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Abstract  In challenging environments, precise laser beam control is essential both for military and industrial purposes. 

Fast Steering Mirror Systems are integral in achieving this precision, utilizing advanced controllers based on accurate 

mathematical models. This study proposes a systematic black-box method for modelling a dual-axis tip-tilt fast steering 

mirror assembly, incorporating integrated piezo actuators and pick-off sensors. Employing a two-pronged modelling 

approach utilizing time response (TR) and frequency response (FR) data, contingent on the system's damping characteristics, 

the method also estimates the cross-coupling coefficient between the mirror's axes. Operating independently of controller 

details and applicable to all damping scenarios, the algorithm is validated using variance accounted-for (VAF) metrics, 

showcasing superior performance compared to traditional methods.  
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1. Introduction 

Two-axis FSM assemblies driven by piezo-actuators are 

used widely in laser beam steering applications, such as  

free space optical communication [1], a small tip-tilt for 

nano-pointing [2], a large tip-tilt for fast micro-positioning 

[2] and precise pointing of the laser beam [3] in the presence 

of atmospheric jitter. The FSM module [5] with built-in 

piezo-actuators and integrated position pick-off sensors 

reported in this work comes with a piezo-actuator driver 

from M/S piezosystemjena [4]. The piezo actuators of the 

FSM assembly [5] are driven by a low-frequency square 

wave and then angular displacement of the mirror is acquired 

from the pick-off sensors. From the time response (TR)  

data of the FSM assembly, parameter estimation of the FSM 

is carried out. The reaction curve method [6] may be used  

for system identification by utilizing three points of a 

closed-loop reaction curve and by controller setting. The 

method of [6] is limited to testing conducted exclusively 

under a Proportional (P) controller, without the capability to 

accommodate other types of controllers. This limitation is 

overcome in [7] and [8]. The work in [7] uses a closed-loop 

test under the PI controller (widely recognized and 

commonly used controller in various industrial applications) 

for parameter estimation. Least square estimation which 

involves recursive and advanced search algorithm in the  

LS cost function is used for the parameter estimation in   

[8]. The use of recursive and advanced search algorithms   

in the least square estimation (LS) cost function can     

lead to increased computational complexity and associated 

time constraints. These sophisticated algorithms require 

substantial computational resources and may not be suitable 

for real-time applications. The work reported in [9] uses  

the experimentally obtained frequency response of the  

FSM module to obtain a MIMO linear time-invariant  

model of the same using a subspace-based multivariable 

system identification algorithm [10] However, the method   

is computationally intensive and not suitable for any 

fast-modelling process. 

In [11] FSM model was built using physical principles and 

then identified by the subspace identification toolbox. The 

consistency between the actual and model FSM of [11] was 

evaluated by estimating the variance-accounted-for (VAF) 

which was found to be order-dependent, and the optimal 

model was chosen to be second-order. The construction of an 

FSM model based on physical principles and subsequent 

identification through the subspace identification toolbox 

can be limited by the accuracy of the initial physical model. 

If the physical principles used for constructing the model do 

not precisely capture the complex dynamics and interactions 

within the FSM, the identified model might deviate 

significantly from the actual system behavior. 

The LS method [12] based on a closed-loop transfer 

function is simple enough to compete with the reaction curve 

method. However, this method requires prior knowledge   

of the controller and closed-loop transfer function. The 

frequency response method that we have proposed in our 

work is an extension of this method [12] but it uses only open 

loop frequency response data, thus, omitting the restriction 

of the prior knowledge of the controller and closed loop 

transfer function. 

Experimentally determined mathematical models of 

one-axis and two-axis FSM assemblies documented in [13] 

and [14] respectively are taken as second order and the 

transfer function coefficients are determined from the 

frequency response of the combined FSM-PSD modules. 

