
American Journal of Signal Processing 2016, 6(1): 1-13 

DOI: 10.5923/j.ajsp.20160601.01 

 

Chaos-Based Image Encryption Using an        

Improved Quadratic Chaotic Map 

Noha Ramadan
1,*

, Hossam Eldin H. Ahmed
1
, Said E. Elkhamy

2
, Fathi E. Abd El-Samie

1 

1Communication, Faculty of Electronic Engineering, Menofia University, Egypt 
2Electrical Engineering, Faculty of Engineering, Alexandria University, Egypt 

 

Abstract  In recent years, chaos-based image encryption has become an efficient way to encrypt images due to its high 

security. In this paper, we improve the classical Quadratic chaotic map to enhance its chaotic properties and use it for image 

encryption. Compared with the classical Quadratic map, the proposed Quadratic map demonstrates better chaotic properties 

for encryption such as a much larger maximal Lyapunov exponent. The proposed image encryption scheme is based on two 

chaotic maps. The first map is the Chepyshev chaotic map, which is used for the permutation of the pixels of the image. The 

permuted image is subjected to the diffusion process using the improved Quadratic map in an efficient encryption algorithm 

which its key is related to the original image. The main advantages of the proposed scheme are the large key space and its 

resistance to various attacks. Simulation results show that the proposed scheme has a high security level with low 

computational complexity, which makes it suitable for real-time applications. 
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1. Introduction 

In recent years, the transmission of a large amount of data 

such as video conferences, medical and military images over 

communication media was highly developed. The security of 

information transmitted is a vital issue. Most conventional 

secure ciphers such as Data Encryption Standard (DES) [1] 

and Advanced Encryption Standard (AES) [2] are not 

suitable for fast encryption of a large data volume in real 

time. The implementation of traditional algorithms for image 

encryption is even more complicated because of the high 

correlation between image pixels. Therefore, there is still a 

lot of work to be done for the development of sophisticated 

encryption methods. Many researchers have pointed out the 

existence of a strong relationship between chaos and 

cryptography. The idea of using chaos in cryptography can 

be traced back to Shannon on secrecy systems [3]. Although 

the word "chaos" was not minted till the 1970s [4], the use of 

chaos in cryptography seems quite natural. The two basic 

properties of a good cipher; confusion and diffusion are 

strongly related to the fundamental characteristics of chaos 

such as a broadband spectrum, ergodicity and high 

sensitivity to initial conditions. The implementation of 

Shannon's idea had to wait till the development of chaos 

theory in the 1980s.  
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In the first scientific paper on chaotic cryptography that 

appeared in 1989, Matthews [5] came up with the idea of a 

stream cipher based on one-dimensional chaotic map. 

Afterwards, chaotic cryptography has spread and more 

papers about digital chaotic ciphers have been published 

[6-8]. 

Traditionally, encryption is based on discrete number 

theory, so that data has to be digitized before any encryption 

process can take place. In order to encrypt a continuous voice 

or a video in the old fashion, digitalization and encryption 

can pose a heavy computational process. The use of chaotic 

communication enables to encrypt the message waveform 

without a need to digitalize it [9]. 

Based on strengths and weaknesses of already existing 

algorithms, Kelber and Schwarz formulated several general 

rules to design a good chaos-based cryptosystem [9-10]: 

  Either use a suitable chaotic map, which preserves 

important properties during discretization for block 

cipher or use a balanced combining function and a 

suitable key-stream generator for a stream cipher. 

  Use a large key space. 

  Avoid simple permutations of identical system 

parameters. 

  Use the same precision for sub-key values and their 

corresponding system parameters. 

  Use a complex input key transformation. 

  Use a dynamical system. 

  Use complex nonlinearities. 

  Modify nonlinearities in terms of key and signal 

values. 
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  Use several rounds of operation for block ciphers. 

The basic properties of chaotic systems are the 

deterministicity, the sensitivity to initial conditions and 

parameters and the ergodicity. Deterministicity means that 

chaotic systems have some determining mathematical 

equations ruling their behavior. The sensitivity to initial 

conditions means that when a chaotic map is iteratively 

applied to two initially close points, the iterations quickly 

diverge, and become uncorrelated in the long term. 

