
Algorithms Research 2012, 1(4): 20-30
DOI: 10.5923/j.algorithms.20120104.02

Algorithms for Matchings in Graphs

Tzvetalin S. Vassilev*, Laura Huntington

Department of Computer Science and Mathematics, Nipissing University, North Bay, P1B 8L7, Canada

Abstract This paper exp lores maximum as well as optimal matchings with a strong focus on algorithmic approaches to
determining these matchings. It begins with some basic terminology and notions about matchings including Berge’s Theorem,
Hall’s Theorem and the König-Egerváry Theorem among others. Then an algorithm used for determining maximum
matchings in b ipartite graphs is discussed and examples of its execut ion are explored. Th is discussion is followed by an
exploration of weighted graphs and optimal matchings including a statement and discussion of the Hungarian A lgorithm. The
Marriage Algorithm is also discussed as are stable marriages and examples of the execut ion of the Marriage A lgorithm are
provided.

Keywords Graph Theory, Matchings, Greedy Algorithms, Stable Marriage

1. Introduction
There are many different interesting applications of

matchings to all aspects of life – from how to fill positions at
a place of business with the best possible combination of
applicants to how to ensure that a ‘marriage’ is stable! Of
course, this is assuming that a person’s suitability for a
specific role, whether it is as a new employee or a spouse to a
certain person, can be easily determined and quantified
which clearly is not always the case. However, we will
conveniently consider an optimal and easily quantifiab le
world throughout this paper in which one will never h ire an
employee who is not suitable for a position and the divorce
rate is considerably lower!

2. Basic Terminology and Properties of
Matchings

2.1. Matchings Terminology

A set of pairwise independent edges is called a matching.
Edges are called independent if they are not adjacent. In the
study of matchings, the notion of a maximal matching
becomes interesting. A matching of maximum card inality is
called a maximum matching and a matching that pairs all the
vertices in a graph is called a perfect

matching (see Figure 1). Thus, it makes sense to seek not
only a matching but the largest possible matching by some
measurable quantity[1].

A common practical application o f such a problem is one

* Corresponding author:
tzvetalv@nipissingu.ca (Tzvetalin S. Vassilev)
Published online at http://journal.sapub.org/ algorithms
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

considering jobs and applicants. Suppose that there are m
positions to be filled at a particu lar company for which the
company has n applicants. If we assign each position and
each applicant a vertex we can attempt to find a matching in
this bipartite graph. A bipartite graph is a graph whose
vertices can be separated into two sets X and Y in such a way
that every edge in the graph has one endpoint in each set[2].
In this case, the two sets would be the set P such that |P|=m
and the set A such that |A|=n since there are m positions and n
applicants.

Figure 1. Matching in a bipartite graph

Also, note that the neighbourhood of a vertex v in a
graph G is an induced subgraph of G, formed by all vert ices
adjacent to v. Denoted N(v) such that the number of vertices
adjacent to v is |N(v)|[3].

2.2. Types of Edges, Vertices and Paths in a Matching

An edge is defined to be weak with respect to a matching
M if it is not in the matching[1]. For example, let G be the
graph in Figure 1. Let M be the set {AE, CF} where AE
denotes an edge from vertex A to vertex E. Then the edge BD
is weak with respect to the matching M since BD is not
included in the set M of pairwise independent edges.

A vertex is weak with respect to M if it is incident to only
weak edges. Again, given the above-described matching M

21 Algorithms Research 2012, 1(4): 20-30

in Figure 1, the vertices B and D are weak with respect to the
matching M since B and D are incident only to BD which, as
already established, is a weak edge with respect to M.

Figure 2. Alternating paths and matchings

An M-alternating path in G is a path whose edges are
alternately in a matching M and not in M[1]. Consider the
following graph G in Figure 2 and the matching M={AE , BD,
CF}. An M-alternating path in G is g iven by: CF, FA, AE , EB ,
BD.

An M-augmenting path is an M-alternating path whose
end vertices are both weak with respect to M[1].

Note that there is no possible M-augmenting path in the
graph G in Figure 2 since G has no vertices that are weak
with respect to M. If we redefined M={AE} then an
M-augmenting path in G would be g iven by: FA, AE, EB
since in this case F and B would be weak vert ices with
respect to this particular matching M.

2.3. Some Properties of Matchings

Lemma 1 Let M1 and M2 be two matchings in a graph G.
Then each component of the spanning subgraph H with edge
set 𝐸𝐸(𝐻𝐻) = (𝑀𝑀1 − 𝑀𝑀2) ∪ (𝑀𝑀2 − 𝑀𝑀1) is one of the
following types:

1. An isolated vertex.
2. An even cycle with edges alternately in M1 and M2.
3. A path whose edges are alternately in M1 and M2 and

such that each end vertex of the path is weak with respect to
exactly one of M1 and M2[1] .

Proof: Let M1 and M2 be two matchings in a graph G. Let
H be a spanning subgraph of G with edge set 𝐸𝐸(𝐻𝐻) = (𝑀𝑀1 −
𝑀𝑀2) ∪ (𝑀𝑀2 − 𝑀𝑀1). H is the union of the edges which are in
M1 and not in M2 and the edges which are in M2 and not in
M1.

Now, in the subgraph H of G, ∆(𝐻𝐻) ≤ 2. Otherwise, a
vertex in H would have to be adjacent to more than 1 edge
from at least one of the matchings. Thus, the possible
components of H are isolated vertices, paths and cycles.

Consider a component H1 of H that is not an isolated
vertex. Th is component is either a path or a cycle.