Here the fast-steering mirrors are the heart of a Laser   

Jitter Control (LJC) test bed. In this work, analysis of the TR 

data shows that the FSM response matches with those 

documented in [13]and [14], however, it encounters a dead 

time which reduces the stability and limits the speed of the 

response. Based on previous research related to the design of 

FSM systems, most of the researchers have designed FSM  

by white box modelling method [17]-[20] and have followed 

the traditional system design method, which follows a 

systematic order starting with structural design → controller 

design → performance testing. If the performance criteria are 

not met then the design plan needs to be repeatedly modified 

in the same order, structural improvement → controller 

improvement → performance testing until it meets the 

performance requirements as pointed out by [17]. It can thus 

be envisaged that the white box modelling method can 

indeed develop an FSM system with excellent performance, 

but requires a long design period; it is worse yet if some key 

indicators of the finished FSM have to be adjusted or 

improved, and the whole design process has to be repeated so 

that it reduces the development efficiency and increases   

the development costs. The way to circumvent these 

problems may be to incorporate data-driven or black-box 

modelling methods. Such data is available through 

measurements acquired through experimental procedures. 

Since black  box modelling is more focused on external   

or end-user perspectives, and is less time-consuming, 

compared to the white and grey box [21]-[22] modelling,  

this work was motivated by black box modelling 

methodology. Further, this work is motivated by the 

necessity for adaptable modelling to accommodate varying 

damping in dual-axis tip-tilt fast steering mirror assemblies. 

By integrating time and frequency response strategies, it strives 

to comprehensively understand the system's behaviour 

independently of specific controllers. Departing from 

traditional methods, the research aims to drive innovation in 

the field, ultimately advancing FSM assembly control and 

performance. 

Cross-coupling interference in a dual-axis FSM degrades 

the scanning precision of FSM, and thus its estimation   

and incorporation in the identified model is essential for 

control action. This fact has motivated the estimation of 

cross-coupling in this work. Most of the work existing in the 

literature that has dealt with cross-coupling has focused on a 

control strategy to compensate for/reduce the cross-coupling 

effect [23]-[25], which relies on complex and highly 

sophisticated control algorithms. The cross-coupling 

methodology proposed here is simple and can be 
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implemented in real-time. This paper introduces a pioneering 

black-box approach for modelling a dual-axis tip-tilt fast 

steering mirror assembly, adapting to varied damping using a 

combined time and frequency response strategy. It estimates 

cross-coupling coefficients via transformed time responses, 

ensuring model accuracy without controller insights, a 

departure from conventional techniques. 

The FSM model proposed in our work is a dual-axis tip-tilt 

arrangement and is approximated as a second-order plus 

dead time (SOPDT) system with a cross-coupling coefficient. 

Existing modelling methods for second-order systems with 

dead time from their time reaction curves [15]-[16] are later 

used to validate the model obtained by using the TR method 

proposed in this work. The FSM system of [14] is also 

modelled by the FR method to validate the efficacy of the FR 

method. To check the consistency between the actual FSM 

and the model FSM by both TR and FR techniques, the VAF 

is estimated and it is also compared with the subspace 

identification method [11]. 

One potential issue that could be encountered with the 

described approach is the challenge of accurately estimating 

the cross-coupling coefficient between the two axes. This 

estimation process, which relies on transforming the time 

response signal into the frequency domain, may be prone to 

inaccuracies if the system exhibits complex or nonlinear 

cross-coupling effects.  

The paper is organized as follows: 

Section 2 gives the problem formulation and the choice  

of the model for parameter estimation of the dual-axis   

FSM system. Section 3 introduces the theoretical and 

mathematical basis for the estimation procedure of the TR 

and FR methods. Section 4 presents the experimental setup 

for the parameter estimation of the dual-axis FSM system. 

Section 5 presents the validation of the algorithm by 

comparison with three published methods [14], [15], and 

[16]. Finally, the concluding remarks are presented in 

Section 6. 