Sensitivity to parameters causes the properties of the map to 

change quickly, when slightly disturbing the parameters, on 

which the map depends. Hence, a chaotic system can be used 

as a pseudo-random number generator. The ergodicity 

property of a chaotic map means that if the state space is 

partitioned into a finite number of regions, no matter how 

many, any orbit of the map will pass through all these 

regions.  

A number of traditional chaotic maps such as Quadratic 

map [11] and Logistic map [12] have limited properties and 

may no longer satisfy our needs. Without improvement of 

chaotic maps, our applications will remain unchanged and 

might be subject to different attacks in the future. Hence, 

there is a bad need for more improvements in the chaotic 

maps. 

In this paper, an improved Quadratic chaotic map is first 

introduced. We use the maximal Lyapunov exponent [13] 

and the bifurcation diagram to determine the performance of 

the map. A new image encryption scheme based on this 

improved Quadratic map is presented containing two main 

processes; permutation and diffusion. The permutation 

process breaks the strong relationship between adjacent 

pixels. The permutation operation only shuffles the pixel 

positions without changing values. The shuffled and original 

images have the same entropy, and therefore the shuffled 

image is weak against statistical attack and known plain-text 

attack.  

In the diffusion process, the pixel values are altered. Most 

researchers focus on security improvements [14-15], while 

only a few are dealing with efficiency issues [16-17]. For 

most of the security improvements, researchers need at least 

three rounds of the diffusion process to obtain a satisfactory 

performance. Researchers focusing on efficiency 

improvement only need one round of the diffusion process to 

achieve the high security level and speed up the performance. 

However, some of the proposed algorithms lead to a longer 

processing time in a single round. Therefore, the key 

problem of designing an efficient image cryptosystem is how 

to reduce the computational complexity with efficiently to 

avoid the large number of rounds in the generation of 

diffusion and permutation keys and then achieve high speed 

performance. At the permutation step, we sort the chaotic 

sequences of the Chepyshev map in order to shuffle the 

entire image. At the diffusion step, the shuffled image is 

encrypted with a key related to plain image.  

2. Analysis of Quadratic Map 

Quadratic map is a basic example of a chaotic system. The 

equation of the classical Quadratic map is [18]: 

xn+1
 
= r – ( xn

 
)2                  (1) 

where r is the chaotic parameter and n is the number of 

iterations. The system of the Quadratic map is chaotic, 

because it is nonlinear. It is deterministic since it has an 

equation that determines the behavior of the system. Also, a 

very slight change of the initial value x0
 
can lead to a 

significantly different behavior of the map. In the following 

subsections, many plots for the analysis of the Quadratic 

chaotic map will be studied such as the iteration property, the 

bifurcation diagram, and the Lyapunov exponent. 

2.1. Iteration Property 

The iteration diagram plots the relation between the 

number of iterations n and the Quadratic chaotic map at 

different values of the chaotic parameter r and at a specific 

initial value x0. The parameter r can be divided into three 

regions, which can be examined by simulation using 

MATLAB as following:  

When [0,0.74]r , as shown in Fig. 1 (a), the calculated 

value come to the same result after several iterations without 

any chaotic behavior. When [0.74,1.5]r , as shown in Fig. 

1 (b), the system appears as having a periodic behavior. 

When [1.5, 2]r , it becomes a chaotic system as shown in 

Fig. 1 (c). 

2.2. Bifurcation Diagram 

Bifurcation is usually referred to as the qualitative 

transition from regular to chaotic behavior by changing the 

control parameter. The bifurcation diagram is used to study 

the chaotic system as a function of the values of the control 

parameters. This diagram allows knowing the regions of the 

system displaying convergence, bifurcation, and chaos 

depending on the values of the control parameters [19]. 

Fig. 1 (d) shows the bifurcation diagram of the classical 

Quadratic map. This diagram has three regions. The 

convergence region is at [0,0.74]r . The bifurcation 

region is at [0.74,1.5]r . The chaos region is at 

[1.5, 2]r , where the chaotic behavior occurs. 

