� is an inverse of w  
modulo m, so that: 

𝑆𝑆0 = 𝑎𝑎1𝑚𝑚1 +  𝑎𝑎2𝑚𝑚2+ .  .  .+ 𝑎𝑎𝑁𝑁𝑚𝑚𝑁𝑁 

Table 6.2.1.  The binary equivalents of letters 

Letter Binary 
Equivalent Letter Binary 

Equivalent 
A 00000 N 01101 
B 00001 O 01110 
C 00010 P 01111 
D 00011 Q 10000 
E 00100 R 10001 
F 00101 S 10010 
G 00110 T 10011 
H 00111 U 10100 
I 01000 V 10101 
J 01001 W 10110 
K 01010 X 10111 
L 01011 Y 11000 
M 01100 Z 11001 

Example 6.2.2: Consider the super-increasing sequence 
 (𝑎𝑎1 , 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4 , 𝑎𝑎5) = (2, 15, 19, 41, 83). Let our 𝑚𝑚 = 211, 
so that 𝑚𝑚 > 2𝑎𝑎5 , and 𝑤𝑤 = 101, thus we can see that we 
have 𝑔𝑔𝑐𝑐𝑑𝑑(𝑚𝑚,𝑤𝑤) = 1. Encrypt the message KNAPSACK 
and show the decryption process. 

Solution: We begin by transforming our super-increasing 
sequence (𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 ,𝑎𝑎4 , 𝑎𝑎5) = (2, 15, 19, 41, 83)  into a 
sequence that is not super-increasing, we note: 

(𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4,𝑏𝑏5) = (𝑤𝑤𝑎𝑎1(𝑚𝑚𝑚𝑚𝑑𝑑  𝑚𝑚),𝑤𝑤𝑎𝑎2(𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚), 
 𝑤𝑤𝑎𝑎3(𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚),𝑤𝑤𝑎𝑎4 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑚𝑚),𝑤𝑤𝑎𝑎5(𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚)) 

(𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3,𝑏𝑏4, 𝑏𝑏5) = (101 ∗ 2(𝑚𝑚𝑚𝑚𝑑𝑑 211), 
 101 ∗ 15(𝑚𝑚𝑚𝑚𝑑𝑑  211) , 101 ∗ 19(𝑚𝑚𝑚𝑚𝑑𝑑  211) , 

  101 ∗ 41 (𝑚𝑚𝑚𝑚𝑑𝑑 211), 101 ∗ 83 (𝑚𝑚𝑚𝑚𝑑𝑑 211)) 
(𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3,𝑏𝑏4, 𝑏𝑏5) = (202, 38, 20, 132, 154) 

To translate this message, we must first translate the 
letters of the message into their five-d igit b inary equivalents 
and put them into blocks of length N, this sequence is of 
length 5, so the blocks will also be of length 5. 

We now have: 
01010  01101  00000  01111  10010  00000  00010  

01010 
For each block of 5 binary dig its, we fo rm a sum by 

adding together the appropriate terms of the sequence in the 
slots corresponding to the positions of the block containing 
a digit equal to 1. Th is gives us: 
170   212    0     344    334    0    132   170 

This string of 8 sums is our found ciphertext. We can see 
that this example is very simplistic, although the decrypted 
message is protected from basic attacks. 

To decrypt and arrive back at our original message we 
must find the least positive residue modulo 211 of 117 times 
each sum. We can calculate the inverse of 101 modulo 211 to 
be 117. Once we fin ish this we can solve the corresponding 



 Algorithms Research 2012, 1(5): 31-42  41 
 

 

easy knapsack problem with respect to the original 
super-increasing sequence 

(𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4 , 𝑎𝑎5) = (2, 15, 19, 41, 83) 
We then have: 

170 ∗ 117 = 19890 (𝑚𝑚𝑚𝑚𝑑𝑑  211) ≡ 56(𝑚𝑚𝑚𝑚𝑑𝑑  211)  
We can see that 56 = 15 + 41, which corresponds to the 

binary representation of 01010. 
212 ∗ 117 = 24804 (𝑚𝑚𝑚𝑚𝑑𝑑 211) ≡ 117(𝑚𝑚𝑚𝑚𝑑𝑑 211) 

We can see that 117 = 15 + 19 + 83 , which 
corresponds to the binary representation of 01101. 