Obviously an edge in H1, must either be from M1 or M2, it
cannot be from both by the definition of E(H). Also, consider
a vertex v in H1. Since ∆(𝐻𝐻) ≤ 2 , deg(𝑣𝑣) ≤ 2 which
means that there are at most two edges incident to v. These
edges cannot be both from the same matching, M1 or M2,
otherwise the definition of matching would not be satisfied.
Thus, the edges in this component H1 of H are alternating

between the two matchings.
Therefore, if H1 is a cycle, then it must be an even cycle

with edges alternating between M1 and M2. (Otherwise, the
edges would not alternate and at least one vertex would have
more than one edge from one of the matchings).

By the same reasoning, if H1 is a path, the edges in the
path would have to be alternating between the two
matchings. It remains to be shown that each end vertex is
weak with respect to exactly one of the matchings. In other
words, we must show that each end vertex has only one
edge incident to it.

Suppose not. Suppose v is a vertex in H1 was also
adjacent to an edge e from the other matching. Then we
could extend the path and v would not be the end vertex.

2.4. Matching Theorems

Theorem 1 (Berge’s Theorem) A matching M in a
graph G is a maximum matching if, and only if, there exists
no M-augmenting path in G.

Proof: Let M be a matching in G and suppose that G
contains an M-augmenting path 𝑃𝑃: 𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘 .

Note that k must be odd because P is an M-augmenting
path which means that its edges alternate between those in
the matching M and those not in the matching M and that
each of its end vertices are weak with respect to M.

Consider the matching M and the M-augmenting path
given by P. Let us remove all the edges from M which are
in P. Then let us add the edges which were weak with
respect to M in P to construct a new matching:

M1 = {v1,v2,…,vk-2,vk-1}∪{ v0,v1,…,vk-1,vk}.
Now since v0 and vk were the end vertices of P, they were

weak with respect to M. This means that {v0,v1,…,vk-1,vk}
with what remains of M , which we defined as M1 is a set of
pairwise independent edges in G and thus M1 is a matching
in G.

Note that k -1 is always even under these assumptions.
In order to find M1 we removed (k – 1)/2 edges from M

and then added (k +1)/2 edges.
Note that[(k +1)/2]–[(k – 1)/2] = 1.
Thus, M1 is a matching in G which contains one more

edge than M and so M is not a maximum matching in G.
Conversely, suppose that M is not a maximum matching

and there does not exist an M-augmenting path. Using the
same M1, let M1 be a maximum matching in G. Consider the
spanning subgraph H as defined in Lemma 1 but between
M1 and M. As it was proven, H must either be an isolated
vertex, an even cycle with edges alternately in M1 and M, or a
path whose edges are alternately in M1 and M such that each
end vertex of the path is weak with respect to exactly one of
M1 and M.

Consider a component of H which is an alternating path.
Its end vertices must be weak with respect to exactly one of
M1 and M. But some alternating path in H must contain
more edges of M1 than M, since M1 contains more edges
than M. Thus, this path is an M-augmenting path but we
assumed that there was no such path possible.

 Tzvetalin S Vassilev et al.: Algorithms for Matchings in Graphs 22

Given a matching M, a set S is matched under M if every
vertex of S is incident to an edge in M[1].

Theorem 2 (Hall’s Theorem) Let G = (𝑋𝑋 ∪ 𝑌𝑌, E) be a
bipartite graph. Then X can be matched to a subset of Y if,
and only if, |N(S)| is greater than or equal to |S| for all
subsets S of X[1].

Proof: Suppose that X can be matched to a subset Y.
Consider a vertex vi in S. For each vertex vi in S, vi is
adjacent to at least one vertex in Y. Thus, each vertex vi in S
contributes at least one vertex to N(S).

Now, the size of the subset S, denoted |S|, is the number
of vertices vi in S. And since each of these vertices
contribute at least one vertex to the neighbourhood of S, it
follows that |N(S)| greater than or equal to |S| for all subsets
S of X.

Conversely, suppose X cannot be matched to a subset Y.
We need to show that |N(S)| being greater than or equal to
|S| for all subsets S of X does not hold. Let M be a
maximum matching in a graph G. Now, obviously all the
vertices of X cannot be incident to edges in M since X
cannot be matched to Y. So there is at least one vertex in X
that is weak with respect to M. Let u be a vertex in X that is
weak with respect to M.

Let A be the set of all vertices of the graph G which are
connected to u by an M-alternating path.

Now, since M is a maximum matching by our assumption,
it follows that there is no M-augmenting path in G by
Berge’s Theorem (Theorem 1). Which means that there
can be no vertex in A, other than u, that is weak with respect
to the matching M otherwise there would be an
M-augmenting path in G and thus M would not be a
maximum matching.

Let S = A ∩ X and T = A ∩ Y. The vert ices of S – {u} are
matched with vertices of T, since u is the only weak vertex
in A with respect to the maximum matching M. Therefore
|T| = |S| - 1 since all the vertices in S other than u must be in
T. In fact 𝑇𝑇 ⊆ 𝑁𝑁(𝑆𝑆) since every vertex in N(S) is
connected to u by an alternating path. But then |N(S)| = |S| -
1 which is less than |S|.

Corollary 1 (to Hall’s Theorem) If G is a k-regular
bipartite graph with 𝑘𝑘 > 0, then G has a perfect matching.

Proof: Let G = (X U Y, E) be a k-regular b ipartite graph
with 𝑘𝑘 > 0.

Then the number of edges in G will equal k mult iplied by
the number of vertices in X and k multip lied by the number
of vertices in Y, |𝐸𝐸(𝐺𝐺)| = 𝑘𝑘|𝑋𝑋| = 𝑘𝑘|𝑌𝑌|. Thus, since 𝑘𝑘 > 0,
X and Y have the same number of vert ices.