2.3. Lyapunov Exponent 

Lyapunov exponent  represents the features of a chaotic 

system and can largely express the overall performance of 

chaotic maps. It is used as a quantitative measure for the 

sensitive dependence on initial conditions. For a discrete 

system xn+1 =f(xn) and for an orbit starting with x0, the 

Lyapunov exponent can be defined as follows [20-21]: 

λ (x0)  =  limn→∞
1

n
 ln f′(xi) ∞

i=1          (2) 

where f′ is the derivative of the function f. If λ is negative, 
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the system is not chaotic. If λ is zero, this means that the 

system is neutrally stable and is in steady state mode. If λ is 

positive, the evolution is sensitive to initial conditions and 

therefore chaotic. Also, it is common to refer to the largest  

defined by Eq.(2) as the Maximal Lyapunov Exponent 

(MLE), because it determines a notion of predictability for a 

chaotic system. The larger MLE is, the more chaotic the map 

is and the smaller the number of iterations necessary to 

achieve the required degree of diffusion or confusion of 

information is, and this means a better chaotic map. 

Fig. 1 (e) shows the Lyapunov exponent of the classical 

Quadratic map. It is obviously clear that when [0,1.5]r , 

all Lyapunov exponents are less than or equal to zero. When 

[1.5,2]r , the Lyapunov exponents are positive, and hence 

chaotic. The maximal Lyapunov exponent of the Quadratic 

map is 0.6720. 

3. The Proposed Quadratic Map 

The equation of the proposed quadratic map is: 

Xn+1 = (r+ (1-axn)
2) mod 1              (3) 

We will replace -(xn)
2 in Eq.(1) with the term (1-axn)

2 and 

module 1. Now, we will examine the proposed Quadratic 

maps and plot the iteration property, bifurcation diagram, 

and Lyapunov exponent at three different values of        

a = 2, 4, 8. 

3.1. Analysis of the Proposed Quadratic Map 1 

The equation of the proposed Quadratic map 1 at a= 2 is: 

Xn+1 = (r+ (1-2xn)
2) mod 1             (4) 

Fig. 2 shows the analysis of the proposed Quadratic map 1. 

From Fig. 2 (a), (b), (c), and (d), it is clear that there are 

several convergence, bifurcation, and chaos regions. These 

regions are extended to infinity. The bifurcation regions are 

at [0.15,0.31]r , [1.15,1.31]r , etc…. to infinity. The 

convergence regions are at [0.31,0.56]r , [1.2,1.56]r , 

etc…. to infinity. The chaos regions are at [0,0.14]r , 

[1.56,2.14]r , [2.56,3.14]r , etc…. to infinity, where 

the chaotic behavior occurs. 

Now, it is obvious that the chaotic range of the proposed 

Quadratic map 1 is larger than the chaotic range for the 

classical one, and hence this will increase the available 

chaotic value of parameter r that can be used in encryption. 

In Fig. 2 (e), the Lyapunov exponent  has a positive 

value at [0,0.14]r , [1.56,2.14]r , [2.56,3.14]r , 

etc…, and hence the proposed Quadratic map 1 exhibits a 

chaotic behavior at these periods. The MLE of the proposed 

Quadratic map 1 is 0.6732, which is greater than the classical 

Quadratic map but still small. 
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(a) Iteration property at r=0.25. (b) Iteration property at r=0.8. (c) Iteration property at r=1.9. 

  

(d) Bifurcation diagram.                                 (e) Lyapunov exponent. 

Figure 1.  Analysis of the classical Quadratic map at x0=0.02 
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(a) Iteration property at r=0. (b) Iteration property at r=0.25. (c) Iteration property at r=0.4. 

 

(d) Bifurcation diagram.                             (e) Lyapunov exponent. 

Figure 2.  Analysis of the proposed Quadratic map 1 at x0=0.02 

3.2. Analysis of the Proposed Quadratic Map 2 

The equation of the proposed Quadratic map 2 at a= 4 is: 

Xn+1 = (r+ (1-4xn)
2) mod 1          (5) 

Fig. 3 shows the analysis of the proposed Quadratic map 2. 

From Fig. 3 (a), (b), (c), and (d), it is clear that the 

convergence and bifurcation regions have become very small 

and chaos regions are increased. These regions are extended 

to infinity. The bifurcation regions are at [0.138,0.14]r , 

[0.17,0.19]r , [1.138,1.14]r , [1.17,1.19]r  

etc…. to infinity. The convergence regions are at 

[0.2,0.266]r , [1.2,1.266]r , etc…. to infinity. The 

chaos regions are at [0,0.137]r , [0.14,2.14]r , 

[1.14,3.14]r , etc…. to infinity, except the small regions 

of convergence and bifurcation, where the chaotic behavior 

occurs. 