0 ∗ 117 = 0(𝑚𝑚𝑚𝑚𝑑𝑑 211) 
We can see that we have a corresponding representation of 

00000. 
344 ∗ 117 = 40248 (𝑚𝑚𝑚𝑚𝑑𝑑 211) ≡ 158(𝑚𝑚𝑚𝑚𝑑𝑑 211) 

We can see that 158 = 15 + 19 + 41 + 83 , which  
corresponds to the binary representation of 01111. 

334 ∗ 117 = 39078 (𝑚𝑚𝑚𝑚𝑑𝑑 211) ≡ 43(𝑚𝑚𝑚𝑚𝑑𝑑  211) 
We can see that 43 = 2 + 41, which corresponds to the 

binary representation of 10010. 
0 ∗ 117 = 0(𝑚𝑚𝑚𝑚𝑑𝑑 211) 

We can see that we have a corresponding representation of 
00000. 

132 ∗ 117 = 15444 (𝑚𝑚𝑚𝑚𝑑𝑑 211) ≡ 41(𝑚𝑚𝑚𝑚𝑑𝑑  211) 
We can see that 41 = 41 , which corresponds to the 

binary representation of 00010. 
170 ∗ 117 = 19890 (𝑚𝑚𝑚𝑚𝑑𝑑 211) ≡ 56(𝑚𝑚𝑚𝑚𝑑𝑑  211) 

We can see that 56 = 15 + 41, which corresponds to the 
binary representation of 01010. 

Thus our decrypted message comes out to be: 
01010  01101  00000  01111  10010 

  00000  00010  01010 
      K       N        A         P         S 

          A       C        K 
This is our orig inal message and we have properly 

encrypted and decrypted the message. 
Knapsack ciphers were originally thought to be excellent 

candidates as an alternate form of public key encryption 
instead of the standard RSA approach. However, in 1982 
Shamir (one of the inventors of RSA) showed they do not 
provide satisfactory security for encryption of messages. 
The reason being, he had found an efficient algorithm for 
solving knapsack problems involving sequence 
𝑏𝑏1,𝑏𝑏2, . . . . , 𝑏𝑏𝑛𝑛 with 𝑏𝑏𝑗𝑗 ≡ 𝑤𝑤𝑎𝑎𝑗𝑗 (𝑚𝑚𝑚𝑚𝑑𝑑  𝑚𝑚), where m and w are 
relatively prime positive integers and 𝑎𝑎1, 𝑎𝑎2 , . . . . , 𝑎𝑎𝑛𝑛  is a  
super-increasing sequence. This is why knapsack ciphers are 
not used in modern day cryptography. 

7. Conclusions 
In this paper we have described and compared  five of the 

major public key cryptosystems developed in the last forty 
years. Although they all share some characteristics, they are 
based on a variety of hard mathematical p roblems: the 
factorization of a number into primes, the one way trapdoor 
functions, the elliptic  curve arithmetic, and the discrete 
logarithms in  finite  fields. As the researchers develop 

cryptosystems, they have to argue that they are hard to break 
and therefore useful. At the same time they have to study the 
ways to break them, serving as further reassurance of the 
strength of the cryptosystems. The importance of the public 
key cryptosystems lies in  their accessibility, and thus their 
practicality. 

Most authors consider the RSA systems to be the most 
secure. It is well studied and implemented and widely  used. 
It is widely believed that even if the factorization problem is 
solvable in polynomial t ime, which is currently not known, 
increasing the size of the primes used in the key generation 
will keep the method secure for years to come.  

The Diffie-Hellmann key exchange and the ElGamal 
encryption method based on it are a very useful in 
understanding the basics of exponentiation based 
cryptography. It is further important for the study of the 
strengths and weaknesses of any cryptosystem based on 
exponentiation, and thus valuable cryptanalytic tool. The 
discrete logarithm problem became one of the most studied 
problems due to this. 

Elliptic  curve based cryptography has one very important 
feature that appeals to the manufacturers of security 
protected electronic equipment – quicker calcu lations 
compared to the other major cryptographic algorithms. 
However, both theoretically and from the point of view of its 
hardware implementation it is less secure than RSA. Another 
appealing feature of the elliptic curve cryptography is its 
applicability under the quantum computing paradigm, which 
spurs further research into this approach.  

The knapsack approach had important role in the 
development of the idea of a cryptosystem based on one way 
trapdoor function. Today, we know that the knapsack cipher 
is not secure enough for practical applications, due to its 
polynomial t ime breakability. 
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