2. Problem Statement  

For a dual-axis (x and y) FSM assembly, an actuator input 

voltage from the digital drive-in y-axis will rotate the FSM 

about the x-axis, and thus sensor output is obtained in the 

x-direction. To account for the time lag between the actuator 

input and the sensor output, a dead time td  is added to    

the model of the FSM assembly which is considered a 

second-order system in line with [13] and [14]. In the 

absence of cross-coupling between the axis, both the axis 

assumes an identical second order plus dead time (SOPDT) 

model characterized by (1) 

  G s = Ke−td s  
ωn

2

s2+2ξωn  s+ωn
2  (1) 

K is the system gain, 𝑡𝑑  is the dead time, ωn  is the 

undamped natural frequency and ξ  is the damping 

coefficient. The first problem addressed in this paper deals 

with the estimation of these four parameters that characterize 

the model in (1) using the TR algorithm or FR algorithm.   

The second problem deals with the determination of the 

cross-coupling factor of the dual axis FSM system by 

capturing the time domain input-output signals of the 

x-channel and y-channel respectively and converting them to 

frequency domain using the FFT algorithm. 

For the dual input dual output FSM system used here, the 

transfer function T of the system can then be written as: 

 𝑇 =  
𝑇𝑥1 𝑇𝑥2
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To capture the effect of cross-coupling between the two 

axis the state space model of the FSM is formulated as given 

in (3) and (4). 
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where 𝐴𝑥   and 𝐴𝑦 , are cross-coupling coefficients about the 

x-axis and y-axis respectively, and 𝜃𝑥  and 𝜃𝑦  are rotation 

of FSM about the x-axis and y-axis respectively, ωx  and ωy  

are undamped natural frequency about x-axis and y-axis 

respectively and ξ𝑥   and ξ𝑦  are damping coefficient about 

x-axis and y-axis respectively. 

3. Estimation Procedure  

Estimating the four parameters of the FSM system of (1) is 

done by FR or TR algorithm depending on whether the time 

response of the system has mild/no oscillations (heavy 

damping) or strong oscillations (mild damping) respectively. 

Making the proper choice of FR method or TR method with 

an emphasis on the degree of oscillation in the step response 

of the FSM system demands a deeper understanding of this 

concept and has been taken care of in the subsequent 

subheadings of this section.  

3.1. Frequency Response (FR) Method 

In this method frequency response data of the FSM 

assembly is used to generate the FSM open loop model. 

Using self-tuning controllers like PID, the work of [12] 

obtained parameters of the SOPDT closed loop system in the 
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frequency domain. Unlike [12], the FR method used here 

does parameter estimation of SOPDT system in open loop 

mode. 

The actual open loop frequency response is obtained by 

driving the FSM assembly by a sinusoid whose frequency is 

varied from 1 Hz to 1000 Hz. The SOPDT of FSM (1) may 

be re-written as in (5) and (6) 

 𝐹 𝑠 =  𝐾𝑒−𝑡𝑑𝑠  
𝜔𝑛

2

𝑠2+2𝜉𝜔𝑛  𝑠+𝜔𝑛
2   (5) 

Therefore 

 
1

𝐹 𝑠 
=

(𝑠2+2𝜉𝜔𝑛  𝑠+𝜔𝑛
2)𝑒 𝑡𝑑𝑠

𝐾𝜔𝑛
2   (6) 

Let  𝑀𝑎𝑔(𝑗𝜔)  and 𝑃ℎ(𝑗𝜔) denote the magnitude and 

phase respectively at frequency ω obtained from frequency 

response data and  𝐹(𝑗𝜔)  and arg(F(j𝜔)  represent the 

magnitude and phase respectively of the model given in (5). 

Least square estimation is applied to the magnitude obtained 

from the model and actual open loop frequency response as 

shown below: 
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1
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where  
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Since  𝑒𝑡𝑑 𝑗𝜔  = 1,  we get  
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Since the process is second order the two estimators give 

the same result. Hence  𝐽𝑚𝑎𝑔 = 0. 