In Fig. 3 (e), the Lyapunov exponent  has a positive 

value at all values of r except small ranges of convergence 

and bifurcation. Hence, the proposed Quadratic map 2 

exhibits a chaotic behavior in the rest of the range. The MLE 

of the proposed Quadratic map 2 is 2.0257, which is much 

greater than the classical Quadratic map and proposed 

Quadratic map 1. 

3.3. Analysis of the Proposed Quadratic Map 3 

The equation of the proposed Quadratic map 3 at a= 8 is: 

Xn+1 = (r+(1-8xn)
2)mod 1             (6) 

Fig. 4 shows the analysis of the proposed Quadratic map 3. 

From Fig. 4 (a), (b), (c), and (d), it is clear that the proposed 

Quadratic map 3 exhibits a chaotic behavior at all values of r 

except the values 0.11, 1.11, etc…. to infinity. 

In Fig. 4 (e), the Lyapunov exponent  has a positive 

value at all values of r except the values of 0.11, 1.11, etc…. 

So, the proposed Quadratic map 3 exhibits a chaotic behavior 

at the rest of the range. The MLE of the proposed Quadratic 

map 3 is 3.4709, which is much greater than the classical 

Quadratic map and the proposed Quadratic map 1 and 2. 

Table (1) summarized the analysis of the classical and 

proposed quadratic maps. It shows the improvement in both 

the chaotic parameter range r and MLE. 
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(a) Iteration property at r=0. (b) Iteration property at r=0.18. (c) Iteration property at r=0.2. 

    
(d) Bifurcation diagram.                             (e) Lyapunov exponent. 

Figure 3.  Analysis of the proposed Quadratic map 2 at x0=0.02 
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(a) Iteration property at r=0. (b) Iteration property at r=0.11. (c) Iteration property at r=0.12. 

    
(d) Bifurcation diagram.                               (e) Lyapunov exponent. 

Figure 4.  Analysis of the proposed Quadratic map 3 at x0=0.02 
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Table (1).  Comparison between the classical and proposed Quadratic maps 

Chaotic map Equation Chaotic parameter range MLE 

Classical Quadratic Map Xn+1 = r – (xn )
2 [1.4, 2]r  0.6720 

Proposed Quadratic Map 1 Xn+1 = (r+(1-2xn)
2)mod 1 [0, 0.14]r , [1.56, 2.14]r , [2.56,3.14]r  to ∞ 0.6732 

Proposed Quadratic Map 2 Xn+1 = (r+(1-4xn)
2)mod 1 [0, 0.137]r , [0.14, 2.14]r , [1.14,3.14]r  to ∞ 2.0257 

Proposed Quadratic Map 3 Xn+1 = (r+(1-8xn)
2)mod 1 All values to ∞ except (r= 0.11, 1.11,etc…) 3.4709 

 

4. Application on Image Encryption 

Now, we will introduce the proposed image encryption 

scheme based on two chaotic maps; the Chepyshev map and 

the proposed Quadratic maps we have just constructed.  

4.1. Chepyshev Chaotic Map  

The Chepyshev chaotic map is a one dimensional chaotic 

system with one initial condition x0 and one control 

parameter k and can be described as follows [22]: 

yn+1 =cos (𝑘 cos-1 (y𝑛))             (7) 

where yn  [−1, 1] for n = 0, 1,2, … and k  [2,∞). The 

bifurcation diagram of the Chepyshev map in Fig. 4 shows 

that all the (y0, k) where y0  [-1, 1] and 2 ≤ k < ∞ can be 

used as secret keys. The Chepyshev map has a positive 

increasing Lyapunov exponent at k >= 2, and thus, it is 

always chaotic as shown in Fig. 5.  

 

Figure 4.  Bifurcation diagram of the Chepyshev chaotic map at x0=0.02 

 

Figure 5.  Lyapunov exponent of the Chepyshev chaotic map 

4.2. The Permutation Process 

We use Chepyshev chaotic map to generate chaotic 

sequences x and then sort that chaotic numbers in ascending 

or descending order for the generation of the permutation 

key. For a 256-level gray-scale image, y0= 0.97 and k= 2.995. 

We sort the chaotic sequences in the index matrix used in 

shuffling the original image to obtain the permuted image. 