If S is a subset of X, since we know that |N(S)| is greater
than or equal to |S|, it fo llows that the set of all edges
incident to vertices in S, denoted Es, is a subset of all the
edges incident to the vertices in N(S), denoted EN(S). In other
words, 𝐸𝐸𝑠𝑠 ⊆ 𝐸𝐸𝑁𝑁(𝑆𝑆) .

Now, G is k-regular so k|N(s)| =|EN(S)| , and from above,
k |N(s)| =|EN(S)| which is greater than or equal to | Es| = k|S|.
It follows that |N(S)| is greater than or equal to |S| and thus,
by Hall’s Theorem, X can be matched to subset of Y. But we
have already established that there are the same number of

vertices in the sets X and Y so G must contain a perfect
matching.

2.5. The SDR and the Marriage Theorems

Hall’s Theorem can also be stated in set theoretic terms.
We shall state it in these terms as it will be very useful in
this form in later d iscussions. However, before this
statement can be made, we need to establish a few more
terms and their definit ions.

Given sets S1, . . . , Sk let 𝑥𝑥𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 be any element such
that we define xi is a representative for the set Si which
contains it.

A collection of distinct representatives for this set is called
a system of distinct representatives (aka.‘SDR’) or a
transversal of sets.

Theorem 3 (The SDR Theorem) A collection S1, S2, . . . ,
Sk, k ≥ 1 o f finite nonempty sets has a system of d istinct
representatives if, and only if, the union of any t of these sets
contains at least t elements for each t, (1 ≤ t ≤ k)[1].

Proof: If the union of any t of these sets contained less
than t elements then there would be fewer elements to be
chosen as the representatives than there are sets to be
represented.

Theorem 4 (The Marriage Theorem) Given a set of n
men and a set of n women, let each man make a list of the
women he is willing to marry. Then each man can be married
to a woman on his list if, and only if, for every value of k (1 ≤
k ≤ n), the union of any k of the lists contain at least k
names[1].

A set C of vertices is said to cover the edges of a graph G
(or be an edge cover), if every edge in G is incident to a
vertex in C[2].

There are some very useful results relating edge covers
and matchings. One such result is the König-Egerváry
theorem.

Theorem 5 (König-Egerváry Theorem) If G = (𝑋𝑋 ∪ 𝑌𝑌, E)
is a bipartite graph, then the maximum number o f edges in a
matching in G equals the minimum number of vertices in a
cover for E(G), that is, α(G) = 𝛽𝛽(G).

Proof: Let G = (𝑋𝑋 ∪ 𝑌𝑌, E) be a bipart ite graph. Suppose
that the maximum number of edges in a matching in G is m,
denoted 𝛼𝛼(G) = m and suppose that the minimum number of
vertices in a cover for E(G) is c, denoted 𝛽𝛽(G) = c. We want
to show that m = c.

Let M be a maximum matching in G. Let W be the set of all
vertices in X which are weak with respect to the matching M.
Thus the size of the matching is the size of X minus that size
of W. Let the set S contain all the vertices of G which are
connected to some vertex in W by an alternating path.

Let Sx =S ∩ X and let Sy =S ∩ Y.
Since S contains the vertices in G with are connected to the

vertices of W by an alternating path and since W is the set of
all vert ices of X which are weak with respect to the matching,
this implies that no vertex in Sx - W is weak. This in turn
implies that Sx - W is matched under M to Sy and that N(Sx) =
Sy. Thus |Sx| - |Sy| = |W|.

23 Algorithms Research 2012, 1(4): 20-30

Then we claim that C = (X – Sx) ∪ Sy is a cover for E(G).
Suppose not, that is suppose C was not a cover for E(G), then
there would have to be an edge vw in G where v is an vertex
in Sx and w is a vertex that is not in Sy = N(Sx) which is not
possible. (There would be an edge between a vertex in one
set and a vertex which was not in the neighbourhood of the
set).

Therefore we would have the following:
|C| = |X| - |Sx| + |Sy| = |X| - |W| = |M|.
Thus, c = m.

3. An Algorithm for Determining
Maximum Matchings in Bipartite
Graphs

Algorithm 1 A Maximum Matching in a Bipart ite
Graph[1].

Input: Let G = (𝑋𝑋 ∪ 𝑌𝑌, E) be a bipartite graph and suppose
that X = { x1, . . . , xm } and Y = { y1, . . . , yn }. Further, let M be
any matching in G (including the empty matching).

Output: A matching larger than M or the information that
the present matching is maximum. 

Method: We now execute the following labeling steps
until no step can be applied.

1. Label with an * all vert ices of X that are weak with
respect to M. Now, alternately apply steps 2 and 3 until no
further labeling is possible.

2. Select a newly labelled vertex in X, say xi, and label
with xi all unlabeled vertices of Y that are joined to xi by an
edge weak with respect to M. Repeat this step on all vertices
of X that were labeled in the previous step.

3. Select a newly labelled vertex of Y, say yj, and label
with yj all unlabeled vertices of X which are jo ined to yj by an
edge in M. Repeat this process on all vertices of Y labeled in
the previous step.

Figure 3. The initial matching

Notice that the labelings will continue to alternate until
one of two possibilities occurs:

E1 : A weak vertex in Y has been labeled. 
E2 : It is not possible to label any more vert ices and E1 has

not occurred.
Let us now apply this algorithm to the following bipart ite

graph G to find a maximum matching in G.
Input: G = (𝑉𝑉 ∪ 𝑈𝑈, E) where V = {v1, v2, v3} and U = {u1,

u2, u3}. Let M = {v2u1} be matching in G.
1. Label with an * all vert ices of V that are weak with

respect to M.
● These are all the vertices in V which are not in M; that is,

𝒗𝒗𝟏𝟏 and 𝒗𝒗𝟑𝟑.