Let 
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Solving (12)-(14), by selecting eight to ten frequencies in 

the interval (0, ω𝑐]  where ω𝑐  is the cut-off frequency, 

obtained from the open loop FR data, the values of u, x, z are 

obtained. Thus from (11) we get (15) 

 𝐾 =
1

 𝑧
, ω𝑛 =  

1

𝑥𝐾2 

1

4, ξ =  
𝑢𝐾 2ω𝑛

4+2ωn  
2

4ωn  
2

 (15) 

Thus, steady-state gain K, the model natural frequency 

 ωn  and damping coefficient ξ can be estimated from (15). 

Applying least square estimation to the phase obtained 

from the model arg(F(jw) and phase 𝑃ℎ(𝑗𝜔) from actual 

open loop frequency response, we get (16) and hence (17) 

 𝐽𝑃ℎ𝑎𝑠𝑒 =  [
1

𝑃ℎ(𝑗𝜔 )𝜔 − arg⁡(
1

𝐹 𝑗𝜔  
)] 2  (16) 

 𝐽𝑝ℎ𝑎𝑠𝑒 =   
1

Ph (jω)
− tdω − arg⁡(

ωn
2−𝜔2+𝑗2ξωn  𝜔

Kωn
2 ) 

2

 𝜔 (17) 

Since the process is second order, hence 𝐽𝑃ℎ𝑎𝑠𝑒 = 0 we 

get (18) 

 𝑡𝑑 =
   

1

Ph (jω)
 −arg ⁡(

ωn
2−𝜔 2+𝑗2ξωn  𝜔

Kωn
2 ) 𝜔𝜔

 𝜔2
𝜔

 (18) 

Therefore, the dead time can be obtained from (18). 

The FR scheme cannot be applied to strongly 

underdamped i. e  ξ < 0.7  (oscillatory) cases as the 

frequency response of the magnitude plot will have a peak in 

the vicinity of the natural frequency ω𝑛  which may or may 

not be greater than ω𝑐  (-3dB cut-off frequency). Thus,    

for frequencies in the interval (0, ωc], there will be one 

magnitude corresponding to two frequencies, making 

(12)-(14) non-unique, and hence will lead to a discrepancy in 

the parameter estimation. 

3.2. Time Response (TR) Method 

The FSM assembly is operated in open loop mode and 

driven by a unipolar square wave (5Hz and 15Hz) to generate 

the step response data. The time response data is acquired in 

the DSO in comma-separated variable (.csv) format and 

transferred to PC and analysed using MATLAB, whence  

the values of dead time 𝑡𝑑 , peak voltage Vpp , peak time   

tp , peak overshoot 𝑀𝑝 , and steady-state output  Vss  are 

obtained. From these values, the system parameters of (1) are 

estimated [5]. The TR method is applied to SOPDT system 

having strong oscillation so that 𝑉𝑝𝑝  and 𝑡𝑝  can be 

estimated easily from the open loop time response. The dead 

time corresponds to the difference between the start time i.e., 

the time when the input starts its excitation and the first time 

where the step response is greater than zero. The dead time 

corresponds to the difference between the start time viz the 

time where the input starts its excitation and the first time 

where the step response becomes greater than zero. The peak 

overshoot Mp  and ξ is related by (19) 

 
%𝑀𝑝 = 100 

𝑉𝑝𝑝 −𝑉𝑠𝑠

𝑉𝑠𝑠
= 𝑒

−𝜋𝜉

 1−𝜉2
 
 (19) 

Hence ξ can be evaluated. The peak time tp  and natural 

frequency 𝜔𝑛  are related by (20) 

 𝑡𝑝 =
𝜋

𝜔𝑛 (1−𝜉2)1/2  (20) 

Hence 𝜔𝑛  can be evaluated. Also, steady state gain is 

given by (21) 

 𝐾 =
𝑉𝑠𝑠

𝑉𝑖𝑛
  (21) 

Thus, the four parameters K,𝜔𝑛, 𝜉 and 𝑡𝑑, are determined. 

The TR algorithm yields less accurate estimates if the time 

response of the FSM system has mild oscillations i.e., 

𝜉 > 0.7 as then peak voltage 𝑉𝑝𝑝 , peak time 𝑡𝑝 , cannot be 

accurately identified. 
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4. Experimental Set-Up 

The experimental test bench comprising of an FSM 

assembly, piezo-driver (d-drive), DSO and a signal generator 

are mounted on an optical bread board shown in Fig. 1. 