The original Cameraman image and the permuted image 

after permutation are shown in Fig. 7 and Fig. 8. After 

obtaining the shuffled image, the correlation among the 

adjacent pixels is completely disturbed and the image is 

completely unrecognizable. The histogram of the permuted 

image and the original image are the same, since there is no 

change in the intensity of pixels as shown in Fig. 9 and Fig. 

10. Therefore, the permuted image is weak against statistical 

attack, and known plain-text attack. As a result, we employ a 

diffusion process after permutation to improve the security. 

 

Figure 7.  Original image 

 

Figure 8.  Permuted image 
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Figure 9.  Histogram of the original image 

 

Figure 10.  Histogram of the permuted image 

4.3. Image Diffusion Based on the Proposed Quadratic 

Chaotic Maps 

The diffusion step in the proposed encryption scheme is 

performed by the key related to the plain image algorithm 

which used only one round diffusion operation and its key 

depends on the initial key and the original image [23]. We 

will use the proposed Quadratic maps and also the classical 

Quadratic map in the diffusion process and compare between 

them. After comparison, we will get the chaotic map which 

has the best performance. We will treat the image as a one 

dimensional vector im = {im1, im2… imL} of length L= M×N. 

The initial value x0 =0.02.  

We will discuss the encryption process only, because the 

decryption is the reverse process. The details of the 

encryption process can be summarized as follows: 

Step 1: for n =1, iterate the classical and proposed 

Quadratic maps using Eqs. (1), (4), (5) and (6) for only one 

time to get x1. 

Step 2: modify x1 according to the following equation, 

where im1 is any arbitrary image pixel. 

x1 = mod (x1 + (im1 + 1)/255,1)             (8) 

Step 3: for n =n+1 return to step 1 until n=L to get xL. 

Let the new initial value of the proposed Quadratic map 3 

be (x0+xL)/2.  

Step 4: iterate the proposed Quadratic map 3 using Eq. (8) 

for L times with the new initial value. Then, we obtain the 

sequence.  

X =  xL+1, xL+2, … , x2L               (9) 

Step 5: to get the sequence K= {k1, k2,…,KL} use 

kn = mod floor xL+n × 105 , 256     (10) 

Where n = 1, 2, . . , L 

Step 6: examine the randomness of the sequence kn: 

H = runstest(kn)                (11) 

By using the Matlab function (runstest) for randomness, H 

returns (0) if the sequence is random and (1) if not. In our 

case, H=0. 

Step 7: compute the first cipher pixel by using the value of 

im1, the constant c, and the first key k1. 

 c1 = k1⨁mod im1 + c, 256         (12) 

Step 8: let n=n+1 

Step 9: compute the nth pixel of the cipher image by using 

the following equation in which the cipher output feedback is 

introduced. 

cn = kn⨁mod imn + imn−1, 256      (13) 

Step 10: repeat step 8 and step 9 until n reaches L, and then 

the cipher image C= {c1, c2,…,cn} is obtained. 

5. The Proposed Scheme 

The proposed encryption scheme is based on a 

permutation-diffusion architecture. The first stage is 

applying the permutation process to the original image. Then, 

the permuted image is subjected to the diffusion process. The 

permutation is achieved using Chepyshev map. The 

diffusion process is achieved by the key related to the plain 

image algorithm based on the proposed Quadratic maps we 

have just constructed. The decryption process is simply the 

reverse of the encryption process. See Fig. 11. 

6. Performance Analysis 

The quality of the encryption algorithm is its ability to 

resist different kinds of known attacks such as known/chosen 

plain-text attack, cipher-text only attack, statistical attack, 

differential attack, and various brute-force attacks. We will 

examine the proposed algorithm by measuring security, 

statistical, and sensitivity analysis on different images. 