Figure 4. The labeling after Step 1

2. Select a newly labelled vertex in V, say vi, and label
with vi all unlabeled vert ices of U that are jo ined to vi by an
edge weak with respect to M. Repeat this step on all vertices
of V that were labelled in the previous step.

● Let us select v1 first. The unlabelled vert ices of U which
are adjacent to v1 are u1, u2 and u3. We label these three
vertices with v1.

● Now we consider v3. Since v3 is only adjacent to
vertices in U which are already labelled, no further labelling
can be done at this step

3. Select a newly labelled vertex of U, say uj, and label
with uj a ll un labeled vert ices of V which are jo ined to uj by an
edge in M. Repeat this process on all vertices of U labelled in
the previous step.

● The only vertex in V which has not been labelled yet is
v2 so let us choose a vertex in U that was labelled in the
previous step that is adjacent to v2.

● Choose u1. We must now label v2 with u1.

Figure 5. The labelling after Step 3

Note: Here we reach the end of this execution of the
algorithm. Since weak vertices with respect to M in U were
labelled, the ending E1 has occurred. Also, the path P: v1u2
is augmenting (starts and ends on vertices which are weak
with respect to M). So our new matching is M’={v2u1,

 Tzvetalin S Vassilev et al.: Algorithms for Matchings in Graphs 24

v1u2}.
Now we run the algorithm again, this t ime starting with

the matching M’={v2u1, v1u2}.
1. v3 is the only vertex in V which is weak with respect to

M’.
● Now we label all the vertices in U which are adjacent

to v3 with v3. These would be u1 and u3.

Figure 6. The new matching M’ and the labelling after Step 1

2. Now we choose u1 and label v1 and v2 with u1.
● Note that if we now choose u3, it is only adjacent to

vertices in V that are already labelled so we need not
consider it.

Figure 7. The labelling after Step 2

3. Consider v1. It is adjacent to u2 in U which as of the
previous step was unlabelled so we label u2 with v1.

Figure 8. The labelling after Step 3

This second pass of the algorithm halts here because all
the vertices in G have been labelled. Note that the ending
here is again E1 since it resulted in the labelling of u3 which
is a weak vertex in U with respect to M’.

Now we have the path P’ = {v3u3} which is augmenting

and we form the new matching M’’ = {v2u1, v1u2, v3u3}.
When we run the algorithm once more with the matching

M’’ = {v2u1, v1u2, v3u3}, (as depicted with the red edges),
we immediately find that there are no vertices in V that are
weak with respect to M’’ and thus the algorithm halts with
ending E2.

Figure 9. The matching M”

Now we will prove the following theorem, which states
that since the algorithm terminated with ending E2, M’’ is a
maximum matching in G.

3.1. Proof that Algorithm 1 Outputs a Maximum
Matching if it Terminates with Ending E2

Theorem 6 Let G be a bipart ite graph with a matching M.
Suppose that the above algorithm has halted with ending E2
occurring. Let Ux be the unlabeled vert ices in X and Ly be
the labelled vert ices in Y. Then C = Ux ∪ Ly covers the
edges of G, |C| = |M|, and M is a maximum matching in G.

Proof: Suppose not; that is suppose C = Ux ∪ Ly does
not cover the edges of G. Then there exists and edge from a
labelled vertex of X to an unlabelled vertex in Y. Call this
edge e = xy where x is an element o f Lx and y is an element
of Uy. If e is not in M, then since x is labelled, it follows
from step 2 of the algorithm that y is labelled.

But y is in Uy from our defin ition of y. This means that e
must be in M and thus, from step 3 of the algorithm, x must
be labeled with y. This also means that y must have been
labeled in a p revious step. But again y is in Uy from our
definit ion of y. Therefore, there cannot be edges from a
labeled vertex in X to an unlabeled vertex in Y so C must
cover all the edges of G.

Let us consider what this theorem and its proof mean in
terms of our example.

If we let Uv be the unlabelled vertices of V and Lu be the
labelled vertices of U. According to Theorem 4, C = Uv ∪
Lu should cover the edges of G. In our example, none of the
vertices in V are weak with respect to M’’ so all the vertices
in V are unlabelled and thus will be included in C; on the
other hand, since the algorithm halted on the first step, none
of the vertices of U were labelled and thus none of the
vertices in U are included in C. Therefore, C = {v1, v2, v3}
and since there are no isolated vertices in G, and G is
bipartite, C does cover all the edges of G.

Now |C|=3 and we found the matching: M’’ = {v2u1, v1u2,

25 Algorithms Research 2012, 1(4): 20-30

v3u3}, where |M’’| = 3 . Thus, |C| = |M’’|. And so M’’ is a
maximum matching in G.

4. Assigning Weights and Determining
Optimal Solutions

4.1. Introduction

It now becomes interesting to take the notion of a
maximum matching and apply it to a more complicated but
also more useful notion of an optimal matching in a graph
with weighted edges.

For example, given the jobs and applicants problem
presented in section 2.1, forming a maximum matching in
this situation would only ensure that the maximum possible
number of jobs were filled (or the maximum number of
applicants were hired); this matching would not even begin
to consider the optimal solution in any terms except
quantity.

A common consideration in the hiring process is the
suitability of an applicant for a job. If each applicant’s
suitability (or unsuitability) for each job was calculated in
some way, then one could attempt to find a solution which
would ensure the optimal assigning of applicants to jobs in
terms of suitability (or unsuitability).

To explore these optimal matchings, we d iscuss weighted
edges. A weighted edge in a graph is an edge that has
number or weight assigned to it. A weighted graph then, is a
graph in which each edge has a number associated with
it[1].

Then, to find this optimal matching, one must determine
a matching with a collection of edges for which the sum of
the weights of these edges is either min imal or maximal
depending on the significance behind the weights on each
edge and the specific characteristics of the solution being
optimized.