The test-bench components are: 

Fast Steering Mirror Assembly 

A two-axis FSM of PSX x/2 series [4] is used in the 

experimental setup. It is characterized by a maximum 

angular displacement of ±4 mrad and a resonant frequency of 

3500 Hz. 

 

Figure 1.  Experimental Set-up 

Digital drive (d-drive) Module 

The FSM assembly is driven by a piezo-actuator digital 

drive module (d-drive) from M/S piezosystem jena [5] with 

in-built function generator, noise injector, digital PID 

controller, a display module and a serial interface for PC 

connectivity). The d-drive has the MOD input and the MON 

output with special features mentioned below: 

Modulation input: MOD  

The motion of the actuator can be remotely controlled 

using this input. The control signal applied through the MOD 

input must be in the range of 0 to +10 V. In this test 

procedure signal from a function generator is used to feed the 

MOD input. 

Monitor Output: MON  

With a specific command, different signals can be taken 

out from the MON output. The voltage range of the signal 

taken from MON is scaled to 0 to +10 and can be monitored 

in an oscilloscope. In this test procedure the signal from the 

integrated pick-off sensor of the FSM is monitored. 

Arbitrary Waveform Generator (AWG) 

An AWG, Agilent 33220A from M/S Agilent Technology 

is used to generate the input drive for the MOD input of the 

d-Drive unit.  

Digital Storage Oscilloscope (DSO) 

A 70 MHz, 2 Gs/s, 2-channel DSO, GDS-2072A from M/S 

GWINSTEK Inc is used to acquire the response data from 

MON output of the d-Drive unit for storage and analysis.  

To generate the time response and frequency response 

data of the FSM assembly the d-Drive is operated to work in 

open-loop mode, thereby bypassing the in-built digital PID 

block. 

4.1. Time Response (TR) Method 

The FSM assembly is first driven by a unipolar square 

wave of amplitude 2 V (peak to peak) at frequencies 5 Hz 

and 15 Hz respectively to generate and acquire the step 

response data from the DSO, transferred to MATLAB 

environment, and the system parameters are obtained using 

(19)-(21). The time response performance indices (PIs) for a 

square wave drive at two different frequencies are listed in 

Table 1 and Table 2, for an x-axis drive. The y-axis drive 

yields an almost identical result. The Open loop FSM output 

with an input of 0-2V square wave of freq. 15Hz as acquired 

in DSO is shown in Fig. 2. 

Hence, the overall system transfer function takes the form 

(23) 

 GFSM  s =  e−0.00057s  
13042

s2+1304s+1304 2   (22) 

 GFSM  s =  e−0.00057s  
1.7004166 x106

s2+1304s+1.700416 x106  (23) 

 

Figure 2.  Open loop FSM output with an input of 0-2V square wave of 

freq. 15Hz acquired in DSO 

Table 1.  Time Response data 

Freq. 

(Hz) 

Peak 

Voltage 

𝑉𝑝  

(Volt) 

Steady 

State 

Voltage 

𝑉𝑠𝑠  

(Volt) 

Dead 

time 

td  

(msec) 

Peak 

Time 

𝑡𝑝  

(msec) 

%Peak 

overshoot 

Mp  

 

5 2.28 2 0.57 2.84 14.0 

15 2.28 2 0.57 2..84 14.0 

Table 2.  System Parameters 

Freq. 