6.1. Security Analysis 

6.1.1. Key Space Analysis 

The key space is the total number of different keys that can 

be used in the encryption process. The proposed algorithm 

consists of two processes; permutation and diffusion. In the 

permutation process, we use Chepyshev map with two 

independent variables y0 and k. In the diffusion process, the 

Quadratic map has two independent variables x0 and r. In the 

key related to the plain text algorithm, we have a constant 
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integer c and c [1, 255]. As a result, the key space is {y0, k, 

x0, r, c}. Since y0, k, x0 and r are double precision numbers, 

the total number of different values for y0, k, x0 and r is more 

than 1014. So, the key space is larger than 1014  1014  1014  

1014  255. This large key space is enough to resist 

brute-force attack. On the other hand, the key space of RC6, 

DES and chaotic Baker map for the same 256 level 

gray-scale image is 2128, 256, and 263 respectively [24]. See 

Table (2) 

Table (2).  The key space comparison 

The encryption scheme The key space 

The proposed hybrid chaotic scheme 1014 1014  1014 1014  255 

RC6 2128 

DES 256 

Chaotic Baker map 263 

6.1.2. Statistical Analysis 

In order to prove the security of the proposed encryption 

algorithm, the following statistical tests are performed. 

(a) Histogram 

Histogram clarifies that how pixels in an image are 

distributed by plotting the number of pixels at each 

gray-scale level. The histogram of the original Cameraman, 

Mandrill and Lena images and their encrypted versions with 

the classical Quadratic map, the proposed Quadratic map 1, 2 

and 3 are shown in Figs. 12, 13 and 14. These figures show 

that the histograms of the encrypted images of all Quadratic 

maps are fairly uniform and completely different from those 

of the original images. 

(b) Correlation Coefficient  

For an original image, adjacent pixels have a large 

correlation. For an encrypted image, the correlation between 

pixels should be as small as possible. The closer the value of 

correlation coefficient (CC) to zero, the better is the 

encryption. If the correlation coefficient equals zero, then the 

original image and its encrypted version are totally different. 

So, the success of the encryption process means smaller 

values of the correlation coefficient. The CC is measured by 

the following equation [25]: 
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where x and y are the gray-scale pixel values of the original 

and encrypted images. Table (3) shows the CC of the 

proposed scheme using the classical and proposed Quadratic 

maps, RC6, DES and chaotic Baker map for different test 

images. The simulation results show that all the encryption 

algorithms listed have a very small CC, and the proposed 

scheme based on the proposed Quadratic map 3 has the best 

CC.  

(c) Maximum Deviation 

The Maximum Deviation (MD) measures the quality of 

the encryption in terms of how it maximizes the deviation 

between the original and the encrypted images [26]. The 

higher the value of  MD, the more the encrypted image is 

deviated from the original image. Table (3) shows that the 

MD of the proposed scheme based on the proposed 

Quadratic map 3 is the highest compared to the classical and 

the proposed Quadratic maps 1, 2. The DES has the best MD 

for Cameraman image, only. The worst result of this test was 

found in the chaotic Baker chaotic with a result of zero,  

because this algorithm depends only on permutation. 

(d) Irregular Deviation 

The Irregular Deviation (ID) is based on how much the 

deviation caused by encryption is irregular [27]. The lower 

the ID value, the better the encryption algorithm. Table (3) 

shows that the ID of the proposed scheme with the proposed 

Quadratic map 3 has the smallest value for all tested images. 

 

 

Figure 11.  The proposed scheme 
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(a) Original Cameraman 

image. 

(b) Histogram of original 

Cameraman image. 

(c) Encrypted Cameraman 

image using the classical 

Quadratic map. 

(d) Histogram of an 

encrypted Cameraman 

image using the classical 

Quadratic map. 
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(e) Encrypted Cameraman 

image using the proposed 

Quadratic map 1. 

(f) Histogram of an 

encrypted Cameraman 

image using the proposed 

Quadratic map 1. 

(g) Encrypted Cameraman 

image using the proposed 

Quadratic map 2. 

(h) Histogram of an 

encrypted Cameraman 

image using the proposed 

Quadratic map 2. 
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(i) Encrypted Cameraman 

image using the proposed 

Quadratic map 3. 

(j) Histogram of an 

encrypted Cameraman 

image using the proposed 

Quadratic map 3. 

  

Figure 12.  Cameraman image encryption with the classical and proposed Quadratic maps 
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(a) Original Mandrill image. 

 

(b) Histogram of original 

Mandrill image. 

(c) Encrypted Mandrill 

image using the classical 

Quadratic map. 

(d) Histogram of an 

encrypted Mandrill image 

using the classical Quadratic 

map. 

 
0 50 100 150 200 250

0

100

200

300

400

500

600

  
0 50 100 150 200 250

0

100

200

300

400

500

600

 

(e) Encrypted Mandrill 

image using the proposed 

Quadratic map 1. 