In the jobs and applicants example, suppose that there are
m positions to be filled at a particular company for which the
company has n applicants. As with the general matching, we
assign each position and each applicant a vertex and we can
attempt to find a matching in this bipartite graph. However,
we now take into account each applicant’s unsuitability for
each job.

Let a weight of 0 indicate that the applicant is perfectly
suited to a job and let an increase in the weight of each edge
indicate an increase in unsuitability o f an applicant to a job.
In such a way, we can now consider the optimal matching
which would result in the best possible allocation of the jobs
to the most suitable applicants overall. Note that this
optimization does not necessarily result in each applicant
being offered the job for which they are best suited for the
simple reason that there may be more than one applicant
whose is equally highly suited to the job.

To optimize this matching, we must then determine the
matching for which the sum of the weights of the edges in the
matching is min imized, mean ing that the unsuitability of the
applicants to the jobs to which they are assigned in this

matching is min imized.

Let us define the weight of a matching M to be the sum of
the weights of each of the edges e in M, where w (e) is the
weight assigned to the edge e. In this way, an optimal
solution is a perfect matching in which W(M) is minimal[1].

Note: The bipart ite graph in these examples will be
complete, since we must consider the unsuitability of every
applicant to every job. If an applicant is completely
unsuitable for a job or did not apply for a job, we have the
option of weighting the edge between that job and that
applicant high enough that it would never be considered in
the optimization. Somet imes these edges are given infinite
weight, denoted by ∞.

Consider the following graph H:

Figure 10. Jobs and applicants, the graph H

As noted above, H is a complete b ipartite graph. In this
case there are 4 applicant and 4 jobs to be filled.

Now, to write on the graph the weight of each edge
would be difficult to do and to read and thus we will use the
following table:

Table 1. The weights in the graph H

U a1 a2 a3 a4

j1 5 7 2 0
j2 1 9 10 4
j3 7 8 1 11
j4 0 3 4 5

The next logical step in our search for the optimal
solution would be to try to simplify the weights of the edges
in this table. Note what happens if we subtract the same
amount from every entry in one row or column. For
instance, let us subtract 1 from each of the entries in row j2.

The new table becomes:

Table 2. The simplified weights after subtraction of 1 from row j2

U a1 a2 a3 a4

j1 5 7 2 0
j2 0 8 9 3
j3 7 8 1 11
j4 0 3 4 5

 Tzvetalin S Vassilev et al.: Algorithms for Matchings in Graphs 26

Essentially, we have not actually changed the relat ive
unsuitability of the applicants for this job since we
decreased each weight by the same amount.

When we consider that only one entry from each column
will be selected when calculating W(M), we can conclude
this change will have the same effect on any M that is
chosen and thus we can simplify the table in such a way.

So for each of the remaining rows, select the least entry
in the row and subtract it from all the entries in that row.
(Note that we use the least entry in each row in o rder to
eliminate the occurrence of negative weights).

For instance, in row j3 the smallest entry is 1 so we
subtract 1 from 7, 8, 1, and 11 to form the new table:

Table 3. Simplification in all rows

U a1 a2 a3 a4

j1 5 7 2 0
j2 0 8 9 3
j3 6 7 0 10
j4 0 3 4 5

Note that in rows j1 and j4 the smallest entry is already 0
so these rows remain unchanged. (Subtracting 0 from a row
will result in no change to that row).

Now let us repeat this process with the columns of the
table; that is, in each column, subtract the least entry from
all of the entries. The fo llowing table is formed:

Table 4. After the column simplification

U a1 a2 a3 a4

j1 5 4 2 0
j2 0 5 9 3
j3 6 4 0 10
j4 0 0 4 5

Now we must select numbers from the table, no two from
the same row or co lumn, with as small a sum as possible[1].
We eliminated the possibility of negative weights so the
minimum sum we could have is 0.

If we select the fo llowing entries marked with an asterisk
(*), we will have a sum of zero and no entry selected will be
in the same row or column as any other entry selected.

Table 5. Selection corresponding to an optimal matching

U a1 a2 a3 a4

j1 5 4 2 0*
j2 0* 5 9 3
j3 6 4 0* 10
j4 0 0* 4 5

Thus, we establish the following optimal solution M =
{j2a1, j4a2, j3a3, j1a4}.

4.2. Exceptions/Difficulties and the Hungarian
Algorithm

Unfortunately, we will not always be lucky enough to
obtain entries for which there are n “independent 0’s”.

Consider the following table of edge weights:

Table 6. Alternative weight assignment for the graph H

U a1 a2 a3 a4

j1 2 7 8 13

j2 3 5 14 10

j3 11 9 7 6
j4 5 3 9 11

After subtracting the least weight from each row of the
table we have the following table:

Table 7. After the row simplification

U a1 a2 a3 a4

j1 0 5 6 11

j2 0 2 11 7
j3 5 4 1 0

j4 2 0 6 8

And then repeating this with the columns of the table
yields:

Table 8. After the column simplification

U a1 a2 a3 a4

j1 0 5 5 11

j2 0 2 10 7

j3 5 4 0 0

j4 2 0 5 8

Note that in this table there is no set of 4 independent
zeroes and, unlike the previous example, at this step we
cannot immediately determine an optimal matching.

Figure 11. Crossing out the rows with zeroes in Table 8

Gould gives the following ‘adjustment procedure’ which
can be used to determine a set of independent zeroes[1].

First we must cross out with a line all the rows and
columns in the table containing zeroes.