(Hz) 

Dead time 

td (msec) 

ωn  

(rad/sec) 
ξ K 

5 0.57 1304 0.53 1 

15 0.57 1304 0.53 1 

The model so obtained is simulated in MATLAB to obtain 

its frequency response which is compared with the actual 

(FSM plant) frequency response to corroborate the results 

obtained by TR approach as shown in Fig. 3. 
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Since -3dB BW gives a huge phase lag (<80°), hence 

usable BW is chosen at a phase lag of 15°. The usable 

bandwidth (BW) for the actual response is 28 Hz and that for 

the FSM model is 32 Hz. To have a closer look at the 

magnitude and phase errors between the actual response  

and FSM model response, the magnitude and phase errors 

are listed in Table 3. It is observed that up to 100 Hz,     

the magnitude errors (between actual response and model 

response) are within 0.5 dB, however the phase error 

gradually increases to about 7.5. Since standard laser beam 

steering loops aim at a BW of around 50 Hz, the FSM model 

obtained is a good approximation of the actual FSM transfer 

function. 

 

Figure 3.  Bode plots of FSM model and actual FSM  

Table 3.  Error between Actual and Model responses 

Freq.(Hz) Magnitude Error Phase Error 

10 0.5 1.0 

20 0.0 0.9 

30 0.1 2.4 

40 0.0 3.1 

50 0.0 3.7 

60 0.0 4.1 

70 0.1 4.4 

80 0.1 4.4 

90 0.0 4.3 

100 0.2 7.5 

175 1.2 1.8 

180 1.1 2.8 

182 1.1 2.8 

185 1.1 3.8 

190 1.2 4.7 

195 1.1 5.7 

200 1.1 6.6 

300 0.1 8.2 

500 1.1 8.6 

700 0.8 27.0 

900 0.8 34.6 

1000 0.8 37.4 

The validity of the proposed algorithm is confirmed 

through the comparison of the TR model with actual 

frequency response data, revealing minimal magnitude 

errors and phase errors as listed in Table 3. 

4.2. Frequency Response (FR) Method 

The FR of the FSM assembly is generated by driving the 

x-axis of the FSM by a sinusoid whose frequency is varied 

from 1Hz to 1000Hz and acquiring the angular tilt of the 

mirror position from the MON output of the d-drive, and 

then comparing it with drive input on the DSO for amplitude 

and phase measurement. The y-axis drive yields an almost 

identical result. 

The cut-off frequency of the FSM from the plant’s (FSM 

system) frequency response is found to be 1581 rad/sec (or 

251 Hz). 

Solving (12)-(14), by selecting ten frequencies in the 

interval (0,1581], the values of u, x, z are obtained as given 

in (25)&(26). 

 𝑢 = −5.891 𝑋10−7, 𝑥 = 4.67 𝑋10−13, 𝑧 = 1.011  (24) 

Using (15), we get 

 K = 0.994, ω𝑛 = 1212 rad/𝑠𝑒𝑐, ξ = 0.53 (25) 

The dead time obtained from (18) is 

 td = 0.5 msec (26) 

The model obtained by the FR method is given by (27) 

 GFSM  s =  e−0.0005s (
12122

s2+1212s+12122) (27) 

The TR of the model obtained from (25) for unit step input 

is corroborated by the actual TR of the FSM assembly in the 

MATLAB environment as shown in Fig. 4. 

 

Figure 4.  FR Model Response and TR Actual Response for 15Hz 

The parameters obtained from the plot are a dead time of 

0.57ms, a peak time of 2.8mec, and %peak overshoot of 16%. 

The model time response is not so close match to the actual 

time response (dead time of 0.57ms, peak time of 2.28mec, 

and %peak overshoot of 14%) shown in Fig.4 for 15Hz This 

discrepancy occurred due to the attempt to estimate the 

parameters of a system following the Second-Order Plus 

Dead Time (SOPDT) model with a small damping factor 
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( 𝜉 < 0.7) using the Frequency Response (FR) method. This 

discrepancy is due to the fact that while using the FR scheme 

for parameter estimation we have assumed the FSM system 

to be an SOPDT system with strong damping (𝜉 > 0.7), 

although the FSM has mild damping ( 𝜉 < 0.7). 

4.3. Cross-coupling 

The x-channel of the FSM assembly is driven by a sinusoid 

of frequencies 1Hz to 20 Hz, and their corresponding output 

is observed in the y-channel. The input and output signals are 

acquired in the DSO in .csv format and transferred to PC 

where it is read and analysed in MATLAB by generating 

their FFT. 