(f) Histogram of an 

encrypted Mandrill image 

using the proposed 

Quadratic map 1. 

(g) Encrypted Mandrill 

image using the proposed 

Quadratic map 2. 

(h) Histogram of an 

encrypted Mandrill image 

using the proposed 

Quadratic map 2. 
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(i) Encrypted Mandrill 

image using the proposed 

Quadratic map 3. 

(j) Histogram of an 

encrypted Mandrill image 

using the proposed 

Quadratic map 3. 

  

Figure 13.  Mandrill image encryption with the classical and proposed Quadratic maps 
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(a) Original Lena image. (b) Histogram of original 

Lena image. 

(c) Encrypted Lena image 

using the classical Quadratic 

map. 

(d) Histogram of an encrypted 

Lena image using the 

classical Quadratic map. 
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(e) Encrypted Lena image 

using the proposed Quadratic 

map 1. 

(f) Histogram of an encrypted 

Lena image using the 

proposed Quadratic map 1. 

(g) Encrypted Lena image 

using the proposed Quadratic 

map 2. 

(h) Histogram of an encrypted 

Lena image using the 

proposed Quadratic map 2. 
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(i) Encrypted Lena image 

using the proposed Quadratic 

map 3. 

(j) Histogram of an encrypted 

Lena image using the 

proposed Quadratic map 3. 

  

Figure 14.  Lena image encryption with the classical and proposed Quadratic maps 
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Table (3).  CC, MD, ID and processing time of RC6, DES, Baker and all Quadratic maps for Cameraman, Mandrill and Lena images 

Cameraman image 

The encryption scheme CC MD ID Processing time 

Classical Quadratic map -0.0027 64177 39686 87 Sec 

Proposed Quadratic map 1 0.0058 60261 40436 89 Sec 

Proposed Quadratic map 2 -0.0024 64190 39400 89 Sec 

Proposed Quadratic map 3 -0.0002 64323 39134 89 Sec 

RC6 -0.0076 64501 39166 40 Mins 

DES -0.0016 64975 39282 797.804 Sec 

Chaotic Baker map 0.0240 0 46574 1.116 Sec 

Mandrill image 

Classical Quadratic map 0.0038 55827 49630 83 Sec 

Proposed Quadratic map 1 0.0027 55400 49768 76 Sec 

Proposed Quadratic map 2 0.0074 55103 49542 75 Sec 

Proposed Quadratic map 3 -0.0053 56064 49402 78 Sec 

RC6 -0.0013 55496 49548 38.5 Mins 

DES -0.0061 55575 49454 352.2 Sec 

Chaotic Baker map 0.0190 0 72760 1.133 Sec 

Lena image 

Classical Quadratic map -0.0019 38512 40036 84 Sec 

Proposed Quadratic map 1 0.0033 38209 40374 86 Sec 

Proposed Quadratic map 2 0.0066 38834 40244 89 Sec 

Proposed Quadratic map 3 -0.0018 38929 39928 75 Sec 

RC6 -0.0116 38113 39718 39.5 Mins 

DES -0.0035 38756 40026 487.8 Sec 

Chaotic Baker map 0.0077 0 56182 1.23 Sec 

 

6.1.3. Sensitivity Analysis 

In general, an encrypted image must be sensitive to the 

small changes in the original image and secret key. In order 

to avoid differential attack, a small change in the plain image 

or secret key should cause a significant change in the 

encrypted image. Two parameters were used for differential 

analysis; Net Pixel Change Rate (NPCR) and Unified 

Average Changing Intensity (UACI) [28]. NPCR measures 

the number of pixels change rate of encrypted image while 

one pixel of the original image is changed. UACI measures 

the average intensity of the differences between those two 

images. The NPCR and UACI of two encrypted images are 

defined in Eqs. (15), (16) respectively. C1 and C2 are two 

encrypted images, whose corresponding plain images have 

only one pixel change. 

,
( , )

100%
i j

D i j
NPCR

W H
 




           (15) 

1 2

,

( , ) ( , )1
100%

255i j

C i j C i j
UACI

W H

 
    

  (16) 

where D(i,j) represents the difference between C1(i,j) and 

C2(i,j). If C1(i,j)= C2(i,j) then D(i,j)=0, otherwise D(i,j)=1. 

We can use these two parameters to measure the key 

sensitivity as follows. 