Then the following algorithm must be run (this algorithm
is often known as the Hungarian Algorithm in honor of
König and Egerváry):

Algorithm 2 (The Hungarian Algorithm)
1. Let m be the smallest number that is not included in

any of our crossed rows or columns.
2. Subtract m from all uncrossed numbers.
3. Leave numbers which are crossed once unchanged.
4. Add m to all numbers which are crossed twice.
Thus, the resulting table will have at least one more zero

in the uncrossed numbers and the zeroes that the table
already had will not be affected unless they are crossed

27 Algorithms Research 2012, 1(4): 20-30

twice.
Therefore, m in this example would be 5. Subtracting m

from all uncrossed numbers and adding m to all numbers
which are crossed twice yields:

Table 9. The optimal assignment by the Hungarian algorithm

U a1 a2 a3 a4

j1 0 5 0* 6
j2 0* 2 5 2
j3 10 9 0 0*
j4 7 0* 0 3

Thus the procedure yields the table in which the starred
entries together represent a set of 4 independent zeroes and
an optimal solution is therefore M = {j2a1, j4a2, j1a3, j3a4}.

4.3. Reasoning Behind the Hungarian Algorithm

Gould states that this procedure will always result in a set
of n independent zeroes after a fin ite number of repetitions
[1].

The interesting question that must be asked at this point
is: why does this procedure work? Essentially, when we
cross out a row with zeroes in it, we are eliminating that job
from our further considerations because we know that it
already has an optimal match (an edge adjacent to it with a
weight of 0). However, when we repeat the same process
for the columns/applicants, we can have numbers/weights
which are crossed out twice.

Consider a number which is crossed twice. What does its
having been crossed out twice signify?

Consider the edge in the above example between j3 and
a1 whose weight is 5 before the crossing out procedure
begins. The row j3 is crossed out because it has two zeroes
in it, namely at a3 and a4. This means that there are two
different applicants who are optimally suited to this position.
Then, the column a1 is crossed out because applicant 1 is
optimally suited for at least one job.

Now, considering that there are two other candidates who
are optimally suited for job 3 and that applicant 1 is more
suited to at least one other job than job 3, it makes sense
that choosing the edge j3a1 would be highly unwise. It
would not provide an optimal match for either the job or the
applicant and so it stands to reason that the weight of this
edge should be increased to decrease to the point of
impossibility it being chosen as part of the optimal
matching.

4.4. Alternative Form of the König-Egerváry Theorem

We can now consider another alternative form of the
König-Egerváry Theorem.

Theorem 7 Let S be any m x n matrix. The maximum
number of independent zeroes which can be found in S is
equal to the minimum number of lines (either rows or
columns) which together cover all the zeroes of S.

Proof: Let G be a bipart ite graph where G = (𝑋𝑋 ∪ 𝑌𝑌, E).
Set up a matrix such that the rows of the matrix correspond to
the vertices of X and the columns of the matrix correspond to

the vertices of Y. Then we join a vertex in X, say xi, with a
vertex in Y, say yj, if and only if the ij entry in the matrix is
zero.

Then, obviously a maximum independent set of zeros
corresponds to a maximum matching in G and a minimum
set of lines covering all the zeros corresponds to a minimum
covering of G. Now by the previous proof of the
König-Egerváry Theorem we know that in a bipartite graph
the maximum number of edges in a matching in G equals the
minimum number of vertices in a cover for E(G).

5. Greedy Algorithms and the Marriage
Algorithm

5.1. Introduction

When presented with the above methods of finding an
optimal solution, many people will ask if one could not just
start with an edge of minimum cost and extend it in some
way to a matching. Th is kind of thinking lends itself
perfectly to the notion of a greedy algorithm. A greedy
algorithm is an algorithm that follows the problem solving
heuristic of making the locally optimal choice at each stage
with the hope of finding a global optimum[4].

To explore the applicat ion of a g reedy algorithm
approach to these optimization problems we will need to
establish some preliminary definit ions and theorems.

Given a bipart ite graph G =(V1 ∪ V2, E) , we say a
subset I o f V1 is matching-independent fo r matchings of V1
and V2 if there is a matching which matches all the elements
of I to elements of V2[1].

Theorem 8 Matching-independent sets for matchings V1
and V2 satisfy the following rule:

If I and J are matching-independent subsets of V1 and |I|
is less than |J|, then there is an element x of J such that I ∪
{x} is matching-independent.

Proof: To construct this proof we will need to use
Lemma 1 from section 2.2 and to use this lemma we will
need two matchings M1 and M2. Let M1 be a matching from
I to V2 and let M2 be a matching from J to V2. Now by
Lemma 1 we know that the spanning subgraph H with
E(H)=(M1−M2)∪ (M2−M1) has components of only three
possible types. Since and |I| is less than |J|, we can conclude
that |M2| is greater than |M1|, which means that there must
exist a path P whose edges are alternately in M1 and M2 and
whose first and last edges are in M2.

Thus, we have a component of type 3 from Lemma 1;
that is, we have a path P whose edges are alternately in M1
and M2 and whose first and last edges are in M2. Thus, each
vertex in P that is incident to M1 must also be incident to M2
(Otherwise, an edge would have to be between two vertices
in M1 thereby contradicting the definition of matching, or
the edge would be the first or last edge in P but we already
said that those edges are in M2 and thus they cannot be in
M1 as well). Also, there is vertex x in J incident to an edge
from M2 and not incident to any edge in M1.

Consider the set of edges: M =(M1 – E(P))∪(E(P) −M1).

 Tzvetalin S Vassilev et al.: Algorithms for Matchings in Graphs 28

This matching has one more edge in it than M1, because of
the existence of the vertex x mentioned above. Also, now M
is a matching of I ∪ {x} into V2. So, I ∪ {x} is
matching-independent.

5.2. Doubly Stochastic and Permutation Matrices

A matrix D = d(i,j) is doubly stochastic if each di,j is
greater than or equal to 0 and the sum of entries in any row
or column equals 1[1].