Cross-coupling at 15Hz, 10Hz, and 5Hz is shown in    

Fig. 5-7 respectively. 

The cross-coupling factor is then determined easily as the 

ratio of the amplitude of output FFT to the amplitude of input 

FFT at that frequency as depicted in Table 4. 

An identical set of readings was observed when input was 

given to the y-channel and output was taken from the 

x-channel. As the data obtained shows no definite 

dependency on the input drive frequency, the mean value of 

the cross-coupling coefficient 𝐴𝑦  or 𝐴𝑥   evaluated in the 

frequency range 1 to 20 Hz, is used as the cross-coupling 

coefficient of the model. From the data set listed in Table 4, 

the mean value of cross-coupling coefficient is 9.867𝑋10−4. 

Table 4.  Cross-Coupling Coefficient 

Frequency 

(Hz) 

Cross-Coupling Coefficient 𝑨𝒚 (or 𝑨𝒙) 

(𝑿𝟏𝟎−𝟒) 

1 9.96 

2 9.98 

3 9.97 

4 9.38 

5 9.14 

6 9.98 

7 9.97 

8 9.96 

9 9.97 

10 9.96 

11 9.94 

12 9.98 

13 9.27 

14 9.18 

15 9.97 

16 9.98 

17 9.97 

18 9.96 

19 9.97 

20 9.91 

The state space model (3) is thus determined as follows: 

 
 
 
 
 
𝜃𝑥
 

𝜃𝑥
 

𝜃𝑦
 

𝜃𝑦
  
 
 
 
 

= 

 

0 1 0 0
−1700416 −1382.24 1669.80 1.357

0 0 0 1
1669.80 1.357 −1700416 −1382.24

 

 
 
 
 
 
𝜃𝑥

𝜃𝑥
 

𝜃𝑦

𝜃𝑦
  
 
 
 
 

 

 +  

0 0
1700416 0

0 0
0 1700416

  
𝑉y

𝑉𝑥
   (28) 

This study addresses the issue of cross-coupling between 

the two axes of the FSM, incorporating it into the FSM 

system's state space model as indicated by (28). 

 

Figure 5.  Cross-Coupling at 15 Hz 

 

Figure 6.  Cross-Coupling at 10 Hz 
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Figure 7.  Cross-Coupling at 5 Hz 

5. Model Comparison and Validation 

5.1. Parameter Estimation-Based TR Method for  

SOPDT System with Mild Damping  

Table 5 gives a comparative list of the parameter estimates 

in line with methods given in [15], [16] and the TR method 

proposed in this work. However, the proposed TR method 

has a limitation that it cannot be applied for modelling of 

FSM systems with strong damping or mild oscillation for 

which the proposed algorithm for the FR method is to be 

implemented. 

Table 5.  Comparison List of parameter estimates 

Methods [15] 𝑤𝑛 (rad/s) 𝜉 𝑡𝑑 (ms) 

2-pts method 1373 0.58 - 

3-pts method 1310 0.56 - 

Methods [16]  

2-pts method 1388 0.53 0.50 

3-pts method 1355 0.53 0.48 

Proposed method (TR) 1304 0.53 0.57 

The parameter estimation results obtained by the TR 

method is comparable to two established methods [15], [16] 

as is evident from Table 5. 

5.2. Parameter Estimation-Based FR Method for  

SOPDT System with Strong Damping 

𝐢. 𝐞. 𝛏 > 0.7 [14]: 

To check the efficacy of FR method, the FR scheme   

was applied to an FSM system of [14] ( K = 1 ,  ω𝑛 =
5655rad/ sec, ξ = 0.9 ,  t𝑑 = 67𝑥10−6 s) which has mild 

oscillations/strong damping. From the open loop frequency 

response data, the cut-off frequency 𝜔𝑐  of the FSM was 

found to be 4211 rad/sec (or 670 Hz). Solving the (12)-(14), 

by selecting ten frequencies in the interval (0,4211], the 

values of 𝑢, , 𝑧 are obtained as: 

𝑢 = 3.87 𝑋10−8, 𝑥 = 9.77 𝑋10−16, 𝑧 = 1.00 

Using (15) we get the parameters as in (29) 

K = 0.999, ω𝑛 = 5655rad/ sec, ξ = 0.9, 

  t𝑑 = 67𝑥10−6s (29) 

The model of [14] so obtained by FR method is thus given 

by (30). 