(a) Key Sensitivity 

We obtained the NPCR and UACI of the encrypted 

Cameraman image under the change of the value of x0 and r, 

on which the secret key depends. We used x0=0.02 and r= 2 

as the first set of key, and then changed it. Table (4) shows 

the values of NPCR and UACI between encrypted images 

with keys (x0, r) and another slightly different key (Δx0, Δr). 

Our results show that for all encryption algorithms with 

classical and proposed Quadratic maps, more than 99% of 

the pixels in the encrypted image change their gray values, 

when the key is just changed by 10-4. The encryption 

algorithm with the proposed Quadratic map 3 has the highest 

change rate. This means that the proposed scheme provides 

high key sensitivity. For a 256 gray-level image, the 

expected UACI value is 33% and the proposed scheme has a 

UACI value equal to 33.6087 %. Furthermore, the proposed 

scheme has the best results for NPCR and UACI among RC6, 

DES and chaotic Baker map encryption algorithms. 
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Table (4).  NPCR and UACI between encrypted Cameraman images 

UACI NPCR Keys The encryption scheme 

33.4522 99.6109 Δx0=10-4, Δr=0 
Classical Quadratic map 

33.4250 99.6009 Δx0=0, Δr=10-4 

33.4121 99.5667 Δx0=10-4, Δr=0 
Proposed Quadratic map 1 

33.4675 99.5911 Δx0=0, Δr=10-4 

33.4590 99.6155 Δx0=10-4, Δr=0 
Proposed Quadratic map 2 

33.4289 99.5804 Δx0=0, Δr=10-4 

33.6087 99.6262 Δx0=10-4, Δr=0 
Proposed Quadratic map 3 

33.5156 99.6078 Δx0=0, Δr=10-4 

31.3152 99.6201 - RC6 

31.3111 99.6185 - DES 

26.0650 98.8510 - Chaotic Baker map 

6.2. Processing Time 

The processing time is the time required to encrypt and 

decrypt an image. The smaller the processing time, the better 

is the encryption efficiency. The proposed scheme uses only 

one round for diffusion process, and so this reduces the 

encryption/decryption time, and hence the scheme is 

practicable in real time applications. All the calculations are 

performed using MATLAB R2007a software under 

windows XP operating system, processor core 2 duo, 1.6 

GHz and 2G RAM. For the 256 gray level Cameraman, 

Mandrill, and Lena images, the processing time is listed in 

Table (3). It is clear that the processing time of the proposed 

scheme is within 75 seconds, which is smaller than the 

processing time of RC6, and DES. Chaotic Baker map has 

the smallest processing time, because it is just a permutation 

map.  

7. Conclusions 

In this paper, new Quadratic chaotic maps with better 

chaotic properties have been proposed. These maps increase 

the available chaotic range of parameter r to infinity, and 

hence are more robust against attacks compared to the 

limited value of parameter r in the classical Quadratic map. 

The MLE in the proposed Quadratic maps is increased 

compared to the classical Quadratic map up to 3.4709, while 

it was 0.6720 in the classical Quadratic map. Therefore, the 

proposed Quadratic maps are more effective than the 

classical Quadratic map in the encryption process and more 

sensitive to the initial conditions. An encryption scheme of 

permutation and diffusion combining two chaotic maps has 

been presented and investigated. In the permutation process, 

we sort chaotic sequences of the Chepyshev map to shuffle 

the image. This procedure avoids the cycle of chaotic 

numbers in the generation of the permutation key. In the 

diffusion process, the permuted image is then encrypted by 

the key related to the plain image algorithm using the 

proposed Quadratic maps. In this encryption scheme, the key 

depends on both the initial key and the original image. So it 

can survive known plain text attack. This algorithm uses a 

single round of diffusion, and hence it has low computational 

complexity. The proposed encryption scheme effectively 

resists the brute-force attack due to its very large key space. 

Furthermore, security, statistical, and sensitivity analysis has 

been carried out demonstrating high security and robustness 

of the proposed scheme. This proposed scheme is suitable for 

real-time image encryption applications due to its small 

processing time compared to the other encryption schemes. 

A comparative study have been presented between the 

proposed scheme, RC6, DES and chaotic Baker map. The 

results of this comparison show that the proposed scheme 

using the proposed Quadratic maps has a superior 

performance.   
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