A permutation matrix is any matrix obtained from the
identity matrix I by performing a permutation on the rows
of I[1].

These two types of matrices are actually closely
connected. In fact, Birkhoff and Von Neumann proved that
any doubly stochastic n x n matrix D can be written as a
combination of suitable permutation matrices. That is, there
exist constants c1, c2, …, cn and permutation matrices P1,
P2, …, Pn such that D is equal to the sum of ciPi for all i= 1,
2, …, n.

The interesting questions are how to determine these
constants and how can we use the notion of a doubly
stochastic matrix to determine greedy algorithms.

Let us model a doubly stochastic matrix D as a bipart ite
graph where the vertices ri represent the ith rows of the
matrix and the vertices kj represent to jth columns of D. Let
an edge from ri to kj be drawn if and only if the entry di,j of
D is not zero.

Let us call this permutation matrix P1 and let c1 be the
minimum weight of an edge in the matching. Now D = ciPi
+R where R is a matrix representing the remain ing edges in
the bipartite graph.

The original edges were adjusted by subtracting c1 from
the weight of each edge of the matching and removing any
edge of weight zero. Repeat this process on R.

Theorem 9 The algorithm finds a matching at each stage.
Proof of Theorem 9: Suppose not. That is, suppose that

at some point in the process we are unable to find a
matching. By Hall’s Theorem, there exists a set A of
vertices representing rows of D such that |A| is greater than
|N(A)|. In terms of the matrix D, this means that there are
more rows than columns. Each of the rows sums to 1 so the
total value of the weights in the rows is |A|. But this total
must be distributed evenly over the |N(A)| columns of D.
And since we know from Hall’s Theorem that |A| is greater
than |N(A)|, some column of |N(A)| will sum to more than 1
which means that D would not be double stochastic. So we
must be able to find a matching at every step.

5.3. Marriage and Doubly Stochastic Matrices

Doubly stochastic matrixes figure in another interesting
theorem about marriage. Given a set of n men and a set of n
women, suppose that the weight of each edge in a matrix S
between a man i and a woman j represents the ‘suitability’
or ‘happiness’ (so to speak) of a marriage between them. It
makes sense to try to form a matching that results in the
happiest possible situation for the men and women.

An interesting question is whether this ideal situation
would result in monogamy or polygamy.

Theorem 10 Among all forms of marriage, monogamy is
optimal.

Proof: Let the matrix Mij represent these relationships
where an entry mij represents the fract ion of time that man i
spends with woman j. In this way, we see that monogamy
would be a permutation matrix and polygamy a doubly
stochastic matrix.

Let us measure the ‘happiness’ of these marriages by the
following expression taking into the couples’ happiness and
the time they spend together: h(M) which will be equal to
the sum of all si,jmi,j,. Thus, we wish to maximize h(M)
where we find the maximum over all the doubly stochastic
matrices of M.

But then the maximum of h(M) is equal to the maximum
of all the permutation matrices Pi multiplied by the
minimum weight of the edges of the matrix Pi which we
called ci. Therefore, the maximum corresponds to the
matching represented by a permutation matrix which we
established implies monogamy.

6. Stable Marriages
6.1. Introduction

Again, suppose we have a set of n men and n women.
Now let us consider the case where man m1 is married to
woman w1 and man m2 is married to woman w2 but man m2
actually prefers woman w1 and woman w1 happens to prefer
man m2 as well. It is clear that this is not a stable situation
so we will call a pair of such marriages unstable.

6.2. The Stable Marriage Algorithm

We need an algorithm that, given the preferences of each
man and woman, we can determine (if possible) a stable set
of matchings/marriages. So let us construct two preference
tables where the rows represent the men and the columns
represent the women. Each man and women must rank the
men or women as to their suitability, thus the entries in any
row will be integers from 1 to n. (1 will represent first
choice).

Table 10. The Men’s Preference Table

men w1 w2 w3 w4 w5
m1 1 2 3 4 5
m2 1 4 3 5 2
m3 5 1 3 2 4
m4 2 1 3 4 5
m5 4 2 3 1 5

Table 11. The Women’s Preference Table

women w1 w2 w3 w4 w5
m1 3 3 5 5 1
m2 4 1 2 4 3
m3 5 4 3 3 4
m4 2 2 4 2 5
m5 1 5 1 1 2

29 Algorithms Research 2012, 1(4): 20-30

Algorithm 3 (Stable Marriage Algorithm)
Input: Given preference tables for men and women
Output: A set of stable marriages
1. Each man proposes to his first choice.
2. The women with two or more proposals respond by

rejecting all but the most favourable offer. However, no
woman accepts a proposal.

3. The men that were rejected propose to their next choice.
Those that were not rejected continue their offers.

4. We repeat step 3 until we reach a stage where no
proposal is rejected.

A woman must eventually accept a proposal because she
can only reject n-1 proposals so this is a finite process that
must eventually come to a stop.

Let us run the Stable Marriage A lgorithm using the above
preference tables.

Table 12. The run of the stable marriage algorithm

proposals P1 P2 P3
m1 1 1 1
m2 1* 5 5
m3 2* 4* 3
m4 2 2 2
m5 4 4 4

Thus, a stable set of marriages is:
man m1 with woman w1
man m2 with woman w5
man m3 with woman w3
man m4 with woman w2
man m5 with woman w4

6.3. The Existence of Stable Marriages

Let us prove that we do indeed get a stable matching from
this algorithm.

Theorem 11 Given n men and n women, there always
exist a set of stable marriages.