 GFSM  s =  e−0.0000006 s (
56552

s2+10179s+56552) (30) 

which closely matches with that obtained in [14]  

(K = 1, ω𝑛 = 5655rad/ sec, ξ = 0.9, t𝑑 = 67𝑥10−6s). 

The parameter estimation by FR method closely matches 

with the system parameters of [14], and hence FR method is 

validated for strong damping systems. 

5.3. Comparison of TR and FR Method with  

Subspace Identification Method [11] 

In order to check the performance of TR and FR model, 

the performance index viz. variance- accounted-for (VAF) is 

calculated for proposed methods, and compared with the 

subspace identification method. The VAF signifies the 

consistency between the model and actual system as stated  

in [11]. So, a VAF of 100% ensures an exact match of the 

estimated system with the actual system. To check the 

accuracy of the model the VAF value of the recovered model 

is calculated as: 

𝑉𝐴𝐹 =  1 −
𝑣𝑎𝑟 (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 −𝑦𝑚𝑜𝑑𝑒𝑙 )

𝑣𝑎𝑟 (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 )
 𝑋 100% where 

𝑦𝑎𝑐𝑡𝑢𝑎𝑙 = output from the actual system for a given input 

𝑦𝑚𝑜𝑑𝑒𝑙 = output from the model for the same input.  

𝑣𝑎𝑟 = variance 

The open loop frequency response data of the FSM for a 

sinusoidal input excitation from 1Hz to 1000Hz is taken 

as 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 . The 𝑦𝑚𝑜𝑑𝑒𝑙  is the simulated frequency response 

output for both TR and FR models for the same input. Using 

the MATLAB subspace identification toolbox, the 𝑦𝑚𝑜𝑑𝑒𝑙  

for the subspace identification method is evaluated. The 

VAF for the three methods tabulated in Table 6. clearly 

shows an improvement in the accuracy of the TR and FR 

methods over the conventional subspace method. 

Table 6.  VAF Evaluation 

 
Magnitude 

VAF % 

Phase 

VAF% 

TR method 98.3 98.8 

FR method 96.9 98.3 

Subspace 

Identification 

method 

System 

Order 

Magnitude 

VAF% 

Phase 

VAF% 

1 65 14.0 

2 95.4 56.1 

3 95.1 93.0 

The use of variance accounted for (VAF) as a validation 

metric, along with comparisons to conventional methods, 

emphasizes the robustness of the proposed model as 

indicated in Table 6. 
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6. Conclusions 

This research introduces an algorithm for effectively 

modelling a two-axis FSM assembly in both the time and 

frequency domains. Both the TR and FR schemes 

demonstrate high efficacy, as evidenced by the VAF 

estimates exceeding 95% for both cases, ensuring the 

algorithm's accuracy and reliability. The accurate estimation 

of the cross-coupling coefficient highlights the method's 

success in capturing complex interactions between the 

assembly's axes. Additionally, the effective transformation 

of time response signals using the Fast Fourier Transform 

(FFT) showcases the method's proficiency in analysing 

system dynamics. Moreover, the successful application of 

the open-loop algorithm without specific controller insights 

underscores the method's versatility and potential for broader 

application in modelling similar complex systems. These 

findings collectively suggest the method's efficacy in 

enhancing the understanding and control of dual-axis tip-tilt 

fast steering mirror assemblies. The implications of this 

research pave the way for the future incorporation of the 

coupled black box model in the design of a controller, 

thereby enhancing the potential applicability of the algorithm 

in practical settings. 
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