Proof: Suppose not. That is, suppose there was an
unstable pair of marriages and defined earlier. Without loss
of generality, let this pair be (m1, w1) and (m2, w2). Now this
is an unstable pair of matchings so let m2 actually p refer w1.
But then he would have proposed to her before proposing to
his present wife w2. And w1 would not have rejected m2 since
she prefers him to her current husband by definition of an
unstable pair of marriages. Thus, this unstable situation
would not result from the Stable Marriage A lgorithm. So, the
marriages cannot be unstable.

7. Timing Analysis and Comparison
between the Algorithms

All three algorithms presented here run in polynomial t ime.
Algorithm 1 works in 𝑂𝑂(𝑚𝑚2𝑛𝑛2) time. Th is means that for a
balanced bipartite graph, we get a quartic running time,
𝑂𝑂(𝑛𝑛4). To see this, consider the execution of the algorithm.
Step 1 is done in time proportional to the size of the set X,
and can be done at most that many t imes. Step 2 is perfo rmed
at most n times, as this is the size of the set Y. Step 3 is also
performed at most n t imes. Depending on the density of the

input graph, the average running time of the algorithm might
be lower. The space complexity of Algorithm 1 is
𝑂𝑂(max(𝑚𝑚, 𝑛𝑛))[1, 13].

Algorithm 2 works in quart ic t ime, 𝑂𝑂(𝑛𝑛4) as well, in its
original version[5]. However, there are implementations of
this algorithm that work in cubic time, 𝑂𝑂(𝑛𝑛3)[6, 7]. The
space complexity of Algorithm 2 is quadratic, 𝑂𝑂(𝑛𝑛2) as the
size of the input is quadratic, and we do not use additional
data structures.

Algorithm 3 runs in quadratic time, 𝑂𝑂(𝑛𝑛2) in the worst
case[8, 9]. It uses quadratic space for its input, and again as
in Algorithm 2, the addit ional data structures can be
maintained within quadratic space, 𝑂𝑂(𝑛𝑛2). It is easy to see
that at each step of the Marriage Algorithm the number of
acceptances and the number of rejections is exactly n.
However, there cannot be more than (𝑛𝑛 − 1) steps without
acceptance, and at each step every man’s list becomes one
position shorter.

While this paper focuses on these three algorithms, there is
a large body of research on matchings from both theoretical
and algorithmic prospective. Many algorithms developed
solve specific instances of matching problems[11, 12, 14,
15], and thus make us of the combinatorial structure of these
problems. Thus, direct comparison between algorithms that
solve matching problems might not be appropriate in some
cases as they work under d ifferent input assumptions/condit
ions.

Implementational issues are not discussed in this paper,
but there is significant research in this area, and literature
that the reader may consult[6, 9, 10, 12].

ACKNOWLEDGEMENTS
Dr. Vassilev’s work is supported by NSERC Discovery

Grant. Laura Huntington wants to acknowledge the help of
Dr. Vassilev during the work on this paper.

REFERENCES
[1] Ron Gould. Graph Theory, Chapter 7: Matchings and

r-Factors, Benjamin/Cummings Publishing Co., Menlo Park,
CA, 1988.

[2] Daniel A. Marcus, Graph Theory: A Problem Oriented
Approach, 1st Edition, MAA, 2011.

[3] http://en.wikipedia.org/wiki/Vertex_(graph_theory)

[4] http://en.wikipedia.org/wiki/Greedy_algorithm

[5] Harold W. Kuhn. The Hungarian Method for the assignment
problem, Naval Research Logistics Quarterly, 2:83–97, 1955.

[6] James Munkres. Algorithms for the Assignment and
Transportation Problems, Journal of the Society for
Industrial and Applied Mathematics, 5(1):32–38, 1957.

[7] Harold W. Kuhn. Variants of the Hungarian method for
assignment problems, Naval Research Logistics Quarterly, 3:

 Tzvetalin S Vassilev et al.: Algorithms for Matchings in Graphs 30

253–258, 1956.

[8] D. Gale and L. S. Shapley. College Admissions and the
Stability of Marriage, American Mathematical Monthly 69,
9–14, 1962.

[9] D. Gusfield and R. W. Irving. The Stable Marriage Problem:
Structure and Algorithms. Cambridge, MA: MIT Press, 1989.

[10] S. Skiena. Stable Marriages. §6.4.4 in Implementing Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica. Reading, MA: Addison-Wesley, 245–246,
1990.

[11] Gerth S. Brodal, Loukas Georgiadis, Kristoffer A. Hansen
and Irit Katriel. Dynamic Matchings in Convex Bipartite
Graphs. Mathematical Foundations of Computer Science -

MFCS, 406–417, 2007.

[12] Takeaki Uno. Algorithms for Enumerating All Perfect,
Maximum and Maximal Matchings in Bipartite Graphs.
ISAAC 1997:92–101.

[13] Uri Zwick. Lecture Notes on Maximum Matching in Bipartite
and Non-Bipartite Graphs. December 2009.

[14] J. E. Hopcroft and R. M. Karp. An 𝑛𝑛5/2 algorithm for
maximum matching in bipartite graphs, SIAM J. on Comp.,
Vol. 2: 225–231, 1973.

[15] S. Micali and V.V.Vazirani. An 𝑂𝑂(�|𝑉𝑉| ∙ |𝐸𝐸|) Algorithm for
Finding Maximum Matching in General Graphs. In
Proceedings of 21st FOCS, 17–27, 1980.

	1. Introduction
	2. Basic Terminology and Properties of Matchings
	2.1. Matchings Terminology

	3. An Algorithm for Determining Maximum Matchings in Bipartite Graphs
	4. Assigning Weights and Determining Optimal Solutions
	5. Greedy Algorithms and the Marriage Algorithm
	6. Stable Marriages
	7. Timing Analysis and Comparison between the Algorithms
	ACKNOWLEDGEMENTS

